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Abstract

It is pointed out that the existence of bare mass terms for matter fields changes gauge symmetry patterns through th
mechanism. As a demonstration, we study anSU(2) gauge model with massive adjoint fermions defined onM4 ⊗ S1. It turns
out that the vacuum structure changes at certain critical values ofmL, wherem (L) stands for the bare mass (the circumfere
of S1). The gauge symmetry breaking patterns are different from models with massless adjoint fermions. We also co
supersymmmetricSU(2) gauge model with adjoint hypermultiplets, in which the supersymmetry is broken by bare mass
for the gaugino and squark fields instead of the Scherk–Schwarz mechanism.
 2003 Elsevier B.V.

1. Introduction

The Hosotani mechanism is one of the most important dynamical phenomena when one considers phy
compactified extra dimensions [1,2]. The component gauge field for the compactified direction becomes dy
degrees of freedom and can develop vacuum expectation values, which are related to phases of the W
integrals along the compactified direction. Wilson line is an order parameter for the gauge symmetry br
Quantum corrections in the extra dimension are crucial for the mechanism and gauge symmetry can b
dynamically, reflecting the topology of the extra dimension.

It is important to note that the mechanism is essentially governed by infrared physics. In order to study
structures of the theory, one usually studies the effective potential for the Wilson line phases. The Wilson
global quantity, so that the effective potential is free from ultraviolet effects because they are local. This s
that massive particles, at first glance, do not contribute to the effective potential for the phases. Thus, th
symmetry breaking patterns seem not to be affected by the massive particle.

In this Letter we demonstrate that massive particles, on the contrary, can affect the gauge symmetry
patterns through the Hosotani mechanism. In fact, we will show that in gauge models with massive fermi
gauge symmetry breaking patterns change at certain critical values of the bare mass for the fermion. This
observed in the case of massless fermions.
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We also study supersymmetric gauge models, in which the supersymmetry is broken explicitly by ba
terms, instead of imposing the twisted boundary condition for theS1 direction by Scherk and Schwarz [3]. W
introduce a bare mass term for the gaugino(squark) field in a vector(hyper)multiplet. We will show that, dep
on the relative magnitude between the two mass parameters, the gauge symmetry breaking pattern
different from those by the model with Scherk–Schwarz mechanism of supersymmetry breaking.

Since the full analysis is beyond the scope of this Letter, we restrict our consideration to a simpleSU(2)
(supersymmetric) gauge model withNf massive adjoint fermions (hypermultiplets) defined onM4 ⊗ S1, where
M4 (S1) stands for four-dimensional Minkowski space–time (a circle with the circumference beingL). We are
interested in the effects of bare mass terms for matter fields on the gauge symmetry breaking patterns.

2. Gauge model with massive adjoint matter

Let us start with the nonsupersymmetricSU(2) gauge model withNf massive adjoint fermions defined o
M4 ⊗ S1. Following the standard procedure, the effective potential for the constant background gaug
gL〈Ay 〉 = diag(θ1, θ2)= diag(θ,−θ) is given by [2,4]

Veff = −(5− 2)
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Herem stands for a gauge invariant bare mass for the adjoint fermion. The first line in Eq. (1) comes fr
gauge and ghost fields and the second line is the contribution from theNf massive adjoint fermions. The functio
K 5

2
(y) is the modified Bessel function and is expressed in terms of the elementary function,
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y
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e−y.

Let us note that the effective potential (1) becomes identical to the one withNf massless adjoint fermions whe
we take the limit,

(3)lim
m→0

m
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By definingz≡mL and noting that�(5/2)= 3
√
π/4. The effective potential is recast as

(4)Veff = 3

4π2

1
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1

n5
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3
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)
× 2

(
1+ cos(2nθ)

)
,

where we have used Eq. (2).
In order to see how the massive fermion affects the vacuum structure of the model, let us first c

asymptotic behaviors of the effective potential with respect toz. If z is large enough, the fermion contributio
to the effective potential is suppressed due to the Boltzmann like factor e−zn in Eq. (4). This is consistent wit
the observation stated in the introduction that the Hosotani mechanism is governed by infrared physic
the dominant contribution to the potential comes from the gauge sector in the model. Therefore, the
configuration is given, in this limit, byθ = 0(modπ) [2]. TheSU(2) gauge symmetry is not broken in the limit.1 On

1 The two configurationsθ = 0 andθ = π are physically equivalent and is related byZ2 symmetry.
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the other hand, if we take the massless limit,z→ 0, the effective potential, as we have mentioned above, bec
identical to the one for the case ofNf massless adjoint fermion. It has been known that the vacuum configu
for this case is given byθ = π/2 [5]. TheSU(2) gauge symmetry is spontaneously broken down toU(1) in this
limit. The above observations strongly suggest that there must exist certain critical values ofz, at which the gauge
symmetry breaking patterns change.

In order to confirm the existence of the expected critical values ofz, let us study the stability of the configuratio
θ = 0 (π/2) with respect toz, which corresponds to the vacuum configuration in limit ofz → ∞ (0). We set
Nf = 1 for simplicity. By simple numerical calculations, we find that the sign of the second derivative o
effective potential atθ = π/2 (0) changes atz � 1.54135(1.13501)and becomes negative (positive) for larg
values of it. Both configurations are stable for 1.13501� z� 1.54135. If we compare the potential energy for
two configurations in the narrow region, we find thatVeff(θ = π/2) < (>)Veff(θ = 0) for z < (>) z∗ � 1.40087.

These observations mean that the gauge symmetry breaking patterns change atz∗. As far as our numerica
analyzes are concerned, there appears two degenerate minima atz∗ � 1.40087 and is finite height of potenti
barrier between the configurationθ = 0 andθ = π/2. If z becomes smaller thanz∗, the minimum of the effective
potential locates atθ = π/2, while if z becomes larger thanz∗, then, the vacuum configuration is given
θ = 0(modπ). Hence, we conclude that2

(5)gauge symmetry breaking pattern=
{

SU(2)→U(1) for z < z∗,
SU(2)→ SU(2) for z > z∗.

We have also computed the critical values ofz in caseNf = 3,6,10. They are given byz∗ � 3.55154, 4.61892,
5.3521, respectively. If we takeNf = 100, the critical value is aboutz∗ � 8.378.

Let us comment on the adjoint Higgs scalar, which is originally the component gauge field for theS1 direction.
The mass term for the scalar, which is massless at the tree level, is generated through the quantum cor
the extra dimensions [1]. The mass term is given by estimating the second derivative of the effective pote
at the absolute minimum. Our numerical analyzes tell us that the Higgs scalar is always massive for eac
symmetry breaking pattern in Eq. (5).

3. Supersymmetric gauge model

In this section let us study theN = 1 supersymmetricSU(2) gauge model withNf adjoint hypermultiplets
defined onM4 ⊗ S1. The bare mass terms, which are gauge invariant, are introduced in such a way th
break the supersymmetry. Here we are interested in how the gauge symmetry breaking patterns are mo
such the supersymmetry breaking terms and comparing results with those by the model with the Scherk–
mechanism of supersymmetry breaking.

In the model we have a five-dimensional vectormultipletV = (Aµ̂,Σ,λD), whereAµ̂ is the five-dimensiona
gauge potential andλD (Σ) stands for a Dirac spinor3 (a real scalar). Here we callλD gaugino. We also haveNf

adjoint hypermultipletsH = (ψD, φi), whereψD is a Dirac spinor andφi(=1,2) is a complex scalar called squark.
case of the Scherk–Schwarz mechanism of supersymmetry breaking, the gaugino and squark masses are
an unique nontrivial phase associated with theSU(2)R symmetry, so that they have different mass terms from t
superpartners in four dimensions. The supersymmetry is broken by the unique phase. Here instead of re
the Scherk–Schwarz mechanism, we add the gauge invariant bare mass for the gaugino(mg) and squarks(ms), as
one of the examples, to break the supersymmetry.

2 The phase transition atz∗ is the first order.
3 Let us note thatn Dirac spinors are equivalent to 2n symplectic (pseudo)Majorana spinors.λD can be decomposed into two Majora

spinorsλ, λ′ in four dimensions.
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Following the standard procedure to calculate the effective potential for the constant background gau
gL〈Ay 〉 = diag(θ1, θ2)= diag(θ,−θ), we obtain that4

Veff = (−3− 1)
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where we have definedzg ≡mgL, zs ≡msL. The first and second lines in Eq. (6) come from the vectormultip
The third and fourth lines are the contributions from theNf adjoint hypermultiplets. Here we have assumed
the two complex scalars in the hypermultiplet have a common bare massms . The bare massmg(ms) explicitly
breaks the supersymmetry as it should. In fact, if we take the limit ofmg(ms) → 0 and utilizing (3), the effective
potential (6) vanish and the originalN = 1 supersymmetry in five dimensions is restored.

The effective potential is recast, by using Eq. (2), as

(7)Veff = 4

(
3

4π2

)
1

L5

2∑
i,j=1
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n=1

1

n5

(
Nf F(n, zs)−F(n, zg)

) × 2
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1+ cos(2nθ)

)
,

where we have defined

(8)F(n, zi)≡ 1−
(

1+ nzi + (nzi)
2

3

)
e−nzi , i = g, s.

The functionF(n, zi) satisfies 0� F(n, zi)� 1, where the first (second) equality holds whenzi → 0 (∞).
Let us first study the case ofzg = zs(≡ zc). The effective potential (7) becomes

(9)Veff = 4
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n5
F(n, zc)× 2
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.

It is easy to see that the potential vanishes forNf = 1. This is because one can still haveN = 1 supersymmetry by
recombining the two massive fields into the same multiplet, so that there is one massless and one massive
And each multiplet is supersymmetric under theN = 1 supersymmetry. As a result, the total action is invar
under the supersymmetry.

The nonvanishing potential is given forNf � 2. The supersymmetry is broken by an unique parameterzc in this
case. Taking 0� F(n, z)� 1 into account, the minimum of the potential is always located atθ = π/2, independen
of the values ofzc(�= 0). Thus, theSU(2) gauge symmetry is broken toU(1). This is the same result as th
one obtained by the Scherk–Schwarz mechanism, in which the unique nontrivial phase associated withSU(2)R

4 We have ignored quantum corrections to the vacuum expectation values for the squark fields for simplicity.
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symmetry breaks the supersymmetry, and the vacuum configuration is given byθ = π/2 [6].5 Let us note tha
the adjoint Higgs scalar in this case is always massive except forzc = 0, where the potential vanishes due to
originalN = 1 supersymmetry in five dimensions.

Let us next consider the casezg �= zs with Nf = 1. The sign of a functionC ≡ F(n, zs)−F(n, zg) is important
to determine the minimum of the effective potential (7). Forzs < (>)zg , the sign ofC is negative (positive), so
that the configurationθ = 0 (π/2) is realized as the vacuum configuration. Therefore, depending on the re
magnitude betweenzg andzs , the vacuum configuration is different and accordingly, the gauge symmetry bre
patterns are different. Ifzg = zs , the effective potential vanishes due to the survived supersymmetry exp
above. The adjoint Higgs scalar is always massive in this case.

Let us finally study the caseNf = 2 with zg �= zs . In order to demonstrate the possible effects of the bare m
on the gauge symmetry breaking patterns, we takezg to be 0.1,1.0,10 as an example. For each value ofzg we study
the behavior of the effective potential with respect tozs and find the minimum of the potential. We examine
stability of the configurationθ = 0(modπ) andθ = π/2 with respect tozs for the given values ofzg by studying
the second derivative of the effective potential.

In casezg = 0.1, simple numerical calculations show that the configurationθ = 0 becomes unstable fo
zs � 0.0672937≡ zs1, on the other handθ = π/2 becomes stable forzs � 0.0706947≡ zs2. The configuration
that minimizes the effective potential in the narrow region betweenzs1 andzs2 is still given by the configuration
which breaks theSU(2) gauge symmetry toU(1), though it is notθ = π/2. We confirm that by numerical analyze
the behavior ofθ that minimizes the potential in the narrow region is that theθ increases gradually from zero atzs1
and approaches toπ/2 atzs2. Thus, we have shown that the bare mass terms for the gaugino and squark ca
the gauge symmetry breaking patterns through the Hosotani mechanism and the phase transition occurs azs = zs1
for zg = 0.1. Hence, we obtain that6

(10)gauge symmetry breaking pattern=
{

SU(2)→ SU(2) for zs < zs1,

SU(2)→U(1) for zs > zs1.

It should be noted that the very small values ofθ , which is usually of order O(1), is possible in this case. This ma
affect mass spectrum in four dimensions. We will discuss this point in the last section.

We repeat the same analyzes as above for the casezg = 1.0 (10) with Nf = 2. The configurationθ = 0
becomes unstable forzs � 0.618288(2.03287)≡ zs1, while the configurationθ = π/2 becomes stable fo
zs � 0.691531(2.47766)≡ zs2. The qualitative behavior ofθ that minimizes the effective potential in the narro
region is the same as that in the casezg = 0.1.

The adjoint Higgs scalar in this case can be massless unlike the previous cases. The second derivat
effective potential evaluated atθ = 0 (π/2) vanishes forzs1 = 0.0672937(0.0706947). Hence, the massless sta
of the Higgs scalar is possible for the fine tuned values ofzs . In the other caseszg = 1.0,10, we also have massle
state of the adjoint Higgs scalar at the values ofzs , where the second derivative of the potential evaluate
θ = 0, π/2 vanishes.

We have seen that the gauge symmetry breaking patterns change due to the existence of the bare mas
the gaugino and squark in the model. TheSU(2) gauge symmetry is not broken forzs < zs1, on the other hand
SU(2) is broken toU(1) for zs > zs1 for fixed values ofzg in our examples.

5 The effective potential for the case of the Scherk–Schwarz mechanism is given by

V SS
eff = �( 5

2)

π
5
2L5

(4Nf − 4)
∞∑
n=1

1

n5

[
1− cos(nβ)

](
2+ 2cos(2nθ)

)
.

The Hosotani mechanism depends only on matter contents, so that we can quote the results obtained in [6].
6 The phase transition is the second order unlike the case of the nonsupersymmetric gauge model studied in Section 2.
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If we add a bare mass term for the Dirac spinorψD in the hypermultiplet instead of the squarkφi , the structure
of the effective potential is different from Eq. (6). It is easy to see that theSU(2) gauge symmetry is never broke
for any nonzero values of the bare masses.

4. Conclusions and discussions

We have demonstrated that the existence of the bare mass affects the gauge symmetry breaking patter
the Hosotani mechanism. We have explicitly shown that in the nonsupersymmetricSU(2) gauge model with the
massive adjoint fermions defined onM4 ⊗ S1, there exist the critical values forz ≡ mL, above (below) which
theSU(2) gauge symmetry is unbroken (broken). The phase transition is the first order. The asymptotic b
of the effective potential with respect toz also suggests the existence of the critical values ofz ≡ mL: if the
adjoint fermion is heavy enough, corresponding toz→ ∞, it decouples from the effective potential and the ga
sector of the model dominates the potential. Hence, theSU(2) gauge symmetry is not broken through the Hoso
mechanism. On the other hand, if we take the massless limit of the fermion, that is,z→ 0, the vacuum configuratio
breaks theSU(2) gauge symmetry toU(1) [5].

We have also studied the supersymmetric gauge model defined onM4 ⊗ S1. Instead of the Scherk–Schwa
mechanism of supersymmetry breaking, we have introduced the bare mass terms for the gaugin
vectormultiplet and the squark in the hypermultiplet to break the supersymmetry. When the number
hypermultipletNf is equal to one, the critical point is given byzg = zs , where the potential vanishes due
theN = 1 supersymmetry. TheSU(2) gauge symmetry is broken toU(1) for zs > zg , while the gauge symmetr
is not broken forzs < zg . If Nf � 2 and zg = zs , then, theSU(2) gauge symmetry is always broken toU(1) as long
aszc(≡ zg = zs) �= 0. In this case, the supersymmetry is broken by an unique bare masszc . The result is the sam
as the one obtained by the Scherk–Schwarz mechanism of supersymmetry breaking, in which the supers
breaking parameter is also an unique and the gauge symmetry is always broken toU(1). In these cases the adjoi
Higgs scalar cannot be massless except that the models have the accidentalN = 1 supersymmetry.

We have considered the casezg �= zs for Nf = 2. We have shown the possible effect of the bare masses o
gauge symmetry breaking patterns through the Hosotani mechanism. By choosing the certain values ofzg , we have
investigated the configuration that minimizes the effective potential according to the change of the values ozs . We
have found the critical values ofzs1, above (below) which the gauge symmetry is broken (unbroken). The p
transition in the supersymmetric model is the second order unlike the case of the nonsupersymmetric m
have also found that the massless state of the adjoint Higgs scalar appears for the fine tuned values ofzs in this
case.

There are many issues that are not discussed in this Letter. Let us comment on a few of them
supersymmetric gauge model discussed in Section 3, it is important to determine the behavior of th
parameterθ with respect tozs precisely in the narrow region betweenzs1 andzs2. As mentioned in the section
it is possible that the magnitude of the order parameterθ can be very small for (fine tuned) values ofzs . Then, if
particle does not have a bare mass term, the mass square ofn= 0 mode in the Kaluza–Klein modes behaves l
(θ/L)2, so that the order of the mass is highly reduced compared with the compactification scale 1/L at the tree
level. Therefore, we expect the light particle in four dimensions through the Hosotani mechanism.7

It may be interesting to study the case of massive fundamental fermion instead of the adjoint one. It h
known that theSU(N) gauge symmetry is not broken for (supersymmetric) gauge model (with the Scherk–Sc
mechanism) with massless fundamental fermion (matter) [6,7]. If we take the limit of the heavy bare ma
fundamental fermion decouples from the effective potential and the potential is dominated by the gaug
alone. Then, there areN physically equivalent vacua. On the other hand, in the massless limit, we expect tha

7 Let us note that the mass square of the particle is usually of order(θ/L)2 ∼ (O(1)/L)2 through compactification.
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is a singleSU(N) symmetric vacuum forN = even and a doubly degenerateSU(N) vacuum forN = odd. Hence,
we expect from these observations that there exist critical values ofmL, at which a sort of phase transition,
which the number of the vacuum changes, occurs.

It may be interesting to consider higher rank gauge group and study the massive particle effect on th
symmetry breaking patterns. In particular, if we introduce the hierarchy among the bare masses, as we hav
the supersymmetric case, it may be expected to occur rich gauge symmetry breaking patterns. It is also in
to study the mass spectrum in four dimensions, taking the smallness ofθ into account, as discussed above.

One can also expect the same phenomena in other extra dimensions such as the orbifoldS1/Z2 for example.
According to the lessons obtained in this Letter, the gauge symmetry breaking patterns change even in th
the orbifold if particles possess bare mass terms. It is expected that degeneracy of equivalent classes of
conditions, which has been discovered and discussed recently in [8], may be lifted due to the effect of
mass. These problems are under investigation and will be reported elsewhere.
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