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Abstract

Itis pointed out that the existence of bare mass terms for matter fields changes gauge symmetry patterns through the Hosotani
mechanism. As a demonstration, we studySar2) gauge model with massive adjoint fermions definedwh® S1. It turns
out that the vacuum structure changes at certain critical valuag.pfvherem (L) stands for the bare mass (the circumference
of s1). The gauge symmetry breaking patterns are different from models with massless adjoint fermions. We also consider a
supersymmmetri®J(2) gauge model with adjoint hypermultiplets, in which the supersymmetry is broken by bare mass terms
for the gaugino and squark fields instead of the Scherk—Schwarz mechanism.
O 2003 Elsevier B.V. Open access under CC BY license.

1. Introduction

The Hosotani mechanism is one of the most important dynamical phenomena when one considers physics with
compactified extra dimensions [1,2]. The component gauge field for the compactified direction becomes dynamical
degrees of freedom and can develop vacuum expectation values, which are related to phases of the Wilson line
integrals along the compactified direction. Wilson line is an order parameter for the gauge symmetry breaking.
Quantum corrections in the extra dimension are crucial for the mechanism and gauge symmetry can be broken
dynamically, reflecting the topology of the extra dimension.

It is important to note that the mechanism is essentially governed by infrared physics. In order to study vacuum
structures of the theory, one usually studies the effective potential for the Wilson line phases. The Wilson line is a
global quantity, so that the effective potential is free from ultraviolet effects because they are local. This suggests
that massive particles, at first glance, do not contribute to the effective potential for the phases. Thus, the gauge
symmetry breaking patterns seem not to be affected by the massive particle.

In this Letter we demonstrate that massive particles, on the contrary, can affect the gauge symmetry breaking
patterns through the Hosotani mechanism. In fact, we will show that in gauge models with massive fermions, the
gauge symmetry breaking patterns change at certain critical values of the bare mass for the fermion. This is never
observed in the case of massless fermions.
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We also study supersymmetric gauge models, in which the supersymmetry is broken explicitly by bare mass
terms, instead of imposing the twisted boundary condition forsthelirection by Scherk and Schwarz [3]. We
introduce a bare mass term for the gaugino(squark) field in a vector(hyper)multiplet. We will show that, depending
on the relative magnitude between the two mass parameters, the gauge symmetry breaking patterns become
different from those by the model with Scherk—Schwarz mechanism of supersymmetry breaking.

Since the full analysis is beyond the scope of this Letter, we restrict our consideration to a Siig)e
(supersymmetric) gauge model withy massive adjoint fermions (hypermultiplets) definedMf ® S, where
M* (1) stands for four-dimensional Minkowski space—time (a circle with the circumference Bgirye are
interested in the effects of bare mass terms for matter fields on the gauge symmetry breaking patterns.

2. Gauge model with massive adjoint matter

Let us start with the nonsupersymmet8d(2) gauge model withV, massive adjoint fermions defined on
M* ® S1. Following the standard procedure, the effective potential for the constant background gauge field
gL(A,) =diag(0y, 62) = diag®, —0) is given by [2,4]
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Herem stands for a gauge invariant bare mass for the adjoint fermion. The first line in Eg. (1) comes from the
gauge and ghost fields and the second line is the contribution froM tlreassive adjoint fermions. The function
Kg (y) is the modified Bessel function and is expressed in terms of the elementary function,
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Let us note that the effective potential (1) becomes identical to the oneNyitmassless adjoint fermions when
we take the limit,
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By definingz = m L and noting thaf"(5/2) = 3,/7 /4. The effective potential is recast as
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where we have used Eq. (2).

In order to see how the massive fermion affects the vacuum structure of the model, let us first consider
asymptotic behaviors of the effective potential with respect.ttf z is large enough, the fermion contribution
to the effective potential is suppressed due to the Boltzmann like factérie Eq. (4). This is consistent with
the observation stated in the introduction that the Hosotani mechanism is governed by infrared physics. Then,
the dominant contribution to the potential comes from the gauge sector in the model. Therefore, the vacuum
configuration is given, in this limit, b§ = 0(modx) [2]. The SU(2) gauge symmetry is not broken in the liriOn
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1 The two configurationg = 0 and® = = are physically equivalent and is related By symmetry.
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the other hand, if we take the massless limit> 0, the effective potential, as we have mentioned above, becomes
identical to the one for the case 8fr massless adjoint fermion. It has been known that the vacuum configuration
for this case is given by = /2 [5]. The SU(2) gauge symmetry is spontaneously broken dowty t&) in this

limit. The above observations strongly suggest that there must exist certain critical valyes$ which the gauge
symmetry breaking patterns change.

In order to confirm the existence of the expected critical valueslef us study the stability of the configuration
6 = 0 (;r/2) with respect toz, which corresponds to the vacuum configuration in limitzef oo (0). We set
Ny =1 for simplicity. By simple numerical calculations, we find that the sign of the second derivative of the
effective potential ab = 7 /2 (0) changes at ~ 1.54135(1.13501)and becomes negative (positive) for larger
values of it. Both configurations are stable fot3501< z < 1.54135. If we compare the potential energy for the
two configurations in the narrow region, we find thak (0 = 7/2) < (>) Vef(6 = 0) for z < (>) z, ~ 1.40087.

These observations mean that the gauge symmetry breaking patterns changdsafar as our numerical
analyzes are concerned, there appears two degenerate mingna-dt40087 and is finite height of potential
barrier between the configuration= 0 andé = /2. If z becomes smaller thas, the minimum of the effective
potential locates af = 7 /2, while if z becomes larger than,, then, the vacuum configuration is given by
6 = 0(modr). Hence, we conclude tHat

VR)—> U@ forz <z,

gauge symmetry breaking patt SUQ2) - U2 forz >z, (5)

We have also computed the critical valueg @fi caseN ; = 3, 6, 10. They are given by, ~ 3.55154, 461892,
5.3521, respectively. If we takdf r = 100, the critical value is about ~ 8.378.

Let us comment on the adjoint Higgs scalar, which is originally the component gauge field Brdirection.
The mass term for the scalar, which is massless at the tree level, is generated through the quantum correction in
the extra dimensions [1]. The mass term is given by estimating the second derivative of the effective potential (4)
at the absolute minimum. Our numerical analyzes tell us that the Higgs scalar is always massive for each gauge
symmetry breaking pattern in Eq. (5).

3. Supersymmetric gauge model

In this section let us study th& = 1 supersymmetri&J(2) gauge model withV, adjoint hypermultiplets
defined onM* ® S. The bare mass terms, which are gauge invariant, are introduced in such a way that they
break the supersymmetry. Here we are interested in how the gauge symmetry breaking patterns are modified by
such the supersymmetry breaking terms and comparing results with those by the model with the Scherk—Schwarz
mechanism of supersymmetry breaking.

In the model we have a five-dimensional vectormultiplet (A;, ¥, Ap), whereA; is the five-dimensional
gauge potential antlp (X) stands for a Dirac spindia real scalar). Here we calp gaugino. We also havl ¢
adjoint hypermultiplet${ = (yp, ¢;), whereyp is a Dirac spinor ang; 1, is a complex scalar called squark. In
case of the Scherk—Schwarz mechanism of supersymmetry breaking, the gaugino and squark masses are shifted b
an unique nontrivial phase associated with$k?2)  symmetry, so that they have different mass terms from their
superpartners in four dimensions. The supersymmetry is broken by the unique phase. Here instead of resorting to
the Scherk—Schwarz mechanism, we add the gauge invariant bare mass for the gaypamd squarksm;), as
one of the examples, to break the supersymmetry.

2 The phase transition at, is the first order.
3 Let us note that: Dirac spinors are equivalent ta: Zymplectic (pseudo)Majorana spinoksgy can be decomposed into two Majorana
spinorsi, A’ in four dimensions.
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Following the standard procedure to calculate the effective potential for the constant background gauge field
gL(A,) = diag61, 62) = diag®, —6), we obtain thét
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where we have define =mgL, z; = m,L. The first and second lines in Eq. (6) come from the vectormultiplet.
The third and fourth lines are the contributions from fiie adjoint hypermultiplets. Here we have assumed that
the two complex scalars in the hypermultiplet have a common bare masBhe bare mass:, (m;) explicitly
breaks the supersymmetry as it should. In fact, if we take the limitgin,) — 0 and utilizing (3), the effective
potential (6) vanish and the origin&f = 1 supersymmetry in five dimensions is restored.

The effective potential is recast, by using Eq. (2), as
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where we have defined
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The functionF (n, z;) satisfies 6X F(n, z;) < 1, where the first (second) equality holds wher> 0 (c0).

Let us first study the case of = z;(= z.). The effective potential (7) becomes

veﬁ=4<4 2>Nf ! Z Z F(n,zc) x 2(1+ cog2n)). (9)
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It is easy to see that the potential vanishesNgr= 1. This is because one can still have= 1 supersymmetry by
recombining the two massive fields into the same multiplet, so that there is one massless and one massive multiplet.
And each multiplet is supersymmetric under the= 1 supersymmetry. As a result, the total action is invariant
under the supersymmetry.

The nonvanishing potential is given fdi; > 2. The supersymmetry is broken by an unique parameterthis
case. Taking & F(n, z) < 1into account, the minimum of the potential is always locatet-atr /2, independent
of the values ofz.(# 0). Thus, theSU(2) gauge symmetry is broken G (1). This is the same result as the
one obtained by the Scherk—Schwarz mechanism, in which the unique nontrivial phase associafet 2yjth

4 We have ignored quantum corrections to the vacuum expectation values for the squark fields for simplicity.
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symmetry breaks the supersymmetry, and the vacuum configuration is givee=by/2 [6].% Let us note that
the adjoint Higgs scalar in this case is always massive except fer0, where the potential vanishes due to the
original A" = 1 supersymmetry in five dimensions.

Let us next consider the casg# z; with Ny = 1. The sign of a functio® = F (n, z;) — F(n, z,) is important
to determine the minimum of the effective potential (7). Epx (>)z,, the sign ofC is negative (positive), so
that the configuratiof = 0 (;r/2) is realized as the vacuum configuration. Therefore, depending on the relative
magnitude betweer), andz,, the vacuum configuration is different and accordingly, the gauge symmetry breaking
patterns are different. If, = z,, the effective potential vanishes due to the survived supersymmetry explained
above. The adjoint Higgs scalar is always massive in this case.

Let us finally study the casl¥; = 2 with z, # z,. In order to demonstrate the possible effects of the bare mass
on the gauge symmetry breaking patterns, we take be 01, 1.0, 10 as an example. For each value ptve study
the behavior of the effective potential with respectjcand find the minimum of the potential. We examine the
stability of the configuratiod = O(modr) andé = /2 with respect ta, for the given values of, by studying
the second derivative of the effective potential.

In casezg = 0.1, simple numerical calculations show that the configuratioa 0 becomes unstable for
75 2 0.0672937= 7,1, on the other hand = = /2 becomes stable fa; = 0.0706947= z,,. The configuration
that minimizes the effective potential in the narrow region betwgemndz,> is still given by the configuration
which breaks th&U (2) gauge symmetry t&/ (1), though it is not = /2. We confirm that by numerical analyzes,
the behavior ob that minimizes the potential in the narrow region is thatéliecreases gradually from zeroat
and approaches to/2 atz;2. Thus, we have shown that the bare mass terms for the gaugino and squark can affect
the gauge symmetry breaking patterns through the Hosotani mechanism and the phase transitionzgecuys at
for z, = 0.1. Hence, we obtain thit

W2 —» V@2 forzs < zs1,

gauge symmetry breaking patt U@ — UQ)  forz, >z,

(10)
It should be noted that the very small value® ofvhich is usually of order @), is possible in this case. This may
affect mass spectrum in four dimensions. We will discuss this point in the last section.
We repeat the same analyzes as above for the gasel.0 (10) with Ny = 2. The configuratioré = 0
becomes unstable far; = 0.618288(2.03287)= z,1, while the configuratiord = /2 becomes stable for
75 2,0.691531(2.47766)= z,2. The qualitative behavior af that minimizes the effective potential in the narrow
region is the same as that in the cage=0.1.
The adjoint Higgs scalar in this case can be massless unlike the previous cases. The second derivative of the
effective potential evaluated at= 0 (x/2) vanishes fot; = 0.0672937(0.0706947) Hence, the massless state
of the Higgs scalar is possible for the fine tuned values ofn the other cases, = 1.0, 10, we also have massless
state of the adjoint Higgs scalar at the valuexgfwhere the second derivative of the potential evaluated at
6 =0, /2 vanishes.
We have seen that the gauge symmetry breaking patterns change due to the existence of the bare mass terms fc
the gaugino and squark in the model. THé(2) gauge symmetry is not broken fey < z41, on the other hand,
SU(2) is broken toU (1) for z, > z1 for fixed values ot in our examples.

5 The effective potential for the case of the Scherk—Schwarz mechanism is given by
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The Hosotani mechanism depends only on matter contents, so that we can quote the results obtained in [6].
6 The phase transition is the second order unlike the case of the nonsupersymmetric gauge model studied in Section 2.
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If we add a bare mass term for the Dirac spigey in the hypermultiplet instead of the squagk the structure
of the effective potential is different from Eq. (6). It is easy to see thaB8h@) gauge symmetry is never broken
for any nonzero values of the bare masses.

4. Conclusions and discussions

We have demonstrated that the existence of the bare mass affects the gauge symmetry breaking patterns throug
the Hosotani mechanism. We have explicitly shown that in the nonsupersym@®étéy gauge model with the
massive adjoint fermions defined ani* ® S, there exist the critical values far= mL, above (below) which
the U (2) gauge symmetry is unbroken (broken). The phase transition is the first order. The asymptotic behavior
of the effective potential with respect tpalso suggests the existence of the critical values efmL: if the
adjoint fermion is heavy enough, corresponding te- co, it decouples from the effective potential and the gauge
sector of the model dominates the potential. HenceSth@) gauge symmetry is not broken through the Hosotani
mechanism. On the other hand, if we take the massless limit of the fermion, that i, the vacuum configuration
breaks theSU(2) gauge symmetry t&/ (1) [5].

We have also studied the supersymmetric gauge model defindd*an S1. Instead of the Scherk—Schwarz
mechanism of supersymmetry breaking, we have introduced the bare mass terms for the gaugino in the
vectormultiplet and the squark in the hypermultiplet to break the supersymmetry. When the number of the
hypermultipletN; is equal to one, the critical point is given ky = z,, where the potential vanishes due to
the /' = 1 supersymmetry. Th8U(2) gauge symmetry is broken (1) for z; > z,, while the gauge symmetry
is not broken for < zg. If Ny > 2 and 3 = z,, then, theSU(2) gauge symmetry is always brokenti@l) as long
asz.(= zg = z4) # 0. In this case, the supersymmetry is broken by an unique bareznalse result is the same
as the one obtained by the Scherk—Schwarz mechanism of supersymmetry breaking, in which the supersymmetry
breaking parameter is also an unique and the gauge symmetry is always braken.tn these cases the adjoint
Higgs scalar cannot be massless except that the models have the ac¢ilentasupersymmetry.

We have considered the cagg# z,; for Ny = 2. We have shown the possible effect of the bare masses on the
gauge symmetry breaking patterns through the Hosotani mechanism. By choosing the certain valwes bfve
investigated the configuration that minimizes the effective potential according to the change of the valuégof
have found the critical values af1, above (below) which the gauge symmetry is broken (unbroken). The phase
transition in the supersymmetric model is the second order unlike the case of the nonsupersymmetric model. We
have also found that the massless state of the adjoint Higgs scalar appears for the fine tuned yalmethisf
case.

There are many issues that are not discussed in this Letter. Let us comment on a few of them. In the
supersymmetric gauge model discussed in Section 3, it is important to determine the behavior of the order
parametep with respect taz; precisely in the narrow region between andzs». As mentioned in the section,
it is possible that the magnitude of the order parametesin be very small for (fine tuned) valuespf Then, if
particle does not have a bare mass term, the mass square 6fmode in the Kaluza—Klein modes behaves like
(6/L)2, so that the order of the mass is highly reduced compared with the compactification scaethe tree
level. Therefore, we expect the light particle in four dimensions through the Hosotani mecHanism.

It may be interesting to study the case of massive fundamental fermion instead of the adjoint one. It has been
known that theSU (N) gauge symmetry is not broken for (supersymmetric) gauge model (with the Scherk—Schwarz
mechanism) with massless fundamental fermion (matter) [6,7]. If we take the limit of the heavy bare mass, the
fundamental fermion decouples from the effective potential and the potential is dominated by the gauge sector
alone. Then, there aré physically equivalent vacua. On the other hand, in the massless limit, we expect that there

7 Let us note that the mass square of the particle is usually of efdén2 ~ (O(1)/L)? through compactification.
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is a singleSU(N) symmetric vacuum folN = even and a doubly degener&d(N) vacuum forN = odd. Hence,
we expect from these observations that there exist critical valuesLofat which a sort of phase transition, in
which the number of the vacuum changes, occurs.

It may be interesting to consider higher rank gauge group and study the massive particle effect on the gauge
symmetry breaking patterns. In particular, if we introduce the hierarchy among the bare masses, as we have done in
the supersymmetric case, it may be expected to occur rich gauge symmetry breaking patterns. It is also interesting
to study the mass spectrum in four dimensions, taking the smallné@sisitaf account, as discussed above.

One can also expect the same phenomena in other extra dimensions such as the Srhifplidr example.
According to the lessons obtained in this Letter, the gauge symmetry breaking patterns change even in the case of
the orbifold if particles possess bare mass terms. It is expected that degeneracy of equivalent classes of boundary
conditions, which has been discovered and discussed recently in [8], may be lifted due to the effect of the bare
mass. These problems are under investigation and will be reported elsewhere.
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