On tree-partition-width

David R. Wood
Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

ARTICLE INFO

Article history:

Received 15 September 2008
Accepted 21 November 2008
Available online 16 January 2009

Abstract

A tree-partition of a graph G is a proper partition of its vertex set into 'bags', such that identifying the vertices in each bag produces a forest. The width of a tree-partition is the maximum number of vertices in a bag. The tree-partition-width of G is the minimum width of a tree-partition of G. An anonymous referee of the paper [Guoli Ding, Bogdan Oporowski, Some results on tree decomposition of graphs, J. Graph Theory 20 (4) (1995) 481-499] proved that every graph with tree-width $k \geq 3$ and maximum degree $\Delta \geq 1$ has tree-partition-width at most $24 k \Delta$. We prove that this bound is within a constant factor of optimal. In particular, for all $k \geq 3$ and for all sufficiently large Δ, we construct a graph with tree-width k, maximum degree Δ, and tree-partition-width at least $\left(\frac{1}{8}-\epsilon\right) k \Delta$. Moreover, we slightly improve the upper bound to $\frac{5}{2}(k+1)\left(\frac{7}{2} \Delta-1\right)$ without the restriction that $k \geq 3$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A graph ${ }^{1} H$ is a partition of a graph G if:

- each vertex of H is a set of vertices of G (called a bag),
- every vertex of G is in exactly one bag of H, and
- distinct bags A and B are adjacent in H if and only if there is an edge of G with one endpoint in A and the other endpoint in B.
The width of a partition is the maximum number of vertices in a bag. Informally speaking, the graph H is obtained from a proper partition of $V(G)$ by identifying the vertices in each part, deleting loops, and replacing parallel edges by a single edge. H is sometimes called the touching pattern or quotient graph of the partition of $V(G)$.

[^0]0195-6698/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2008.11.010

If a forest T is a partition of a graph G, then T is a tree-partition of G. The tree-partition-width ${ }^{2}$ of G, denoted by $\operatorname{tpw}(G)$, is the minimum width of a tree-partition of G. Tree-partitions were independently introduced by Seese [2] and Halin [3], and have since been widely investigated [4,1, 5-8]. Applications of tree-partitions include graph drawing [9-13], graph colouring [14], partitioning graphs into subgraphs with only small components [15], monadic second-order logic [16], and network emulations [17-20]. Planar-partitions and other more general structures have also been studied [21,22,13].

What bounds can be proved on the tree-partition-width of a graph? Let $\mathrm{tw}(\mathrm{G})$ denote the treewidth 3 of a graph G. [2] proved the lower bound,

$$
2 \operatorname{tpw}(G) \geq \operatorname{tw}(G)+1
$$

In general, tree-partition-width is not bounded from above by any function solely of tree-width. For example, wheel graphs have bounded tree-width and unbounded tree-partition-width [1]. However, tree-partition-width is bounded for graphs of bounded tree-width and bounded degree [5,6]. The best known upper bound is due to an anonymous referee of the paper by Ding and Oporowski [5], who proved that

$$
\operatorname{tpw}(G) \leq 24 \operatorname{tw}(G) \Delta(G)
$$

whenever $\operatorname{tw}(G) \geq 3$ and $\Delta(G) \geq 1$. Using a similar proof, we make the following improvement to this bound without the restriction that $\mathrm{tw}(G) \geq 3$.

Theorem 1. Every graph G with tree-width $\mathrm{tw}(G) \geq 1$ and maximum degree $\Delta(G) \geq 1$ has tree-partition-width

$$
\operatorname{tpw}(G)<\frac{5}{2}(\operatorname{tw}(G)+1)\left(\frac{7}{2} \Delta(G)-1\right)
$$

Theorem 1 is proved in Section 2. Note that Theorem 1 can be improved in the case of chordal graphs. In particular, a simple extension of a result by Dujmović et al. [11] implies that

$$
\operatorname{tpw}(G) \leq \operatorname{tw}(G)(\Delta(G)-1)
$$

for every chordal graph G with $\Delta(G) \geq 2$; see [8] for a simple proof. Nevertheless, the following theorem proves that $\mathcal{O}(\operatorname{tw}(G) \Delta(G))$ is the best possible upper bound, even for chordal graphs.

Theorem 2. For every $\epsilon>0$ and integer $k \geq 3$, for every sufficiently large integer $\Delta \geq \Delta(k, \epsilon)$, for infinitely many values of N, there is a chordal graph G with N vertices, tree-width $\mathrm{tw}(G) \leq k$, maximum degree $\Delta(G) \leq \Delta$, and tree-partition-width

$$
\operatorname{tpw}(G) \geq\left(\frac{1}{8}-\epsilon\right) \operatorname{tw}(G) \Delta(G)
$$

Theorem 2 is proved in Section 3. Note that Theorem 2 is for $k \geq 3$. For $k=1$, every tree is a tree-partition of itself with width 1 . For $k=2$, we prove that the upper bound $\mathcal{O}(\Delta(G))$ is again best possible; see Section 4.

2. Upper bound

In this section we prove Theorem 1. The proof relies on the following separator lemma by Robertson and Seymour [25].

[^1]

Fig. 1. Illustration of Case 4.
Lemma 1 ([25]). For every graph G with tree-width at most k, for every set $S \subseteq V(G)$, there are edge-disjoint subgraphs G_{1} and G_{2} of G such that $G_{1} \cup G_{2}=G,\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq k+1$, and $\left|S-V\left(G_{i}\right)\right| \leq \frac{2}{3}\left|S-\left(V\left(G_{1}\right) \cap V\left(G_{2}\right)\right)\right|$ for each $i \in\{1,2\}$.

Theorem 1 is a corollary of the following stronger result.
Lemma 2. Let $\alpha:=1+1 / \sqrt{2}$ and $\gamma:=1+\sqrt{2}$. Let G be a graph with tree-width at most $k \geq 1$ and maximum degree at most $\Delta \geq 1$. Then G has tree-partition-width

$$
\operatorname{tpw}(G) \leq \gamma(k+1)(3 \gamma \Delta-1)
$$

Moreover, for each set $S \subseteq V(G)$ such that

$$
(\gamma+1)(k+1) \leq|S| \leq 3(\gamma+1)(k+1) \Delta,
$$

there is a tree-partition of G with width at most

$$
\gamma(k+1)(3 \gamma \Delta-1)
$$

such that S is contained in a single bag containing at most $\alpha|S|-\gamma(k+1)$ vertices.
Proof. We proceed by induction on $|V(G)|$.
Case $1 .|V(G)|<(\gamma+1)(k+1)$: Then no set S is specified, and the tree-partition in which all the vertices are in a single bag satisfies the lemma. Now assume that $|V(G)| \geq(\gamma+1)(k+1)$, and without loss of generality, S is specified.

Case 2. $|V(G)-S|<(\gamma+1)(k+1)$: Then the tree-partition in which S is one bag and $V(G)-S$ is another bag satisfies the lemma. Now assume that $|V(G)-S| \geq(\gamma+1)(k+1)$.

Case 3 . $|S| \leq 3(\gamma+1)(k+1)$: Let N be the set of vertices in G that are adjacent to some vertex in S but are not in S. Then $|N| \leq \Delta|S| \leq 3(\gamma+1)(k+1) \Delta$. If $|N|<(\gamma+1)(k+1)$ then add arbitrary vertices from $V(G)-(S \cup N)$ to N until $|N| \geq(\gamma+1)(k+1)$. This is possible since $|V(G)-S| \geq(\gamma+1)(k+1)$.

By induction, there is a tree-partition of $G-S$ with width at most $\gamma(k+1)(3 \gamma \Delta-1)$, such that N is contained in a single bag. Create a new bag only containing S. Since all the neighbours of S are in a single bag, we obtain a tree-partition of G. (S corresponds to a leaf in the touching pattern.) Since $|S| \geq(\gamma+1)(k+1)$, it follows that $|S| \leq \alpha|S|-\gamma(k+1)$ as desired. Now $|S| \leq 3(\gamma+1)(k+1)<\gamma(k+1)(3 \gamma \Delta-1)$. Since the other bags do not change we have the desired tree-partition of G.

Case 4. $|S| \geq 3(\gamma+1)(k+1)$: By Lemma 1, there are edge-disjoint subgraphs G_{1} and G_{2} of G such that $G_{1} \cup G_{2}=G,\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq k+1$, and $\left|S-V\left(G_{i}\right)\right| \leq \frac{2}{3}\left|S-\left(V\left(G_{1}\right) \cap V\left(G_{2}\right)\right)\right|$ for each $i \in\{1,2\}$. Let $Y:=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. Let $a:=|S \cap Y|$ and $b:=|Y-S|$. Thus $a+b \leq k+1$. Let $p_{i}:=\left|\left(S \cap V\left(G_{i}\right)\right)-Y\right|$. Then $p_{1} \leq 2 p_{2}$ and $p_{2} \leq 2 p_{1}$. Let $S_{i}:=\left(S \cap V\left(G_{i}\right)\right) \cup Y$. Note that $\left|S_{i}\right|=p_{i}+a+b$ (see Fig. 1).

Now $p_{1}+p_{2}+a=|S| \geq 3(\gamma+1)(k+1)$. Thus $3 p_{i}+a \geq 3(\gamma+1)(k+1)$ and $3 p_{i}+3 a+3 b \geq$ $3(\gamma+1)(k+1)$. That is, $\left|S_{i}\right| \geq(\gamma+1)(k+1)$ for each $i \in\{1,2\}$.

Now $p_{1}+p_{2}+a \leq 3(\gamma+1)(k+1) \Delta$. Thus $\frac{3}{2} p_{i}+a \leq 3(\gamma+1)(k+1) \Delta$ and $p_{i} \leq 2(\gamma+1)(k+1) \Delta$. Thus $p_{i}+a+b \leq 2(\gamma+1)(k+1) \Delta+(k+1)$. Hence $\left|S_{i}\right|=p_{i}+a+b<3(\gamma+1)(k+1) \Delta$.

Thus we can apply induction to the set S_{i} in the graph G_{i} for each $i \in\{1,2\}$. We obtain a treepartition of G_{i} with width at most $\gamma(k+1)(3 \gamma \Delta-1)$, such that S_{i} is contained in a single bag T_{i} containing at most $\alpha\left|S_{i}\right|-\gamma(k+1)$ vertices.

Construct a partition of G by uniting T_{1} and T_{2}. Each vertex of G is in exactly one bag since $V\left(G_{1}\right) \cap V\left(G_{2}\right)=Y \subseteq S_{i} \subseteq T_{i}$. Since G_{1} and G_{2} are edge-disjoint, the touching pattern of this partition of G is obtained by identifying one vertex of the touching pattern of the tree-partition of G_{1} with one vertex of the touching pattern of the tree-partition of G_{2}. Since the touching patterns of the tree-partitions of G_{1} and G_{2} are forests, the touching pattern of the partition of G is a forest, and we have a tree-partition of G.

Moreover, S is contained in a single bag $T_{1} \cup T_{2}$ and

$$
\begin{aligned}
\left|T_{1} \cup T_{2}\right| & =\left|T_{1}\right|+\left|T_{2}\right|-|Y| \\
& \leq \alpha\left|S_{1}\right|-\gamma(k+1)+\alpha\left|S_{2}\right|-\gamma(k+1)-(a+b) \\
& =\alpha\left(p_{1}+a+b\right)-\gamma(k+1)+\alpha\left(p_{2}+a+b\right)-\gamma(k+1)-(a+b) \\
& =\alpha\left(p_{1}+p_{2}+a\right)-2 \gamma(k+1)+(\alpha-1) a+(2 \alpha-1) b \\
& \leq \alpha|S|-2 \gamma(k+1)+(2 \alpha-1)(a+b) \\
& \leq \alpha|S|-2 \gamma(k+1)+(2 \alpha-1)(k+1) \\
& =\alpha|S|-\gamma(k+1) .
\end{aligned}
$$

Thus $\left|T_{1} \cup T_{2}\right| \leq \alpha \cdot 3(\gamma+1)(k+1) \Delta-\gamma(k+1)=\gamma(k+1)(3 \gamma \Delta-1)$. Since the other bags do not change we have the desired tree-partition of G.

3. General lower bound

The remainder of the paper studies lower bounds on the tree-partition-width. The graphs employed are chordal. We first show that tree-partitions of chordal graphs can be assumed to have certain useful properties.

Lemma 3. Every chordal graph G has a tree-partition T with width $\operatorname{tpw}(G)$, such that for every independent set S of simplicial ${ }^{4}$ vertices of G, and for every bag B of T, either $B=\{v\}$ for some vertex $v \in S$, or the induced subgraph $G[B-S]$ is connected.

Proof. Let T_{0} be a tree-partition of a chordal graph G with width $\operatorname{tpw}(G)$. Let T be the partition of G obtained from T_{0} by replacing each bag B of T_{0} by bags corresponding to the connected components of $G[B]$. Add an edge between bags A and B of T if and only if there is an edge of G between A and B. Then T has width at most $\operatorname{tpw}(G)$.

To prove that T is a forest, suppose on the contrary that T contains an induced cycle C. Since each bag in C induces a connected subgraph of G, G contains an induced cycle D with at least one vertex from each bag in C. Since G is chordal, D is a triangle. Thus C is a triangle, implying that the vertices in D were in distinct bags in T_{0} (since the bags of T that replaced each bag of T_{0} form an independent set). Hence the bags of T_{0} that contain D induce a triangle in T_{0}, which is the desired contradiction since T_{0} is a forest. Hence T is a forest.

Let S be an independent set of simplicial vertices of G. Consider a bag B of T. By construction, $G[B]$ is connected. First suppose that $B \subseteq S$. Since S is an independent set and $G[B]$ is connected, $B=\{v\}$ for some vertex $v \in S$.

Now assume that $B-S \neq \emptyset$. Suppose on the contrary that $G[B-S]$ is disconnected. Thus $B \cap S$ is a cut-set in $G[B]$. Let v and w be vertices in distinct components of $G[B-S]$ such that the distance between v and w in $G[B]$ is minimised. (This is well-defined since $G[B]$ is connected.) Since S is an

[^2]

Fig. 2. The graph G with $k=4, \Delta=15$, and $n=8$.
independent set, every shortest path between v and w in $G[B]$ has only two edges. That is, v and w have a common neighbour x in $B \cap S$. Since x is simplicial, v and w are adjacent. This contradiction proves that $G[B-S]$ is connected.

The next lemma is the key component of the proof of Theorem 2. For integers $a<b$, let $[a, b]:=$ $\{a, a+1, \ldots, b\}$ and $[b]:=[1, b]$.

Lemma 4. For all integers $k \geq 2$ and $\Delta \geq 3 k+1$, for infinitely many values of N there is a chordal graph G with N vertices, tree-width $\operatorname{tw}(G)=2 k-1$, maximum degree $\Delta(G) \leq \Delta$, and tree-partition-width $\operatorname{tpw}(G)>\frac{1}{4} k(\Delta-3 k)$.

Proof. Let n be an integer with $n>\max \left\{\frac{1}{2} k(\Delta-3 k), 2\right\}$. Let H be the graph with vertex set $\{(x, y): x \in[n], y \in[k]\}$, where distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if $\left|x_{1}-x_{2}\right| \leq 1$. The set of vertices $\{(x, y): y \in[k]\}$ is the x-column. The set of vertices $\{(x, y): x \in[n]\}$ is the y-row. Observe that each column induces a k-vertex clique, and each row induces an n-vertex path.

Let C be an induced cycle in H. If (x, y) is a vertex in C with x minimum then the two neighbours of (x, y) in C are adjacent. Thus C is a triangle. Hence H is chordal. Observe that each pair of consecutive columns form a maximum clique of $2 k$ vertices in H. Thus H has tree-width $2 k-1$. Also note that H has maximum degree $3 k-1$.

An edge of H between vertices (x, y) and ($x+1, y$) is horizontal. As illustrated in Fig. 2, construct a graph G from H as follows. For each horizontal edge $v w$ of H, add $\left\lceil\frac{1}{2}(\Delta-3 k)\right\rceil$ new vertices, each adjacent to v and w. Since H is chordal and each new vertex is simplicial, G is chordal. The addition of degree- 2 vertices to H does not increase the maximum clique size (since $k \geq 2$). Thus G has clique number $2 k$ and tree-width $2 k-1$. Since each vertex of H is incident to at most two horizontal edges, G has maximum degree $3 k-1+2\left\lceil\frac{1}{2}(\Delta-3 k)\right\rceil \leq \Delta$.

Observe that $V(G)-V(H)$ is an independent set of simplicial vertices in G. By Lemma 3, G has a tree-partition T with width $\operatorname{tpw}(G)$, such that for every bag B of T, either $B=\{v\}$ for some vertex v of $G-H$, or the induced subgraph $H[B]$ is connected. Since G is connected, T is a (connected) tree. Let U be the tree-partition of H induced by T. That is, to obtain U from T delete the vertices of $G-H$ from each bag, and delete empty bags. Since H is connected, U is a (connected) tree. By Lemma 3, each bag of U induces a connected subgraph of H.

Suppose that U only has two bags B and C. Then one of B and C contains at least $\frac{1}{2} n k$ vertices. Since $k \geq 2$, we have $\operatorname{tpw}(G) \geq \frac{1}{2} n k>\frac{1}{4} k(\Delta-3 k)$, as desired. Now assume that U has at least three bags.

Consider a bag B of U. Let $\ell(B)$ be the minimum integer such that some vertex in B is in the $\ell(B)$ column, and let $r(B)$ be the maximum integer such that some vertex in B is in the $r(B)$-column. Since $H[B]$ is connected, there is a path in B from the $\ell(B)$-column to the $r(B)$-column. By the definition of H, for each $x \in[\ell(B), r(B)]$, the x-column contains a vertex in B. Let $I(B)$ be the closed real interval from $\ell(B)-\frac{1}{2}$ to $r(B)+\frac{1}{2}$. Observe that two bags B and C of U are adjacent if and only if $I(B) \cap I(C) \neq \emptyset$. Thus $\{I(B): B$ is a bag of $U\}$ is an interval representation of the tree U. Every tree that is an interval graph is a caterpillar ${ }^{5}$; see [26] for example. Thus U is a caterpillar.

Let \leq be the relation on the set of non-leaf bags of U defined by $A \leq B$ if and only if $\ell(A) \leq \ell(B)$ and $r(A) \leq r(B)$. We claim that \leq is a total order. It is immediate that \leq is reflexive and transitive. To prove that \preceq is antisymmetric, suppose on the contrary that $A \leq B$ and $B \preceq A$ for distinct non-leaf bags A and B. Thus $\ell(A)=\ell(B)$ and $r(A)=r(B)$. Since U has at least three bags, there is a third bag C that contains a vertex in the $(\ell(A)-1)$-column or in the $(r(A)+1)$-column. Thus $\{A, B, C\}$ induce a triangle in U, which is the desired contradiction. Hence \leq is antisymmetric. To prove that \leq is total, suppose on the contrary that $A \npreceq B$ and $B \npreceq A$ for distinct non-leaf bags A and B. Now $A \npreceq B$ implies that $\ell(A)>\ell(B)$ or $r(A)>r(B)$. Without loss of generality, $\ell(A)>\ell(B)$. Thus $B \npreceq A$ implies that $r(B)>r(A)$. Hence the interval $[\ell(A), r(A)]$ is strictly within the interval $[\ell(B), r(B)]$ at both ends. For each $x \in[\ell(A), r(A)]$, every vertex in the x-column is in $A \cup B$, as otherwise U would contain a triangle (since each column is a clique in H). Moreover, every vertex in the $(\ell(A)-1)$-column or in the $(r(A)+1)$-column is in B, as otherwise U would contain a triangle (since the union of consecutive columns is a clique in H). Thus every neighbour of every vertex in A is in B. That is, A is a leaf in U. This contradiction proves that \preceq is a total order on the set of non-leaf bags of U.

Suppose that U has a 4 -vertex path (A, B, C, D) as a subgraph.
Thus B and C are non-leaf bags. Without loss of generality, $B \prec C$. If every column contains vertices in both B and C, then B and C and any other bag would induce a triangle in U (since each column induces a clique in H). Thus some column contains a vertex in B but no vertex in C, and some column contains a vertex in C but no vertex in B. Let p be the maximum integer such that some vertex in B is in the p-column, but no vertex in C is in the p-column. Let q be the minimum integer such that some vertex in C is in the q-column, but no vertex in B is in the q-column. Now $p<q$ since $B \prec C$.

We claim that the $(p+1)$-column contains a vertex in C. If not, then the $(p+1)$-column contains no vertex in B by the definition of p. Thus $r(B)=p$ since $H[B]$ is connected. Since B is adjacent to C in $U, \ell(C) \leq r(B)+1=p+1$. In particular, the $(p+1)$-column contains a vertex in C. Since $H[C]$ is connected, for $x \in[p+1, q]$, each x-column contains a vertex in C. In fact, $\ell(C)=p+1$ since the p-column contains no vertex in C. By symmetry, for $x \in[p, q-1]$, each x-column contains a vertex in B, and $r(C)=q-1$.

The union of the p-column and the $(p+1)$-column only contains vertices in $B \cup C$, as otherwise U would contain a triangle (since the union of two consecutive columns is a clique in H). By the definition of p, no vertex in the p-column is in C. Thus every vertex in the p-column is in B. By symmetry, every vertex in the q-column is in C. Now for each $y \in[k]$, the vertices $(p, y),(p+1, y), \ldots,(q, y)$ are all in $B \cup C$, the first vertex (p, y) is in B, and the last vertex (q, y) is in C. Thus $(x, y) \in B$ and $(x+1, y) \in C$ for some $x \in[p, q-1]$. That is, in every row of H there is a horizontal edge with one endpoint in B and the other in C.

Thus there are at least k horizontal edges with one endpoint in B and the other in C (now considered to be bags of T). For each such horizontal edge $v w$, each vertex of $G-H$ adjacent to v and w is in $B \cup C$, as otherwise T would contain a triangle. There are $\left\lceil\frac{1}{2}(\Delta-3 k)\right\rceil$ such vertices of $G-H$ for each of the k horizontal edges between B and C. Thus $|B \cup C| \geq \frac{1}{2} k(\Delta-3 k)$. Thus one of B and C has at least $\frac{1}{4} k(\Delta-3 k)$ vertices. Hence $\operatorname{tpw}(G) \geq \frac{1}{4} k(\Delta-3 k)$ as desired.

Now assume that U has no 4 -vertex path as a subgraph.
A tree is a star if and only if it has no 4 -vertex path as a subgraph. Hence U is a star. Let R be the root bag of U. If R contains a vertex in every column then $|R| \geq n$, implying $\operatorname{tpw}(G) \geq n \geq \frac{1}{4} k(\Delta-3 k)$, as desired. Now assume that for some $x \in[n]$, the x-column of H contains no vertex in R. Let B be a bag

[^3]

Fig. 3. Illustration for Theorem 3 with $\Delta=13$.
containing some vertex in the x-column. The x-column induces a clique in H, the only bag in U that is adjacent to B is R, and R contains no vertex in the x-column. Thus every vertex in the x-column is in B. Since R is the only bag in U adjacent to B, there are at least k horizontal edges with one endpoint in B and the other endpoint in R. As in the case when U contained a 4 -vertex path, we conclude that $\operatorname{tpw}(G) \geq \frac{1}{4} k(\Delta-3 k)$ as desired.
Proof of Theorem 2. Let $\ell:=\left\lceil\frac{k}{2}\right\rceil$. Thus $\ell \geq 2$. By Lemma 4, for each integer $\Delta \geq \Delta(k, \epsilon):=$ $\max \left\{3 \ell+1, \frac{3 \ell}{8 \epsilon}\right\}$, there are infinitely many values of N for which there is a chordal graph G with N vertices, tree-width $\operatorname{tw}(G)=2 \ell-1 \leq k$, maximum degree $\Delta(G) \leq \Delta$, and tree-partition-width $\operatorname{tpw}(G)>\frac{1}{4} \ell(\Delta-3 \ell)$, which is at least $\left(\frac{1}{8}-\epsilon\right) k \Delta$ since $\Delta \geq \frac{3 \ell}{8 \epsilon}$.

A domino tree decomposition ${ }^{6}$ is a tree decomposition in which each vertex appears in at most two bags. The domino tree-width of a graph G, denoted by $\mathrm{dtw}(\mathrm{G})$, is the minimum width of a domino tree decomposition of G. Domino tree-width behaves like tree-partition-width in the sense that $\mathrm{dtw}(G) \geq \operatorname{tw}(G)$, and $\operatorname{dtw}(G)$ is bounded for graphs of bounded tree-width and bounded degree [1]. The best upper bound is

$$
\operatorname{dtw}(G) \leq(9 \operatorname{tw}(G)+7) \Delta(G)(\Delta(G)+1)-1,
$$

which is due to Bodlaender [4], who also constructed a graph G with

$$
\operatorname{dtw}(G) \geq \frac{1}{12} \operatorname{tw}(G) \Delta(G)-2
$$

Tree-partition-width and domino tree-width are related in that every graph G satisfies

$$
\operatorname{dtw}(G) \geq \operatorname{tpw}(G)-1,
$$

as observed by Bodlaender and Engelfriet [1]. Thus Theorem 2 provides examples of graphs G with

$$
\operatorname{dtw}(G) \geq\left(\frac{1}{8}-\epsilon\right) \operatorname{tw}(G) \Delta(G)
$$

This represents a small constant-factor improvement over the above lower bound by Bodlaender [4].

4. Lower bound for tree-width 2

We now prove a lower bound on the tree-partition-width of graphs with tree-width 2.
Theorem 3. For all odd $\Delta \geq 11$ there is a chordal graph G with tree-width 2 , maximum degree Δ, and tree-partition-width $\operatorname{tpw}(G) \geq \frac{2}{3}(\Delta-1)$.
Proof. As illustrated in Fig. 3, let G be the graph with

$$
\begin{aligned}
V(G):= & \{r\} \cup\left\{v_{i}: i \in[\Delta]\right\} \cup\left\{w_{i, \ell}: i \in[\Delta-1], \ell \in\left[\frac{1}{2}(\Delta-3)\right]\right\}, \quad \text { and } \\
E(G):= & \left\{r v_{i}: i \in[\Delta]\right\} \cup\left\{v_{i} v_{i+1}: i \in[\Delta-1]\right\} \\
& \cup\left\{v_{i} w_{i, \ell}, v_{i+1} w_{i, \ell}: i \in[\Delta-1], \ell \in\left[\frac{1}{2}(\Delta-3)\right]\right\} .
\end{aligned}
$$

Observe that G has maximum degree Δ. Clearly every induced cycle of G is a triangle. Thus G is chordal. Observe that G has no 4 -vertex clique. Thus G has tree-width 2 .

[^4]

Fig. 4. Illustration for Theorem 3 with $\Delta=19$ and $d=4$.
Let T be the tree-partition of G from Lemma 3. Then T has width $\operatorname{tpw}(\mathrm{G})$, and every bag induces a connected subgraph of G. Let R be the bag containing r. Let B_{1}, \ldots, B_{d} be the bags, not including R, that contain some vertex v_{i}. Thus R is adjacent to each B_{j} (since r is adjacent to each v_{i}). Since $\left\{w_{i, \ell}: i \in[\Delta-1], \ell \in\left[\frac{1}{2}(\Delta-3)\right]\right\}$ is an independent set of simplicial vertices, by Lemma 3, for each $j \in[d]$, the vertices $\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\} \cap B_{j}$ induce a (connected) subpath of G.

First suppose that $d=0$. Then the $\Delta+1$ vertices $\left\{r, v_{1}, \ldots, v_{\Delta}\right\}$ are contained in one bag R. Thus $\operatorname{tpw}(G) \geq \Delta+1 \geq \frac{2}{3}(\Delta-1)$.

Now suppose that $d=1$. Thus $\left\{r, v_{1}, \ldots, v_{\Delta}\right\} \subseteq R \cup B_{1}$. In addition, at least one edge $v_{i} v_{i+1}$ has one endpoint in R and the other endpoint in B_{1}. Thus $w_{i, \ell} \in R \cup B_{1}$ for each $\left.\ell \in\left[\frac{1}{2}(\Delta-3)\right\}\right]$. Hence $1+\Delta+\frac{1}{2}(\Delta-3)$ vertices are contained in two bags. Thus one bag contains at least $\frac{1}{4}(3 \Delta-1)$ vertices, and $\operatorname{tpw}(G) \geq \frac{1}{4}(3 \Delta-1) \geq \frac{2}{3}(\Delta-1)$.

Finally suppose that $d \geq 2$. Since $\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\} \cap B_{j}$ induce a subpath in each bag B_{j}, we can assume that $\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\} \cap B_{j}=\left\{v_{i}: i \in[f(j), g(j)]\right\}$, where

$$
1 \leq f(1) \leq g(1)<f(2) \leq g(2)<\cdots<f(d) \leq g(d) \leq \Delta
$$

Distinct B_{j} bags are not adjacent (since T is a tree). Thus $v_{f(j)-1} \in R$ for each $j \in[2, d]$. Similarly, $v_{g(j)+1} \in R$ for each $j \in[d-1]$. Thus $w_{f(j)-1, \ell} \in R \cup B_{j}$ for each $j \in[2, d]$ and $\left.\ell \in\left[\frac{1}{2}(\Delta-3)\right\}\right]$. Similarly, $w_{g(j), \ell} \in R \cup B_{j}$ for each $j \in[d-1]$ and $\left.\ell \in\left[\frac{1}{2}(\Delta-3)\right\}\right]$ (see Fig. 4).

Hence the bags R, B_{1}, \ldots, B_{d} contain at least

$$
1+\Delta+2(d-1) \cdot \frac{1}{2}(\Delta-3)
$$

vertices. Therefore one of these bags has at least

$$
(1+\Delta+(d-1)(\Delta-3)) /(d+1)
$$

vertices, which is at least $\frac{2}{3}(\Delta-1)$. Hence $\operatorname{tpw}(G) \geq \frac{2}{3}(\Delta-1)$.

References

[1] Hans L. Bodlaender, Joost Engelfriet, Domino treewidth, J. Algorithms 24 (1) (1997) 94-123.
[2] Detlef Seese, Tree-partite graphs and the complexity of algorithms, in: Lothar Budach (Ed.), Proc. International Conf. on Fundamentals of Computation Theory, in: Lecture Notes in Comput. Sci., vol. 199, Springer, 1985, pp. 412-421.
[3] Rudolf Halin, Tree-partitions of infinite graphs, Discrete Math. 97 (1991) 203-217.
[4] Hans L. Bodlaender, A note on domino treewidth, Discrete Math. Theor. Comput. Sci. 3 (4) (1999) 141-150.
[5] Guoli Ding, Bogdan Oporowski, Some results on tree decomposition of graphs, J. Graph Theory 20 (4) (1995) 481-499.
[6] Guoli Ding, Bogdan Oporowski, On tree-partitions of graphs, Discrete Math. 149 (1-3) (1996) 45-58.
[7] Anders Edenbrandt, Quotient tree partitioning of undirected graphs, BIT 26 (2) (1986) 148-155.
[8] David R. Wood, Vertex partitions of chordal graphs, J. Graph Theory 53 (2) (2006) 167-172.
[9] Paz Carmi, Vida Dujmović, Pat Morin, David R. Wood, Distinct distances in graph drawings, Electron. J. Combin. 15 (2008) R107.
[10] Emilio Di Giacomo, Giuseppe Liotta, Henk Meijer, Computing straight-line 3D grid drawings of graphs in linear volume, Comput. Geom. Theory Appl. 32 (1) (2005) 26-58.
[11] Vida Dujmović, Pat Morin, David R. Wood, Layout of graphs with bounded tree-width, SIAM J. Comput. 34 (3) (2005) 553-579.
[12] Vida Dujmović, Matthew Suderman, David R. Wood, Graph drawings with few slopes, Comput. Geom. Theory Appl. 38 (2007) 181-193.
[13] David R. Wood, Jan Arne Telle, Planar decompositions and the crossing number of graphs with an excluded minor, New York J. Math. 13 (2007) 117-146.
[14] János Barát, David R. Wood, Notes on nonrepetitive graph colouring, Electron. J. Combin. 15 (2008) R99.
[15] Noga Alon, Guoli Ding, Bogdan Oporowski, Dirk Vertigan, Partitioning into graphs with only small components, J. Combin. Theory Ser. B 87 (2) (2003) 231-243.
[16] Dietrich Kuske, Markus Lohrey, Logical aspects of Cayley-graphs: The group case, Ann. Pure Appl. Logic 131 (1-3) (2005) 263-286.
[17] Hans L. Bodlaender, The complexity of finding uniform emulations on fixed graphs, Inform. Process. Lett. 29 (3) (1988) 137-141.
[18] Hans L. Bodlaender, The complexity of finding uniform emulations on paths and ring networks, Inform. and Comput. 86 (1) (1990) 87-106.
[19] Hans L. Bodlaender, Jan van Leeuwen, Simulation of large networks on smaller networks, Inform. and Control 71 (3) (1986) 143-180.
[20] John P. Fishburn, Raphael A. Finkel, Quotient networks, IEEE Trans. Comput. C-31 (4) (1982) 288-295.
[21] Reinhard Diestel, Daniela Kühn, Graph minor hierarchies, Discrete Appl. Math. 145 (2) (2005) 167-182.
[22] Bruce A. Reed, Paul D. Seymour, Fractional colouring and Hadwiger's conjecture, J. Combin. Theory Ser. B 74 (2) (1998) 147-152.
[23] Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1-2) (1998) 1-45.
[24] Bruce A. Reed, Algorithmic aspects of tree width, in: Bruce A. Reed, Cláudia L. Sales (Eds.), Recent Advances in Algorithms and Combinatorics, Springer, 2003, pp. 85-107.
[25] Neil Robertson, Paul D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (3) (1986) $309-322$.
[26] Jürgen Eckhoff, Extremal interval graphs, J. Graph Theory 17 (1) (1993) 117-127.
[27] Reinhard Diestel, Graph Theory, 2nd ed., in: Graduate Texts in Mathematics, vol. 173, Springer, 2000.

[^0]: E-mail address: woodd@unimelb.edu.au.
 ${ }^{1}$ All graphs considered are undirected, simple, and finite. Let $V(G)$ and $E(G)$ respectively be the vertex set and edge set of a graph G. Let $\Delta(G)$ be the maximum degree of G.

[^1]: 2 Tree-partition-width has also been called strong tree-width [1,2].
 ${ }^{3}$ A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k+2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see [23,24] for surveys.

[^2]: 4 A vertex is simplicial if its neighbourhood is a clique.

[^3]: ${ }^{5}$ A caterpillar is a tree such that deleting the leaves gives a path.

[^4]: 6 See [27] for an introduction to tree decompositions.

