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Abst rac t - -A new parabolic equation is obtained from the acoustic equation by the multiscale method. 
The new equation incorporates the effects of a variable ocean density. The density can be smooth or 
piecewise smooth. Thus, the new formulation alleviates the need for interfacial conditions when the 
density is stratified in a piecewise constant fashion. It also reduces to the standard P.E. when the density 
is constant. The new equation has the same conservation law as the P.E. A difference equation is 
presented which has a discrete version of the same law. 

1. D E R I V A T I O N  

The propagation of sound in an ocean with variable density p is governed by the elliptic equation 

pT.  (1/p)Vp + k'2nZp = O, (1) 

where p is the acoustic pressure, k' = cO~Co, to is the frequency of the time harmonic source, 
Co is a reference sound speed, n = Co~C, and c is the sound speed in the ocean. A time dependence 
of e-i,,, is suppressed. Equation (1) is to be solved in a spatial domain D ' ,  which contains the 
water. A simple model is obtained by assuming that both the ocean bottom and the water-air 
interface are flat. Specifically, 

D '  = {(x', y ' ,  z') l, Ix'l < oc, lY'I < ~, 0 ~ z' ~ H'},  

where the primed variables denote dimensional quantities. Since Eq. (1) is elliptic, boundary 
conditions are required to complete the mathematical description of the problem. The conditions 
used in this report are 

Op/Oz'  = 0, z' = H ' ,  (2) 

and 

p = 0, z' = 0. (3) 

Thus, the ocean has a hard bottom and a pressure release (free) surface. 
The source deriving Eq. (1) is usually modeled as a point disturbance located a tx '  = y'  - 0, 

z' = z;. It is omitted from Eq. (1) for simplicity. 
In many underwater applications the domain (in polar coordinates) D '  = {(r', z',  

0)]0 -< r '  - R ' ,  0 -< z' -< H ' ,  0 -< 0 -< 2vr}, where Eq. (1)must be solved is extremely slender. 
By this we mean that the parameter 

• = ( H ' / R ' )  2 (4) 

satisfies • "~ 1, where R'  is the maximum range of interest. We now introduce the dimensionless 
variables r and - used by Tappert[1]--i.e. 

r = e k ' r '  (5) 

and 

z = ~ / ' ~ k ' z ' .  (6) 
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Accordingly, D '  is transformed into 
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D = {(r ,z ,  0)[0-< r - <  1 , 0 - < z - <  1,0-<- 0 < 2'rr}, (7) 

where l = ( k ' H ' ) H ' / R ' .  We assume that this number is fixed and is order one with respect to 
the parameter e. Introducing this change of variables into Eqs (1)-(3),  we find that the acoustic 
pressure satisfies 

- Pr - - PrPr + e p ~  - p:  + n2p = 0, (8) 
r p -p 

p = 0, z = 0, (9) 

and 

Op/Oz = O, z = l. (10) 

In addition to the boundary conditions (9) and (10), we demand that p be bounded as r ---> l. 
We now make the assumption that n 2 deviates slightly from a constant and takes the 

functional form 

n2(x ' ,  y ' ,  z ' )  = 1 + e f ( r ,  z) .  (11) 

The constant 1 in this equation is arrived at by taking Co to be the average of c throughout D. 
The factor e in (11) demonstrates the weak dependence of c on depth and range. (This apparent 
minor perturbation creates profound effects on acoustic propagation when the range is as short 
as a few wavelengths!) 

We also assume that the density P depends upon the variables r and z in a smooth or 
piecewise smooth fashion. 

When (11) is inserted into (8), we observe the presence of the small parameter e in front 
of nearly every term. To cavilierly set these terms to zero would render a physically meaningless 
result. Guided by previous experience with such matters, we apply the method of multiple 
scales to this equation. Specifically, we assume that 

p ( x ' ,  y ' ,  z ' )  = P ( ~ ,  r,  z; e) ,  (12) 

where the fast variable { is defined by 

= r / e .  (13) 

Inserting this variable and (11) into (8), we obtain the equation 

[Pe~ + P] + e [ 2 P ~  + - P  _ - - p ~  + P:: - + f P  
r P P 

[ 1 Pr ] 
+ e2 Prr -'F - P r  - - - P r  = .0. 

r p 

(14) 

The subscripts denote partial differentiation. Next we make the assumption that P has the 
asymptotic expansion 

p _  ~ ~np,(~, r, z, 0), e---* 0. (15) 
n=0 

When this expression is inserted into (16), we equate to zero the coefficients of the powers of  
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~. This yields an infinite sequence of  equations, of which the first two are 

and 

LPo = Po¢¢ + Po = 0, 

1 Pr P: 
LPI = 2Po~ + -rP°e - P P ° t  + Po= - --p Po: + fPo, 
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(16) 

(17) 

n = 0, 1, z = 0, (18) 

OP,/Oz = O, n = O, 1, z = l. (19) 

Po = Ao(r, z) e i~ + B0(r, z) e -/e, (20) 

If we now substitute 

where the amplitudes Ao and B0 are functions of  the listed variables. Because of  the assumed 
time dependence, e - i ' ,  we set 

Bo(r, z) = 0, (21) 

Since a failure to do so would yield incoming waves from infinity. Inserting (20) and (21) into 
(17) gives 

[ , 0 ] 
LPt = 2/A0, + -Ao  - ~ A o  + Ao.-~ - --A0.- + fAo e ~, (22) 

r p p 

which has the general solution 

Pl = Al(r, z) e ie + ~(i/2)M(Ao) e ie, (23) 

where M(Ao) is the bracketed term on the right side of  Eq. (22). We observe that P~ remains 
bounded as ~ = r/~ ~ o, only if 

M(Ao) = 2iAor + i A o  - io_.~, Ao + Ao:: - p- Ao~ + fAo = 0. (24) 
r p p 

Ao(r, z) = V'p(r,  z)(uo/'X~r) (25) 

into (24), we find that Uo must satisfy our new variable density parabolic differential equation 
(VDPE) 

0"7 = ~z ~z (VppUo) + fUo. (26) 

We now make a few interesting observations about this new equation. First, when p is a 

The solution of Eq. (16) is 

The companions for (16) and (17) are 

P , = 0 ,  

and 

for 0 < z < l, 0 < r < l. Inserting (15) into the boundary conditions (9) and (10) and equating 
to zero the coefficients of  the powers of  ¢, we obtain an infinite sequence of  boundary conditions. 
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constant, (26) reduces to the standard parabolic equation[l]. Second. the differential operator 
involving z is symmetric or formally selfadjoint[2]. Third. the quantity 

f0 E =- luol 2 d: (27) 

is independent of range; i.e. dE~dr =- O. This follows directly from (26), and the boundary 
conditions for u0 are 

u0 = 0, z = 0, (28) 

and 

O(X/-PgUo)/Oz = 0, z = /. (29) 

Equations (28) and (29) are direct consequences of (18), (19) and (25). Fourth, we observe 
that Eq. (26) itself was derived without using the boundary conditions given in (18) and (19). 
Thus, our new parabolic equation will hold even when more realistic boundary conditions are 
implemented. Finally, Eq. (26) can be used even when 9 is piecewise smooth. This will allow 
us to study interfaces that are not planar or straight lines. In this sense our new parabolic equation 
extends the analysis given by Lee and McDaniel[3, 4]. 

2. A C O N S E R V A T I V E  F I N I T E - D I F F E R E N C E  S C H E M E  

In this section we present a finite-difference scheme, which is second-order accurate in 
depth and first-order accurate in range, for solving Eq. (26). This difference scheme will conserve 
a discrete analog of dE~dr = 0, where E is given by (27). The method of analysis and other 
examples are given by Kriegsmann and Mahar[5]. 

We begin by rewriting (26) as 

_2i3Uo 0 [  0 ] 
= a - -  b (auo) + fuo, (30) 

ar az ~z 

where a -- X/'99 and b - 1/9. Setting u~'~- u0(r,, zj), we easily verify by Taylor's theorem that 

a O'-'z ~z (auo] = L(uT)(Az') -2 + O(A,z)  2, (31) 
(r.,zj) 

where r, = n Ar, zj = j Az, and £ is defined by 

£(u 7) = aybT+.,day+ 1u7+1 - aTu ]] + ayb 7-1/2[a7-tuy-, --  ayu]l. (32) 

The Crank-Nicholson scheme for solving (30) is the one we shall use. It is simply 

-2 i [U7  +~ - U~'] = M_~(Uy +' + Uy) + 13f~(U~ '+1 + UT), j = 0, i, 2 . . . . .  N, (33) 

where k = ½ A r / ( A g )  2, [3 = Ar/2, and U~' is the numerical approximation of uy. Equation (33) 
is solved in the usual fashion. 

We now define the vector U" by 

U" = (Ug, U'~ . . . . .  U~v) r, (34) 

where the superscript T denotes transpose. The quantity/~ defined as the /,_-norm of U", i.e. 

N 

~. --[IU"[I 2 = ~ lul l  =, (35) 
/ = 0  
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is the discrete analog of E defined by (27). We shall now prove that L" is range independent; 
i.e. 

Defining W~ by 

/~,,+ I -= E,,, for all n. (36) 

W; = UT+~ + UT. (37) 

and multiplying (33) by if'/. we obtain 

-2i{[UT+'] 2 - [Uj] 2} - q -  R; = hkV~Wj  + [3f~lWj[ 2. (38) 

The term Rj" is real and given by 

RI' -- - Im[U~'0~ '+']. (39) 

Summing (38) f r o m j  = 1 (Zo = 0) t o j  = N(ZN = I). we  obtain 

N N 

- 2 i { E . + ,  - E.} = h ~ # j £ W j  + f3 ~ f ~ ' lw j [  2 - 1~., (40) 
j = 0  j = 0  

where/~, is the 12-norm of the vector R", with components R~', defined as in (34). The last two 
terms on the right side of (40) are real. The result given in (36) follows because the term h 
E~=0 ff'j£Wj is real also. To verify this fact, we rewrite this sum as 

N N 

~Vj£Wj = - g o  + gu+, - ~ bj_l:2[ajWj - a j_ ,Wj_ , l  2, (41) 
:=o j=0 

where 

and 

go = a~b:Wo(aTWl  - a~Wo). (42) 

g.+ j =-- a~b",,+ i;2WN(a}+ I/2WN÷ 1 - -  a~,Wu). (43) 

Now the go term is zero, because W0 = UU j + U~ and both Ug +~ and U~ are zero. The third 
term in (41) is real. The term gN+ J vanishes. This is because the parenthetical term in (43) is 
the discrete implementation of the boundary condition (29). 
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