Higher Kurtz randomness

Bjørn Kjos-Hanssen ${ }^{\text {a }}$, André Nies ${ }^{\text {b }}$, Frank Stephan ${ }^{\text {c,d }}$, Liang Yu ${ }^{\text {ef, }, *}$
${ }^{\text {a }}$ Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, HI 96822, USA
${ }^{\mathrm{b}}$ Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
${ }^{\text {c }}$ Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
${ }^{\text {d }}$ Department of Computer Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
${ }^{\text {e }}$ State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, JiangSu Province, 210093, PR China
${ }^{\mathrm{f}}$ Institute of Mathematical Science, Nanjing University, Nanjing, JiangSu Province, 210093, PR China

A R T I C L E I N F O

Article history:

Received 24 May 2008
Received in revised form 3 September 2009
Accepted 7 February 2010
Available online 29 April 2010
Communicated by A. Nies

MSC:

30D30
03D32
68Q30

Keywords:

Kurtz randomness
Hyperarithmetic
Lowness

Abstract

A real x is Δ_{1}^{1}-Kurtz random (Π_{1}^{1}-Kurtz random) if it is in no closed null Δ_{1}^{1} set (Π_{1}^{1} set). We show that there is a cone of Π_{1}^{1}-Kurtz random hyperdegrees. We characterize lowness for Δ_{1}^{1}-Kurtz randomness as being Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally one uses tools from recursion theory to obtain mathematical notions corresponding to our intuitive idea of randomness for reals. However, Martin-Löf [11] has already suggested to use tools from higher recursion (or equivalently, effective descriptive set theory) when he introduced the notion of Δ_{1}^{1}-randomness. This approach was pursued to greater depths by Hjorth and Nies [8] and Chong, Nies and Yu [1]. Hjorth and Nies investigated a higher analog of the usual MartinLöf randomness, and a new notion with no direct analog in (lower) recursion theory: a real is Π_{1}^{1}-random if it avoids each null Π_{1}^{1} set. Chong, Nies and Yu [1] studied Δ_{1}^{1}-randomness in more detail, viewing it as a higher analog of both Schnorr and recursive randomness. Now a classical result is the characterization of lowness for Schnorr randomness by recursive traceability (see, for instance, Nies' textbook [13]). Chong, Nies and Yu [1] proved a higher analog of this result, characterizing lowness for Δ_{1}^{1} randomness by Δ_{1}^{1} traceability.

Our goal is to carry out similar investigations for higher analogs of Kurtz randomness [3]. A real x is Kurtz random if it avoids each Π_{1}^{0} null class. This is quite a weak notion of randomness: each weakly 1 -generic set is Kurtz random, so for instance the law of large numbers can fail badly.

[^0]It is essential for Kurtz randomness that the tests are closed null sets. For higher analogs of Kurtz randomness, one can require that these tests be closed and belong to a more permissive class such as $\Delta_{1}^{1}, \Pi_{1}^{1}$, or Σ_{1}^{1}.

Restrictions on the computational complexity of a real have been used successfully to analyze randomness notions. For instance, a Martin-Löf random real is weakly 2-random iff it forms a minimal pair with \emptyset^{\prime} (see [13]). We prove a result of that kind in the present setting. Chong, Nies, and Yu [1] studied a property restricting the complexity of a real: being Δ_{1}^{1}-dominated. This is the higher analog of being recursively dominated (or of hyperimmune-free degree). We show that a Δ_{1}^{1}-Kurtz random Δ_{1}^{1} dominated set is already Π_{1}^{1}-random. Thus Δ_{1}^{1}-Kurtz randomness is equivalent to a proper randomness notion on a conull set. We also study the distribution of higher Kurtz random reals in the hyperdegrees. For instance, there is a cone of Π_{1}^{1}-Kurtz random hyperdegrees. However, its base is very complex, having the largest hyperdegree among all Σ_{2}^{1} reals.

Thereafter we turn to lowness for higher Kurtz randomness. Recursive traceability of a real x is easily seen to be equivalent to the condition that for each function $f \leq_{T} x$ there is a recursive function \hat{f} that agrees with f on at least one input in each interval of the form [$2^{n}, 2^{n+1}-1$) (see [13, 8.2.21]). Following Kjos-Hanssen, Merkle, and Stephan [10] one says that x is recursively semi-traceable (or infinitely often traceable) if for each $f \leq_{T} x$ there is a recursive function \hat{f} that agrees with f on infinitely many inputs. It is straightforward to define the higher analog of this notion, Δ_{1}^{1}-semi-traceability. Our main result is that lowness for Δ_{1}^{1}-Kurtz randomness is equivalent to being Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable. We also show using forcing that being Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable is strictly weaker than being Δ_{1}^{1}-traceable. Thus, lowness for Δ_{1}^{1} Kurtz randomness is strictly weaker than lowness for Δ_{1}^{1}-randomness.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as presented, for instance, in Sacks [16]. See [13, Ch. 9] for a summary.

A real is an element in 2^{ω}. Sometimes we write $n \in x$ to mean $x(n)=1$. Fix a standard Π_{2}^{0} set $H \subseteq \omega \times 2^{\omega} \times 2^{\omega}$ so that for all x and $n \in \mathcal{O}$, there is a unique real y satisfying $H(n, x, y)$. Moreover, if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then each real $z \leq_{h} x$ is Turing reducible to some y so that $H(n, x, y)$ holds for some $n \in \mathcal{O}$. Roughly speaking, y is the $|n|$-th Turing jump of x. These y 's are called H^{x} sets and denoted by H_{n}^{x}. For each $n \in \mathcal{O}$, let $\mathcal{O}_{n}=\left\{m \in \mathcal{O}| | m|<|n|\}\right.$. \mathcal{O}_{n} is a Δ_{1}^{1} set.

We use the Cantor pairing function, the bijection $p: \omega^{2} \rightarrow \omega$ given by $p(n, s)=\frac{(n+s)^{2}+3 n+s}{2}$, and write $\langle n, s\rangle=p(n, s)$. For a finite string $\sigma,[\sigma]=\left\{x \succ \sigma \mid x \in 2^{\omega}\right\}$. For an open set U, there is a presentation $\hat{U} \subseteq 2^{<\omega}$ so that $\sigma \in \hat{U}$ if and only if $[\sigma] \subseteq U$. We sometimes identify U with \hat{U}. For a recursive functional Φ, we use $\Phi^{\sigma}[s]$ to denote the computation state of Φ^{σ} at stage s. For a tree T, we use [T] to denote the set of infinite paths in T. Some times we identify a finite string $\sigma \in \omega^{<\omega}$ with a natural number without confusion.

The following results will be used in later sections.
Theorem 2.1 (Gandy). If $A \subseteq 2^{\omega}$ is a nonempty Σ_{1}^{1} set, then there is a real $x \in A$ so that $\mathcal{O}^{x} \leq{ }_{h} \mathcal{O}$.
Theorem 2.2 (Spector [17] and Gandy [6]). $A \subset 2^{\omega}$ is Π_{1}^{1} if and only if there is an arithmetical predicate $P(x, y)$ such that

$$
y \in A \leftrightarrow \exists x \leq_{h} y P(x, y)
$$

Theorem 2.3 (Sacks [14]). If x is non-hyperarithmetical, then $\mu\left(\left\{y \mid y \geq_{h} x\right\}\right)=0$.
Theorem 2.4 (Sacks [16]). The set $\left\{x \mid x \geq_{h} \mathcal{O}\right\}$ is Π_{1}^{1}. Moreover, $x \geq_{h} \mathcal{O}$ if and only if $\omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}$.
A consequence of the last two theorems above is that the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is a Π_{1}^{1} null set.
Given a class Γ, an element $x \in \omega^{\omega}$ is called a Γ-singleton if $\{x\}$ is a Γ set. Note that if $x \in \omega^{\omega}$ is a Π_{1}^{1}-singleton, then too is $x_{0}=\{\langle n, m\rangle \mid x(n)=m\} \equiv_{T} x$. Hence we do not distinguish Π_{1}^{1}-singletons between Baire space and Cantor space.

A subset of 2^{ω} is Π_{0}^{0} if it is clopen. We can define Π_{γ}^{0} sets by a transfinite induction for all countable γ. Every such set can be coded by a real (for more details see [16]). Given a class Γ (for example, $\Gamma=\Delta_{1}^{1}$) of subsets of 2^{ω}, a set A is $\Pi_{\gamma}^{0}(\Gamma)$ if A is Π_{γ}^{0} and can be coded by a real in Γ.

In the case $\gamma=1$, every hyperarithmetic closed subset of reals is $\Pi_{1}^{0}\left(\Delta_{1}^{1}\right)$. We also have the following result with an easy proof.
Proposition 2.5. If $A \subseteq 2^{\omega}$ is Σ_{1}^{1} and Π_{1}^{0}, then A is $\Pi_{1}^{0}\left(\Sigma_{1}^{1}\right)$.
Proof. Let $z=\{\sigma \mid \exists x(x \in A \wedge x \succ \sigma)\}$. Then $x \in A$ if and only if $\forall n(x \mid n \in z)$. So A is $\Pi_{1}^{0}(z)$. Obviously z is Σ_{1}^{1}.
Note that Proposition 2.5 fails if we replace Σ_{1}^{1} with Π_{1}^{1} since $\mathcal{O}^{\mathcal{O}}$ is a Π_{1}^{1} singleton of hyperdegree greater than \mathcal{O}.
The ramified analytical hierarchy was introduced by Kleene, and applied by Fefferman [4] and Cohen [2] to study forcing, a tool that turns out to be powerful in the investigation of higher randomness theory. We recall some basic facts from Sacks [16] whose notations we mostly follow:

The ramified analytic hierarchy language $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ contains the following symbols:
(1) Number variables: j, k, m, n, \ldots;
(2) Numerals: 0, 1, 2, ...;
(3) Constant: \dot{x};
(4) Ranked set variables: $x^{\alpha}, y^{\alpha}, \ldots$ where $\alpha<\omega_{1}^{\mathrm{CK}}$;
(5) Unranked set variables: x, y, \ldots;
(6) Others symbols include: + , \cdot (times), ' (successor) and \in.

Formulas are built in the usual way. A formula φ is ranked if all of its set variables are ranked. Due to its complexity, the language is not codable in a recursive set but rather in the countable admissible set $L_{\omega_{1}}$.

To code the language in a uniform way, we fix a Π_{1}^{1} path \mathcal{O}_{1} through \mathcal{O} (by [5] such a path exists). Then a ranked set variable x^{α} is coded by the number $(2, n)$ where $n \in \mathcal{O}_{1}$ and $|n|=\alpha$. Other symbols and formulas are coded recursively. With such a coding, the set of Gödel number of formulas is Π_{1}^{1}. Moreover, the set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique notation for α in \mathcal{O}_{1}. Hence there is a recursive function f so that $W_{f(n)}$ is the set of Gödel numbers of the ranked formula of rank less than $|n|$ when $n \in \mathcal{O}_{1}\left(\left\{W_{e}\right\}_{e}\right.$ is, as usual, an effective enumeration of r.e. sets).

One now defines a structure $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, where x is a real, analogous to the way Gödel's L is defined, by induction on the recursive ordinals. Only at successor stages are new sets defined in the structure. The reals constructed at a successor stage are arithmetically definable from the reals constructed at earlier stages. The details may be found in [16]. We define $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ for a formula φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ by allowing the unranked set variables to range over $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, while the symbol x^{α} will be interpreted as the reals built before stage α. In fact, the domain of $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ is the set $\left\{y \mid y \leq_{h} x\right\}$ if and only if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [16]).

A sentence φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ is said to be Σ_{1}^{1} if it is ranked, or of the form $\exists x_{1}, \ldots, \exists x_{n} \psi$ for some formula ψ with no unranked set variables bounded by a quantifier.

The following result is a model-theoretic version of the Gandy-Spector Theorem.
Theorem 2.6 (Sacks [16]). The set $\left\{\left(n_{\varphi}, x\right) \mid \varphi \in \Sigma_{1}^{1} \wedge \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ is Π_{1}^{1}, where n_{φ} is the Gödel number of φ. Moreover, for each Π_{1}^{1} set $A \subseteq 2^{\omega}$, there is a formula $\varphi \in \Sigma_{1}^{1}$ so that
(1) $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Rightarrow x \in A$;
(2) if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Longleftrightarrow x \in A$.

Note that if φ is ranked, then both the sets $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ (the Gödel number of φ is omitted) and $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \neg \varphi\right\}$ are Π_{1}^{1}. So both sets are Δ_{1}^{1}. Moreover, if $A \subseteq 2^{\omega}$ is Δ_{1}^{1}, then there is a ranked formula φ so that $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ (see Sacks [16]).

Theorem 2.7 (Sacks [14]). The set

$$
\left\{\left(n_{\varphi}, p\right) \mid \mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}\right)>p \wedge \varphi \in \Sigma_{1}^{1} \wedge p \text { is a rational number }\right\}
$$

is Π_{1}^{1} where n_{φ} is the Gödel number of φ.
Theorem 2.8 (Sacks [14]). There is a recursive function $f: \omega \times \omega \rightarrow \omega$ so that for all n which is Gödel number of a ranked formula:
(1) $f(n, p)$ is Gödel number of a ranked formula;
(2) the set $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\} \supseteq\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}$ is open; and
(3) $\mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\}-\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}\right)<\frac{1}{p}$.

Theorem 2.9 (Sacks [14] and Tanaka [18]). If A is a Π_{1}^{1} set of positive measure, then A contains a hyperarithmetical real.
We also remind the reader of the higher analog of ML-randomness first studied by [8].
Definition 2.10. A Π_{1}^{1}-ML-test is a sequence $\left(G_{m}\right)_{m \in \omega}$ of open sets such that for each m, we have $\mu\left(G_{m}\right) \leq 2^{-m}$, and the relation $\left\{\langle m, \sigma\rangle \mid[\sigma] \subseteq G_{m}\right\}$ is Π_{1}^{1}. A real x is Π_{1}^{1}-ML-random if $x \notin \cap_{m} G_{m}$ for each Π_{1}^{1}-ML-test $\left(G_{m}\right)_{m \in \omega}$.

3. Higher Kurtz random reals and their distribution

Definition 3.1. Suppose we are given a point class Γ (i.e. a class of sets of reals). A real x is Γ-Kurtz random if $x \notin A$ for every closed null set $A \in \Gamma$. Further, x is said to be Kurtz random (y-Kurtz random) if $\Gamma=\Pi_{1}^{0}\left(\Gamma=\Pi_{1}^{0}(y)\right)$.
We focus on $\Delta_{1}^{1}, \Sigma_{1}^{1}$ and Π_{1}^{1}-Kurtz randomness. By the proof of Proposition 2.5 , it is not difficult to see that a real x is Δ_{1}^{1}-Kurtz random if and only if x does not belong to any $\Pi_{1}^{0}\left(\Delta_{1}^{1}\right)$ null set.

Theorem 3.2. Π_{1}^{1}-Kurtz randomness $\subset \Sigma_{1}^{1}$-Kurtz randomness $=\Delta_{1}^{1}$-Kurtz-randomness.

Proof. It is obvious that Π_{1}^{1}-Kurtz randomness $\subseteq \Delta_{1}^{1}$-Kurtz randomness and Σ_{1}^{1}-Kurtz randomness $\subseteq \Delta_{1}^{1}$-Kurtz randomness. It suffices to prove that Σ_{1}^{1}-Kurtz randomness $=\Delta_{1}^{1}$-Kurtz-randomness and Π_{1}^{1}-Kurtz randomness $\subset \Delta_{1}^{1}$ Kurtz randomness.

Note that every Π_{1}^{1}-ML-random is Δ_{1}^{1}-Kurtz random and there is a Π_{1}^{1}-ML-random real $x \equiv_{h} \mathcal{O}$ (see $[8,1]$). But $\{x\}$ is a Π_{1}^{1} closed set. So x is not Π_{1}^{1}-Kurtz random. Hence Π_{1}^{1}-Kurtz randomness $\subset \Delta_{1}^{1}$-Kurtz randomness.

Suppose we are given a Π_{1}^{1} open set A of measure 1. Define

$$
x=\left\{\sigma \in 2^{<\omega} \mid \forall y(y>\sigma \Rightarrow y \in A)\right\} .
$$

Then x is a Π_{1}^{1} real coding A (i.e. $y \in A$ if and only if there is a $\sigma \in x$ for which $y \succ \sigma$, or $y \in[\sigma]$). So there is a recursive function $f: 2^{<\omega} \rightarrow \omega$ so that $\sigma \in x$ if and only if $f(\sigma) \in \mathcal{O}$. Define a Π_{1}^{1} relation $R \subseteq \omega \times \omega$ so that $(k, n) \in R$ if and only if $n \in \mathcal{O}$ and $\mu\left(\bigcup\left\{[\sigma] \mid \exists m \in \mathcal{O}_{n}(f(\sigma)=m)\right\}\right)>1-\frac{1}{k}$. Obviously R is a Π_{1}^{1} relation which can be uniformized by a Π_{1}^{1} function f^{*} (see [12]). Since $\mu(A)=1, f^{*}$ is a total function. So the range of f^{*} is bounded by a notation $n \in \mathcal{O}$. Define $B=\left\{y \mid \exists \sigma\left(y \succ \sigma \wedge f(\sigma) \in \mathcal{O}_{n}\right)\right\}$. Then $B \subseteq A$ is a Δ_{1}^{1} open set with measure 1 . So every Π_{1}^{1} open conull set has a Δ_{1}^{1} open conull subset. Hence Σ_{1}^{1}-Kurtz randomness equals Δ_{1}^{1}-Kurtz randomness.

It should be pointed out that, by the proof of Theorem 3.2, not every Π_{1}^{1}-ML-random real is Π_{1}^{1}-Kurtz random.
The following result clarifies the relationship between Δ_{1}^{1} - and Π_{1}^{1}-Kurtz randomness.
Proposition 3.3. If $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then x is Π_{1}^{1}-Kurtz random if and only if x is Δ_{1}^{1}-Kurtz random.
Proof. Suppose that $\omega_{1}^{x}=\omega_{1}^{\mathrm{cK}}$ and x is Δ_{1}^{1}-Kurtz random. If A is a Π_{1}^{1} closed null set so that $x \in A$, then by Theorem 2.6 , there is a formula $\varphi(z, y)$ whose only unranked set variables are z and y so that the formula $\exists z \varphi(z, y)$ defines A. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, $x \in B=\left\{y \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, y\right) \models \exists z^{\alpha} \varphi\left(z^{\alpha}, y\right)\right\} \subseteq A$ for some recursive ordinal α. Define $T=\left\{\sigma \in 2^{<\omega} \mid \exists y \in B(y \succ \sigma)\right\}$. Obviously $B \subseteq[T]$. Since B is Δ_{1}^{1}, [T] is Σ_{1}^{1}. Since A is closed, $B \subseteq A$, and [T] is the closure of B, we have [T] $\subseteq A$. Hence since A is null, so is [T]. By the proof of Theorem 3.2, there is a Δ_{1}^{1} closed null set $C \supseteq[T]$. Hence $x \in C$, a contradiction.

From the proof of Theorem 3.2, one sees that every hyperdegree above \mathcal{O} contains a Δ_{1}^{1}-Kurtz random real. But this fails for Π_{1}^{1}-Kurtz randomness. We say that a hyperdegree \mathbf{d} is a base for a cone of Γ-Kurtz randoms if for every hyperarithmetic degree $\mathbf{h} \geq \mathbf{d}, \mathbf{h}$ contains a Γ-Kurtz random real.

The hyperdegree of \mathcal{O} is a base for a cone of Δ_{1}^{1}-Kurtz randoms as proved in Theorem 3.2. In Corollary 5.3 we will show that not every non-zero hyperdegree is a base of a cone of Δ_{1}^{1}-Kurtz randoms.

Is there a base for a cone of Π_{1}^{1}-Kurtz randoms? If such a base \mathbf{b} exists, then \mathbf{b} is not hyperarithmetically reducible to any Π_{1}^{1} singleton. Intuitively, this means that such bases must be complex.

To obtain such a base we need a lemma.
Lemma 3.4. For any reals x and $z \geq_{T} x^{\prime}$, there is an x-Kurtz random real $y \equiv_{T} z$.
Proof. Fix an enumeration of the x-r.e. open sets $\left\{U_{n}^{x}\right\}_{n \in \omega}$.
We inductively define an increasing sequence of binary strings $\left\{\sigma_{s}\right\}_{s<\omega}$.
Stage 0 . Let σ_{0} be the empty string.
Stage $s+1$. Let $l_{0}=0, l_{1}=\left|\sigma_{s}\right|$, and $l_{n+1}=2^{l_{n}}$ for all $n>1$. For every $n>1$, let

$$
A_{n}=\left\{\sigma \in 2^{l_{n}-1} \mid \exists m<n \forall i \forall j\left(l_{m} \leq i, j<l_{m+1} \Rightarrow \sigma(i)=\sigma(j)\right)\right\} .
$$

Then

$$
\left|A_{n}\right| \leq 2 \cdot 2^{l_{n-1}}
$$

In other words,

$$
\mu\left(\bigcup\left\{[\sigma] \mid \sigma \succeq \sigma_{s} \wedge \sigma \notin A_{n}\right\}\right) \geq 2^{-l_{1}} \cdot\left(1-2^{l_{n}+1-l_{n+1}}\right)
$$

Case(1): There is some $m>l_{1}+1$ so that $\left|\left\{\sigma \succeq \sigma_{s} \mid \sigma \in 2^{m} \wedge[\sigma] \subseteq U_{s}^{x}\right\}\right|>2^{m-l_{1}-1}$. Let $n=m+1$. Then $l_{n+1}-1-l_{n}>2$ and $l_{n}>m$. So there must be some $\sigma \in 2^{l_{n}-1}-A_{n}$ so that there is a $\tau \preceq \sigma$ for which $[\tau] \subseteq U_{s}^{x}$ and $\tau \in 2^{m}$.

Let $\sigma_{s+1}=\sigma^{\wedge}(z(s))^{l_{n}-1}$.
Case(2): Otherwise. Let $\sigma_{s+1}=\sigma_{s}^{\wedge}(z(s))^{l_{1}-1}$.
This finishes the construction at stage $s+1$.
Let $y=\bigcup_{s} \sigma_{s}$.
Obviously the construction is recursive in z. So $y \leq_{T} z$. Moreover, if U_{n}^{x} is of measure 1, then Case (1) happens at the stage $n+1$. So y is x-Kurtz random.

Let $l_{0}=0, l_{n+1}=2^{l_{n}}$ for all $n \in \omega$. To compute $z(n)$ from y, we y-recursively find the n-th l_{m} for which for all i, j with $l_{m} \leq i<j<l_{m+1}, y(i)=y(j)$. Then $z(n)=y\left(l_{m}\right)$.

Let $\mathcal{Q} \subseteq \omega \times 2^{\omega}$ be a universal Π_{1}^{1} set. In other words, \mathcal{Q} is a Π_{1}^{1} set so that every Π_{1}^{1} set is some $\mathcal{Q}_{n}=\{x \mid(n, x) \in \mathcal{Q}\}$. By Theorem 2.2.3 in [9], the real $x_{0}=\left\{n \mid \mu\left(Q_{n}\right)=0\right\}$ is Σ_{1}^{1}. Let

$$
\mathfrak{c}=\left\{(n, \sigma) \mid n \in x_{0} \wedge \exists x((n, x) \in Q \wedge \sigma \prec x)\right\} \subseteq \omega \times 2^{<\omega}
$$

Then \mathfrak{c} can be viewed as a Σ_{2}^{1} real. Since every Π_{1}^{1} null closed set is $\Pi_{1}^{0}(\mathfrak{c})$, every \mathfrak{c}-Kurtz random real is Π_{1}^{1}-Kurtz random.
Theorem 3.5. \mathfrak{c} is a base for a cone of Π_{1}^{1}-Kurtz randoms.
Proof. For every real $y_{0} \geq_{h} \mathfrak{c}$, there is a real $y_{1} \equiv_{h} y_{0}$ so that $y_{1} \geq_{T} \boldsymbol{c}^{\prime}$, the Turing jump of \mathbf{c}. By Lemma 3.4, there is a real $z \equiv_{T} y_{1}$ for which z is \mathfrak{c}-Kurtz random and so Π_{1}^{1}-Kurtz random.
Recall that every Σ_{2}^{1} real is constructible (see e.g. the last chapter of Moschovakis [12]). In the following we will determine the position of \mathfrak{c} within the constructible hierarchy. A real is called constructible if it belongs to some level L_{α} of Gödel's hierarchy of constructible sets

$$
L=\bigcup\left\{L_{\beta}: \beta \text { is an ordinal }\right\}
$$

More generally, for each real x we have the hierarchy

$$
L[x]=\bigcup\left\{L_{\beta}[x]: \beta \text { is an ordinal }\right\}
$$

of sets constructible from x.
Let

$$
\delta_{2}^{1}=\sup \left\{\alpha: \alpha \text { is an ordinal isomorphic to a } \Delta_{2}^{1} \text { well-ordering of } \omega\right\}
$$

and

$$
\delta=\min \left\{\alpha \mid L \backslash L_{\alpha} \text { contains no } \Pi_{1}^{1} \text { singleton }\right\}
$$

Proposition 3.6 (Forklore). $\delta=\delta_{2}^{1}$.
Proof. If $\alpha<\delta$, then there is a Π_{1}^{1} singleton $x \in L_{\delta} \backslash L_{\alpha}$. Since $x \in L_{\omega_{1}^{x}}$ and ω_{1}^{x} is a $\Pi_{1}^{1}(x)$ well-ordering, it must be that $\alpha<\omega_{1}^{x}<\delta_{2}^{1}$. So $\delta \leq \delta_{2}^{1}$.

If $\alpha<\delta_{2}^{1}$, there is a Δ_{2}^{1} well-ordering relation $R \subseteq \omega \times \omega$ of order type α. So there are two recursive relations $S, T \subseteq\left(\omega^{\omega}\right)^{2} \times \omega^{3}$ so that

$$
\begin{aligned}
& R(n, m) \Leftrightarrow \exists f \forall g \exists k S(f, g, n, m, k), \quad \text { and } \\
& \neg R(n, m) \Leftrightarrow \exists f \forall g \exists k T(f, g, n, m, k) .
\end{aligned}
$$

Define a Π_{1}^{1} set $R_{0}=\{(f, n, m) \mid \forall g \exists k S(f, g, n, m, k)\}$. By the Gandy-Spector Theorem 2.2, there is an arithmetical relation S^{\prime} so that $R_{0}=\left\{(f, n, m) \mid \exists g \leq_{h} f\left(S^{\prime}(f, g, n, m)\right)\right\}$. Recall that every nonempty Π_{1}^{1} set contains a Π_{1}^{1}-singleton (KondoAddison [16]). Then

$$
R(n, m) \Leftrightarrow \exists f \in L_{\delta} \exists g \in L_{\omega_{1}^{f}}[f]\left(S^{\prime}(f, g, n, m)\right)
$$

In other words, R is Σ_{1}-definable over L_{δ}. By the same method, the complement of R is Σ_{1}-definable over L_{δ} too. So R is Δ_{1}-definable over L_{δ}. It is clear that L_{δ} is admissible. So $R \in L_{\delta}$. Hence $\alpha<\delta$. Thus $\delta_{2}^{1}=\delta$.

Note that if x is a Δ_{2}^{1}-real, then ω_{1}^{x} is isomorphic to a Δ_{2}^{1} well-ordering of ω. So

$$
\sup \left\{\omega_{1}^{x} \mid x \text { is a } \Pi_{1}^{1} \text {-singleton }\right\} \leq \delta_{2}^{1}
$$

Since $x \in L_{\omega_{1}^{x}}$ for every Π_{1}^{1}-singleton x,

$$
\sup \left\{\omega_{1}^{x} \mid x \text { is a } \Pi_{1}^{1} \text {-singleton }\right\} \geq \delta=\delta_{2}^{1}
$$

Thus
$\sup \left\{\omega_{1}^{x} \mid x\right.$ is a Π_{1}^{1}-singleton $\}=\delta=\delta_{2}^{1}$.
Since every Π_{1}^{1} singleton is recursive in \mathfrak{c}, we have $\mathfrak{c} \notin L_{\delta_{2}^{1}}$ and $\omega_{1}^{\mathfrak{c}} \geq \delta_{2}^{1}$.
By the same argument as in Proposition 3.6, the reals lying in $L_{\delta_{2}^{1}}$ are exactly the Δ_{2}^{1} reals. So c is not Δ_{2}^{1}. Moreover, since \mathfrak{c} is Σ_{2}^{1}, it is Σ_{1} definable over $L_{\delta_{2}^{1}}$. Hence $\mathfrak{c} \in L_{\delta_{2}^{1}+1}$. In other words, for any real z, if $\omega_{1}^{z}>\omega_{1}^{\mathfrak{c}}$, then $\mathfrak{c} \in L_{\omega_{1}^{z}}$ and so $\mathfrak{c} \leq_{h} z$. Then by [15], $\mathfrak{c} \in L_{\omega_{1}^{c}}$. Thus $\omega_{1}^{\mathfrak{c}}>\delta_{2}^{1}$. Since actually all Σ_{2}^{1} reals lie in $L_{\delta_{2}^{1}+1}$. This means that
\mathfrak{c} has the largest hyperdegree among all Σ_{2}^{1} reals.

4. Δ_{1}^{1}-traceability and dominability

We begin with the characterization of Π_{1}^{1}-randomness within Δ_{1}^{1}-Kurtz randomness.
Definition 4.1. A real x is hyp-dominated if for all functions $f: \omega \rightarrow \omega$ with $f \leq_{h} x$, there is a hyperarithmetic function g so that $g(n)>f(n)$ for all n.
Recall that a real is Π_{1}^{1}-random if it does not belong to any Π_{1}^{1}-null set. The following result is a higher analog of the result that Kurtz randomness coincides with weak 2-randomness for reals of hyperimmune-free degree.
Proposition 4.2. A real x is Π_{1}^{1}-random if and only if x is hyp-dominated and Δ_{1}^{1}-Kurtz random.
Proof. Every Π_{1}^{1}-random real is Δ_{1}^{1}-Kurtz random and also hyp-dominated (see [1]). We prove the other direction.
Suppose x is hyp-dominated and Δ_{1}^{1}-Kurtz random. We show that x is Π_{1}^{1}-Martin-Löf random. If not, then fix a universal Π_{1}^{1}-Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}$ (see [8]). Then there is a recursive function $f: \omega \times 2^{<\omega} \rightarrow \omega$ so that for any pair (n, σ), $\sigma \in U_{n}$ if and only if $f(n, \sigma) \in \mathcal{O}$. Since x is hyp-dominated, $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [1]). Then we define a $\Pi_{1}^{1}(x)$ relation $R \subseteq \omega \times \omega$ so that $R(n, m)$ if and only if there is a σ so that $m \in \mathcal{O}, f(n, \sigma) \in \mathcal{O}_{m}=\{i \in \mathcal{O}| | i|<|m|\}$ and $\sigma \prec x$. Then by the Π_{1}^{1}-uniformization relativized to x, there is a partial function p uniformizing R. Since $x \in \bigcap_{n} U_{n}, p$ is a total function. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, there must be some $m_{0} \in \mathcal{O}$ so that $p(n) \in \mathcal{O}_{m_{0}}$ for every n. Then define a Δ_{1}^{1}-Martin-Löf test $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ so that $\sigma \in \hat{U}_{n}$ if and only if $f(n, \sigma) \in \mathcal{O}_{m_{0}}$. So $x \in \bigcap_{n} \hat{U}_{n}$. Let $\hat{f}(n)=\min \left\{l \mid \exists \sigma \in 2^{l}\left(\sigma \in \hat{U}_{n} \wedge x \in[\sigma]\right)\right\}$ be a $\Delta_{1}^{1}(x)$ function. Then there is a Δ_{1}^{1} function f dominating \hat{f}. Define $V_{n}=\left\{\sigma \mid \sigma \in 2^{\leq f(n)} \wedge \sigma \in \hat{U}_{n}\right\}$ for every n. Then $P=\bigcap_{n} V_{n}$ is a Δ_{1}^{1} closed set and $x \in P$. So x is not Δ_{1}^{1}-Kurtz random, a contradiction.

Since is Π_{1}^{1}-Martin-Löf random and $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}, x$ is already Π_{1}^{1}-random (see [1]).
Next we proceed to traceability.
Definition 4.3. (i) Let $h: \omega \rightarrow \omega$ be a nondecreasing unbounded function that is hyperarithmetical. A Δ_{1}^{1} trace with bound h is a uniformly Δ_{1}^{1} sequence $\left(T_{e}\right)_{e \in \omega}$ such that $\left|T_{e}\right| \leq h(e)$ for each e.
(ii) $x \in 2^{\omega}$ is Δ_{1}^{1}-traceable [1] if there is $h \in \Delta_{1}^{1}$ such that, for each $f \leq_{h} x$, there is a Δ_{1}^{1} trace with bound h such that, for each $e, f(e) \in T_{e}$.
(iii) $x \in 2^{\omega}$ is Δ_{1}^{1}-semi-traceable if for each $f \leq_{h} x$, there is a Δ_{1}^{1} function g so that, for infinitely many $n, f(n)=g(n)$. We say that g semi-traces f.
(iv) $x \in 2^{\omega}$ is Π_{1}^{1}-semi-traceable if for each $f \leq_{h} x$, there is a partial Π_{1}^{1} function p so that, for infinitely many n we have $f(n)=p(n)$.
Note that, if $\left(T_{e}\right)_{e \in \omega}$ is a uniformly Δ_{1}^{1} sequence of finite sets, then there is $g \in \Delta_{1}^{1}$ such that for each $e, D_{g(e)}=T_{e}$ (where D_{n} is the nth finite set according to some recursive ordering). Thus

$$
g(e)=\mu n \forall u\left[u \in D_{n} \leftrightarrow u \in T_{e}\right] .
$$

In this formulation, the definition of Δ_{1}^{1} traceability is very close to that of recursive traceability.
Also notice that the choice of a bound as a witness for traceability is immaterial:
Proposition 4.4 (As in Terwijn and Zambella [19]). Let A be a real that is Δ_{1}^{1} traceable with bound h. Then A is Δ_{1}^{1} traceable with bound h^{\prime} for any monotone and unbounded Δ_{1}^{1} function h^{\prime}.

Lemma 4.5. x is Π_{1}^{1}-semi-traceable if and only if x is Δ_{1}^{1}-semi-traceable.
Proof. It is not difficult to see that if x is Π_{1}^{1}-semi-traceable, then $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. For otherwise, $x \geq_{h} \mathcal{O}$. So it suffices to show that \mathcal{O} is not Π_{1}^{1}-semi-traceable. Let $\left\{\phi_{i}\right\}_{i \in \omega}$ be an effective enumeration of partial recursive functions. Define a function $g \leq_{T} \mathcal{O}^{\prime}$ so that $g(i)=\sum_{j \leq i} m_{j}^{i}+1$ where m_{j}^{i} is the least number k so that $p_{j}(i, k) \in \mathcal{O}$; if there is no such k, then $m_{j}^{i}=0$. Note that for any Π_{1}^{1} partial function p, there must be some partial recursive function p_{j} so that for every pair $n, m, p(n)=m$ if and only if $p_{j}(n, m) \in \mathcal{O}$. Then by the definition of g, for any $i>j, g(k) \neq p(i)$. So g cannot be traced by p.

Suppose that x is Π_{1}^{1}-semi-traceable, $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, and $f \leq_{h} x$. Fix a Π_{1}^{1} partial function p for f. Since p is a Π_{1}^{1} function, there must be some recursive injection h so that $p(n)=m \Leftrightarrow h(n, m) \in \mathcal{O}$.

Let $R(n, m)$ be a $\Pi_{1}^{1}(x)$ relation so that $R(n, m)$ iff there exists $m>k \geq n$ for which $f(k)=p(k)$. Then some total function g uniformizes R such that g is $\Pi_{1}^{1}(x)$, and so $\Delta_{1}^{1}(x)$. Thus, for every n, there is some $m \in[g(n), g(g(n)))$ so that $f(m)=p(m)$. Let $g^{\prime}(0)=g(0)$, and $g^{\prime}(n+1)=g\left(g^{\prime}(n)\right)$ for all $n \in \omega$. Define a $\Pi_{1}^{1}(x)$ relation $S(n, m)$ so that $S(n, m)$ if and only if $m \in\left[g^{\prime}(n), g^{\prime}(n+1)\right)$ and $p(m)=f(m)$. Uniformizing S we obtain a $\Delta_{1}^{1}(x)$ function $g^{\prime \prime}$.

Define a $\Delta_{1}^{1}(x)$ set by $H=\left\{h(m, k) \mid \exists n\left(g^{\prime \prime}(n)=m \wedge f(m)=k\right)\right\}$. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}, H \subseteq \mathcal{O}_{n}$ for some $n \in \mathcal{O}$. Since \mathcal{O}_{n} is a Δ_{1}^{1} set, we can define a Δ_{1}^{1} function \hat{f} by: $\hat{f}(i)=j$ if $h(i, j) \in \mathcal{O}_{n} ; \hat{f}(i)=1$, otherwise. Then there are infinitely many i so that $f(i)=\hat{f}(i)$.

Note that the Δ_{1}^{1}-dominated reals form a measure 1 set [1] but the set of Δ_{1}^{1}-semi-traceable reals is null. Chong, Nies and Yu [1] constructed a non-hyperarithmetic Δ_{1}^{1}-traceable real.
Proposition 4.6. Every Δ_{1}^{1}-traceable real is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
Proof. Obviously every Δ_{1}^{1}-traceable real is Δ_{1}^{1}-dominated.
Suppose we are given a Δ_{1}^{1}-traceable real x and $\Delta_{1}^{1}(x)$ function f. Let $g(n)=\left\langle f\left(2^{n}\right), f\left(2^{n}+2\right), \ldots, f\left(2^{n+1}-1\right)\right\rangle$ for all $n \in \omega$. Then there is a Δ_{1}^{1} trace T for g so that $\left|T_{n}\right| \leq n$ for all n.

Then for all $2^{n}+1 \leq m \leq 2^{n+1}$, let $\hat{f}(m)=$ the ($m-2^{n}$)-th entry of the tuple of the ($m-2^{n}$)-th element of T_{n} if there exists such an m; otherwise, let $\hat{f}(m)=1$. It is not difficult to see that for every n there is at least one $m \in\left[2^{n}, 2^{n+1}\right.$) so that $f(m)=\hat{f}(m)$.
From the proof above, one can see the following corollary.
Corollary 4.7. A real x is Δ_{1}^{1}-traceable if and only if for every x-hyperarithmetic \hat{f}, there is a hyperarithmetic function f so that for every n, there is some $m \in\left[2^{n}, 2^{n+1}\right)$ so that $f(m)=\hat{f}(m)$.
The following proposition will be used in Theorem 4.13 to disprove the converse of Proposition 4.6.
Proposition 4.8. For any real x, the following are equivalent.
(1) x is Δ_{1}^{1}-semi-traceable and Δ_{1}^{1}-dominated.
(2) For every function $g \leq_{h} x$, there exist an increasing Δ_{1}^{1} function f and a Δ_{1}^{1} function $F: \omega \rightarrow[\omega]^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in[f(n), f(n+1))$ with $g(m) \in F(m)$.
Proof. $(1) \Rightarrow(2)$: Immediate because $1 \leq n$.
$(2) \Rightarrow(1)$: Suppose we are given a function $\hat{g} \leq_{h} x$. Without loss of generality, \hat{g} is nondecreasing. Let f and F be the corresponding Δ_{1}^{1} functions. Let $j(n)=\sum_{i \leq f(n+1)} \sum_{k \in F(i)} k$ and note that j is a Δ_{1}^{1} function dominating \hat{g}.

To show that x is Δ_{1}^{1}-traceable, suppose we are given a function $\hat{g} \leq_{h} x$. Let $h(n)=\left\langle g\left(2^{n}+1\right), g\left(2^{n}+2\right), \ldots, g\left(2^{n+1}-1\right)\right\rangle$. Then by assumption there are corresponding Δ_{1}^{1} functions f_{h} and F_{h}. For every n and $m \in\left[2^{n}, 2^{n+1}\right)$, let $g(m)=$ the ($m-2^{n}$)th column of the $\left(m-2^{n}\right)$ th element in $F_{h}(n)$ if such an m exists; let $g(m)=1$ otherwise. Then g is a Δ_{1}^{1} function semi-tracing \hat{g}.
To separate Δ_{1}^{1}-traceability from the conjunction of Δ_{1}^{1}-semi-traceability and Δ_{1}^{1}-dominability, we have to modify Sacks' perfect set forcing.
Definition 4.9. (1) A Δ_{1}^{1} perfect tree $T \subseteq 2^{<\omega}$ is fat at n if for every $\sigma \in T$ with $|\sigma| \in\left[2^{n}, 2^{n+1}\right.$), we have $\sigma^{\wedge} 0 \in T$ and $\sigma^{\wedge} 1 \in T$. Then we also say that n is a fat number of T.
(2) A Δ_{1}^{1} perfect tree $T \subseteq 2^{<\omega}$ is clumpy if there are infinitely many n so that T is fat at n.
(3) Let $\mathbb{F}=(\mathcal{F}, \subseteq)$ be a partial order of which the domain \mathcal{F} is the collection of clumpy trees, ordered by inclusion.

Let φ be a sentence of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$. Then we can define the forcing relation, $T \Vdash \varphi$, as done by Sacks in Section 4, IV [16].
(1) φ is ranked and $\forall x \in T\left(\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right)$, then $T \Vdash \varphi$.
(2) If $\varphi(y)$ is unranked and $T \Vdash \varphi(\psi(n))$ for some $\psi(n)$ of rank at most α, then $T \Vdash \exists y^{\alpha} \varphi\left(y^{\alpha}\right)$.
(3) If $T \Vdash \exists y^{\alpha} \varphi\left(y^{\alpha}\right)$, then $T \Vdash \exists y \varphi(y)$.
(4) If $\varphi(n)$ is unranked and $T \Vdash \varphi(m)$ for some number m, then $T \Vdash \exists n \varphi(n)$.
(5) If φ and ψ are unranked, $T \Vdash \varphi$ and $T \Vdash \psi$, then $T \Vdash \varphi \wedge \psi$.
(6) If φ is unranked and $\forall P(P \subseteq T \Rightarrow P \Vdash \varphi)$, then $T \Vdash \neg \varphi$.

The following lemma can be deduced as done in [16].
Lemma 4.10. The relation $T \Vdash \varphi$, restricted to Σ_{1}^{1} formulas φ, is Π_{1}^{1}.
Lemma 4.11. (1) Let $\left\{\varphi_{i}\right\}_{i \in \omega}$ be a hyperarithmetic sequence of Σ_{1}^{1} sentences. Suppose for every i and $Q \subseteq T$, there exists some $R \subseteq Q$ so that $R \Vdash \varphi_{i}$. Then there exists some $Q \subseteq T$ so that for every $i, Q \Vdash \varphi_{i}$.
(2) $\forall \varphi \forall T \exists Q \subseteq T(Q \Vdash \varphi \vee Q \Vdash \neg \varphi)$.

Proof. Using the notation $P \upharpoonright n=\left\{\tau \in 2^{\leq n} \mid \tau \in P\right\}$, define \mathcal{R} by $\mathcal{R}(R, i, \sigma, P) \Leftrightarrow\left(\sigma \in R, P \subseteq R, P \Vdash \varphi_{i}, P| | \sigma \mid=\{\tau \mid \tau \prec \sigma\}\right.$, and $\log |\sigma|-1$ is the i th fat number of $\left.R\right)$.
Note that \mathcal{R} is a Π_{1}^{1} relation. Then \mathcal{R} can be uniformized by a partial Π_{1}^{1} function $F: \mathcal{F} \times \omega \times 2^{<\omega} \rightarrow \mathcal{F}$. Using F, a hyperarithmetic family $\left\{P_{\sigma} \mid \sigma \in 2^{<\omega}\right\}$ can be defined by recursion on σ.
$P_{\emptyset}=T$.
If $\log |\sigma|-1$ is not a fat number of P_{σ}, then $P_{\sigma \sim 0}, P_{\sigma \sim 1}=P_{\sigma}$.
Otherwise: If $\sigma \notin P_{\sigma}$, then $P_{\sigma \wedge 0}=P_{\sigma \wedge 1}=\emptyset$.
Otherwise: $P_{\sigma \sim 0} \cap P_{\sigma \wedge 1}=\emptyset, P_{\sigma \sim 0} \cup P_{\sigma \sim 1} \subseteq P_{\sigma}$,
$P_{\sigma \sim 0} \upharpoonright|\sigma|, P_{\sigma \wedge 1} \upharpoonright|\sigma|=\{\tau \mid \tau \prec \sigma\}$ and
$P_{\sigma \sim 0}, P_{\sigma \sim 1} \Vdash \wedge_{j \leq i} \varphi_{j}$ where
i is the number so that $\log |\sigma|-1$ is the i-th fat number of T.
Let $Q=\bigcap_{n} \bigcup_{|\sigma|=n} P_{\sigma}$. Then $Q \in \mathcal{F}$. It is routine to check that for every $i, Q \Vdash \varphi_{i}$.
The proof of (2) is the same as the proof of Lemma 4.4 IV [16].
We say that a real x is generic if it is the union of roots of trees in a generic filter; equivalently, for each Σ_{1}^{1} sentence φ, there is a condition T such that $x \in T$ and either $T \Vdash \varphi$ or $T \Vdash \neg \varphi$. One can check (Lemma 4.8, IV [16]) that for every Σ_{1}^{1}-sentence φ,

$$
\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Leftrightarrow \exists P(x \in P \wedge P \Vdash \varphi)
$$

Lemma 4.12. If x is a generic real, then
(1) $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ satisfies Δ_{1}^{1}-comprehension. So $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$.
(2) x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
(3) x is not Δ_{1}^{1}-traceable.

Proof. (1) The proof of (1) is exactly same as the proof of Theorem 5.4 IV, [16].
(2) By Proposition 4.8, it suffices to show that for every function $g \leq_{h} x$, there are an increasing Δ_{1}^{1} function f and a Δ_{1}^{1} function $F: \omega \rightarrow \omega^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in[f(n), f(n+1))$ so that $g(m) \in F(m)$. Since $g \leq_{h} x$ and $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, there is a ranked formula φ so that for every $n, g(n)=m$ if and only if $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(n, m)$. So there is a condition $S \Vdash \forall n \exists!m \varphi(n, m)$. Fix a condition $T \subseteq S$. As in the proof of Lemma 4.11, we can build a hyperarithmetic sequence of conditions $\left\{P_{\sigma}\right\}_{\sigma \in 2^{<\omega}}$ so that

$$
P_{\sigma \sim i} \Vdash \varphi\left(|\sigma|, m_{\sigma \sim i}\right) \text { for } i \leq 1
$$

if $\log |\sigma|-1$ is a fat number of P_{σ} and $\sigma \in P_{\sigma}$. Let Q be as defined in the proof of Lemma 4.11. Let f be the Δ_{1}^{1} function such that $f(0)=0$, and $f(n+1)$ is the least number $k>f(n)$ so that m_{σ} is defined for some σ with $f(n)<|\sigma|<k$. Let $F(n)=\{0\} \cup\left\{m_{\sigma}| | \sigma \mid=n\right\}$, and note that F is a Δ_{1}^{1} function. Then

$$
Q \Vdash \forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i)) .
$$

So

$$
Q \Vdash \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

Since T is an arbitrary condition stronger than S, this means

$$
S \Vdash \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

Since $x \in S$,

$$
\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

So x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
(3) Suppose $f: \omega \rightarrow \omega$ is a Δ_{1}^{1} function so that for every n, there is a number $m \in\left[2^{n}, 2^{n+1}\right)$ with $f(m)=x(m)$. Then there is a ranked formula φ so that $f(n)=m \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(n, m)$. Moreover, $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \forall n \exists m \in\left[2^{n}, 2^{n+1}\right)(\varphi(m, x(m)))$. So there is a condition $T \Vdash \forall n \exists m \in\left[2^{n}, 2^{n+1}\right)(\varphi(m, \dot{x}(m)))$ and $x \in T$. Let n be a number so that T is fat at n and $\sigma \in 2^{2^{n}-1}$ be a finite string in T. Let μ be a finite string so that $\mu(m)=1-f\left(m+2^{n}-1\right)$. Define $S=\left\{\sigma^{\wedge} \mu^{\wedge} \tau \mid \sigma^{\wedge} \mu^{\wedge} \tau \in T\right\} \subseteq T$. Then $S \Vdash \forall m \in\left[2^{n}, 2^{n+1}\right)(\neg \varphi(m, x(m)))$. But S is stronger than T, a contradiction. By Corollary 4.7, x is not Δ_{1}^{1}-traceable.

We may now separate Δ_{1}^{1}-traceability from the conjunction of Δ_{1}^{1}-semi-traceability and Δ_{1}^{1}-dominability.
Theorem 4.13. There are $2^{\aleph_{0}}$ many Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable reals which are not Δ_{1}^{1}-traceable.
Proof. This is immediate from Lemma 4.12. Note that there are $2^{\aleph_{0}}$ many generic reals.

5. Lowness for higher Kurtz randomness

Given a relativizable class of reals \mathcal{C} (for instance, the class of random reals), we call a real x low for \mathcal{C} if $\mathcal{C}=\mathcal{C}^{x}$. We shall prove that lowness for Δ_{1}^{1}-randomness is different from lowness for Δ_{1}^{1}-Kurtz randomness. A real x is low for Δ_{1}^{1}-Kurtz tests if every $\Delta_{1}^{1}(x)$ open set with measure 1 has a Δ_{1}^{1} open subset of measure 1 . Clearly, lowness for Δ_{1}^{1}-Kurtz tests implies lowness for Δ_{1}^{1}-Kurtz randomness.

Theorem 5.1. If x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable, then x is low for Δ_{1}^{1}-Kurtz tests.

Proof. Suppose x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable and U is a $\Delta_{1}^{1}(x)$ open set with measure 1 . Then there is a real $y \leq_{h} x$ so that U is $\Sigma_{1}^{0}(y)$. Hence for some Turing reduction Φ, if for all z we write U^{z} for the domain of Φ^{z}, then we have $U=U^{y}$.

Define a $\Delta_{1}^{1}(x)$ function \hat{f} by: $\hat{f}(n)$ is the shortest string $\sigma \prec y$ so that $\mu\left(U^{\sigma}[\sigma]\right)>1-2^{-n}$. By the assumptions of the theorem, there are an increasing Δ_{1}^{1} function g and a Δ_{1}^{1} function f so that for every n, there is an $m \in[g(n), g(n+1))$ so that $f(m)=\hat{f}(m)$. Without loss of generality, we can assume that $\mu\left(U^{f(m)}[m]\right)>1-2^{-m}$ for every m.

Define a Δ_{1}^{1} open set V so that $\sigma \in V$ if and only if there exists some n so that $[\sigma] \subseteq \bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]$. By the property of f and $g, V \subseteq U^{y}=U$. But for every n,

$$
\mu\left(\bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]\right)>1-\sum_{g(n) \leq m<g(n+1)} 2^{-m} \geq 1-2^{-g(n)+1}
$$

So

$$
\mu(V) \geq \lim _{n} \mu\left(\bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]\right)=1
$$

Hence x is low for Δ_{1}^{1}-Kurtz tests.
Corollary 5.2. Lowness for Δ_{1}^{1}-randomness differs from lowness for Δ_{1}^{1}-Kurtz randomness.
Proof. By Theorem 4.13, there is a real x that is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable but not Δ_{1}^{1}-traceable. By Theorem 5.1, x is low for Δ_{1}^{1}-Kurtz randomness. Chong, Nies and Yu [1] proved that lowness for Δ_{1}^{1}-randomness is the same as Δ_{1}^{1}-traceability. Thus x is not low for Δ_{1}^{1}-randomness.

Corollary 5.3. There is a non-zero hyperdegree below \mathcal{O} which is not a base for a cone of Δ_{1}^{1}-Kurtz randoms.
Proof. Clearly there is a real $x<_{h} \mathcal{O}$ which is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable. Then the hyperdegree of x is not a base for a cone of Δ_{1}^{1}-Kurtz randoms.

Actually the converse of Theorem 5.1 is also true.
Lemma 5.4. If x is low for Δ_{1}^{1}-Kurtz randomness, then x is Δ_{1}^{1}-dominated.
Proof. Firstly we show that if x is low for Δ_{1}^{1}-Kurtz tests, then x is Δ_{1}^{1}-dominated.
Suppose $f \leq_{h} x$ is an increasing function. Let $S_{f}=\{z \mid \forall n(z(f(n))=0)\}$. Obviously S_{f} is a $\Delta_{1}^{1}(x)$ closed null set. So there is a Δ_{1}^{1} closed null set $[T] \supseteq S_{f}$ where $T \subseteq 2^{<\omega}$ is a Δ_{1}^{1} tree. Define

$$
g(n)=\min \left\{m \left\lvert\, \frac{\left|\left\{\sigma \in 2^{m} \mid \sigma \in T\right\}\right|}{2^{m}}<2^{-n}\right.\right\}+1
$$

Since $\mu([T])=0, g$ is a well-defined Δ_{1}^{1} function. We claim that g dominates f.
For every $n, S_{f(n)}=\left\{\sigma \in 2^{f(n)} \mid \forall i \leq n(\sigma(f(i))=0)\right\}$ has cardinality $2^{f(n)-n}$. But if $g(n) \leq f(n)$, then since $S \subseteq[T]$, we have

$$
\left|S_{f(n)}\right| \leq 2^{f(n)-g(n)} \cdot\left|\left\{\sigma \in 2^{g(n)} \mid \sigma \in T\right\}\right|<2^{f(n)-g(n)} \cdot 2^{g(n)-n}=2^{f(n)-n}
$$

This is a contradiction. So x is Δ_{1}^{1}-dominated.
Now suppose x is not Δ_{1}^{1}-dominated witnessed by some $f \leq_{h} x$. Then S_{f} is not contained in any Δ_{1}^{1} closed null set. Actually, it is not difficult to see that for any σ with $[\sigma] \cap S_{f} \neq \emptyset,[\sigma] \cap S_{f}$ is not contained in any Δ_{1}^{1} closed null set (otherwise, as proved above, one can show that f is dominated by some Δ_{1}^{1} function). Then, by an induction, we can construct a Δ_{1}^{1}-Kurtz random real $z \in S_{f}$ as follows:

Fix an enumeration P_{0}, P_{1}, \ldots of the Δ_{1}^{1} closed null sets.
At stage $n+1$, we have constructed some $z \upharpoonright l_{n}$ so that $[z] \upharpoonright l_{n} \cap S_{f} \neq \emptyset$. Then there is a $\tau \succ z \upharpoonright l_{n}$ so that $[\tau] \cap S_{f} \neq \emptyset$ but $[\tau] \cap S_{f} \cap P_{n}=\emptyset$. Fix such a τ, let $l_{n+1}=|\tau|$ and $z \upharpoonright l_{n+1}=\tau$.

Then $z \in S_{f}$ is Δ_{1}^{1}-Kurtz random.
So x is not low for Δ_{1}^{1}-Kurtz randomness.
Lemma 5.5. If x is low for Δ_{1}^{1}-Kurtz randomness, then x is Δ_{1}^{1}-semi-traceable.

Proof. The proof is analogous to that of the main result in [7].
Firstly we show that if x is low for Δ_{1}^{1}-Kurtz tests, then x is Δ_{1}^{1}-semi-traceable.
Suppose that x is low for Δ_{1}^{1}-Kurtz tests and $f \leq_{h} x$. Partition ω into finite intervals $D_{m, k}$ for $0<k<m$ so that $\left|D_{m, k}\right|=$ 2^{m-k-1}. Moreover, if $m<m^{\prime}$, then $\max D_{m, k}<\min D_{m^{\prime}, k^{\prime}}$ for any $k<m$ and $k^{\prime}<m^{\prime}$. Let $n_{m}=\max \left\{i \mid i \in D_{m, k} \wedge k<m\right\}$ for every $m \in \omega$. Note that $\left\{n_{m}\right\}_{m \in \omega}$ is a recursive increasing sequence.

For every function h, let

$$
P^{h}=\left\{x \in 2^{\omega} \mid \forall m\left(x\left(h \upharpoonright n_{m}\right)=0\right)\right\}
$$

be a closed null set. Obviously P^{f} is a $\Delta_{1}^{1}(x)$ closed null set. Then there is a Δ_{1}^{1} closed null set $Q \supseteq P^{f}$. We define a Δ_{1}^{1} function g as follows.

For each $k \in \omega$, let d_{k} be the least number d so that

$$
\left|\left\{\sigma \in 2^{d} \mid \exists x \in Q(x \succ \sigma)\right\}\right| \leq 2^{d-k-1}
$$

Note that $\left\{d_{k}\right\}_{k \in \omega}$ is a Δ_{1}^{1} sequence. Define

$$
Q_{k}=\left\{\sigma \mid \sigma \in 2^{d_{k}} \wedge \exists x \in Q(x \succ \sigma)\right\}
$$

Then $\left\{Q_{k}\right\}_{k \in \omega}$ is a Δ_{1}^{1} sequence of clopen sets and $\left|Q_{k}\right| \leq 2^{d_{k}-k-1}$ for each $k<d_{k}$. Then Greenberg and Miller [7] constructed a finite tree $S \subseteq \omega^{<\omega}$ and a finite sequence $\left\{S_{m}\right\}_{k<m \leq l}$ for some l with the following properties:
(1) $[S]=\left\{h \in \omega^{\omega} \mid P^{h} \subseteq\left[Q_{k}\right]\right\}$;
(2) $S_{m} \subseteq S \cap \omega^{n_{m}}$;
(3) $\left|S_{m}\right| \leq 2^{m-k-1}$;
(4) every leaf of S extends some string in $\bigcup_{k<m \leq l} S_{m}$.

Moreover, both the finite tree S and sequence $\left\{S_{m}\right\}_{k<m \leq l}$ can be obtained uniformly from Q_{k}.
Now for each m with $k<m \leq l$ and $\sigma \in S_{m}$, we pick a distinct $i \in D_{m, k}$ and define $g(i)=\sigma(i)$. For the other undefined $i \in D_{m, k}$, let $g(i)=0$.

So g is a well-defined Δ_{1}^{1} function.
For each $k, P^{f} \subseteq Q \subseteq\left[Q_{k}\right]$. So $f \in[S]$. Hence there must be some $i>n_{k}$ so that $f(i)=g(i)$.
Thus x is Δ_{1}^{1}-semi-traceable.
Now suppose x is not Δ_{1}^{1}-semi-traceable as witnessed by $f \leq_{h} x$. Then P^{f} is not contained in any Δ_{1}^{1} closed null set. It is shown in [7] that for any σ, assuming that $[\sigma] \cap P^{f} \neq \emptyset,[\sigma] \cap P^{f}$ is not contained in any Δ_{1}^{1} closed null set. Then by an easy induction, one can construct a Δ_{1}^{1}-Kurtz random real in P^{f}.

So x is not low for Δ_{1}^{1}-Kurtz randomness.
So we have the following theorem.
Theorem 5.6. For any real $x \in 2^{\omega}$, the following are equivalent:
(1) x is low for Δ_{1}^{1}-Kurtz tests;
(2) x is low for Δ_{1}^{1}-Kurtz randomness;
(3) x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.

It is unknown whether there exists a non-hyperarithmetic real which is low for Π_{1}^{1}-Kurtz randomness. However, we can prove the following containment.

Proposition 5.7. If x is low for Π_{1}^{1}-Kurtz randomness, then x is low for Δ_{1}^{1}-Kurtz randomness.
Proof. Assume that x is low for Π_{1}^{1}-Kurtz randomness, y is Δ_{1}^{1}-Kurtz random and there is a $\Delta_{1}^{1}(x)$ closed null set A with $y \in A$. By Theorem 2.7, the set

$$
B=\bigcup\left\{C \mid C \text { is a } \Delta_{1}^{1} \text { closed null set }\right\}
$$

is a Π_{1}^{1} null set. So $A-B$ is a $\Sigma_{1}^{1}(x)$ set. Since y is Δ_{1}^{1}-Kurtz random, $y \notin B$. Hence $y \in A-B$ and so $A-B$ is a $\Sigma_{1}^{1}(x)$ nonempty set. Thus there must be some real $z \in A-B$ with $\omega_{1}^{z}=\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. Since $z \notin B, z$ is Δ_{1}^{1}-Kurtz random. So by Proposition 3.3, z is Π_{1}^{1}-Kurtz random. This contradicts the fact that x is low for Π_{1}^{1}-Kurtz randomness.

Acknowledgements

Kjos-Hanssen's research was partially supported by NSF (USA) grants DMS-0652669 and DMS-0901020. Nies is partially supported by the Marsden Fund of New Zealand, grant No. 08-UOA-184. Stephan is supported in part by NUS grant numbers R146-000-114-112 and R252-000-308-112. Yu is supported by NSF of China No. 10701041 and Research Fund for the Doctoral Program of Higher Education, No. 20070284043.

References

[1] Chi Tat Chong, André Nies, Liang Yu, Higher randomness notions and their lowness properties, Israel J. Math. (2008).
[2] Paul J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York, Amsterdam, 1966.
[3] Rodney G. Downey, Evan J. Griffiths, Stephanie Reid, On Kurtz randomness, Theoret. Comput. Sci. 321 (2-3) (2004) 249-270.
[4] S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1964/1965) 325-345.
[5] S. Feferman, C. Spector, Incompleteness along paths in progressions of theories, J. Symbolic Logic 27 (1962) 383-390.
[6] R.O. Gandy, Proof of Mostowski's conjecture, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960) 571-575.
[7] Noam Greenberg, Joseph S. Miller, Lowness for Kurtz randomness, J. Symbolic Logic 74 (2) (2009) 665-678.
[8] G Hjorth, A Nies, Randomness in effective descriptive set theory, J. London Math. Soc. 75 (2) (2007) 495-508.
[9] Alexander S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Log. 5 (1972/73) 337-384.
[10] Wolfgang Kjos-Hanssen, Bjorn, Merkle, Frank Stephan, Kolmogorov complexity and the recursion theorem, in: Symposium on Theoretical Aspects of Computer Science 2006, in: LNCS, vol. 3884, Springer, 2006, pp. 149-161.
[11] Per Martin-Löf, On the notion of randomness, in: Intuitionism and Proof Theory (Proc. Conf., Buffalo, NY, 1968), North-Holland, Amsterdam, 1970, pp. 73-78.
[12] Yiannis N. Moschovakis, Descriptive Set Theory, in: Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam, 1980.
[13] A. Nies, Computability and Randomness, Oxford University Press, 2009, 443+xvi pages.
[14] Gerald E. Sacks, Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer. Math. Soc. 142 (1969) 381-420.
[15] Gerald E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 20 (2) (1976) 213-262.
[16] Gerald E. Sacks, Higher recursion theory, in: Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990.
[17] C. Spector, Hyperarithmetical quantifiers, Fund. Math. 48 (1959/1960) 313-320.
[18] Hisao Tanaka, A basis result for Π_{1}^{1}-sets of postive measure, Comment. Math. Univ. St. Paul. 16 (1967/1968) 115-127.
[19] Sebastiaan A. Terwijn, Domenico Zambella, Computational randomness and lowness, J. Symbolic Logic 66 (3) (2001) 1199-1205.

[^0]: * Corresponding author at: Institute of Mathematical Science, Nanjing University, Nanjing, JiangSu Province, 210093, PR China.

 E-mail addresses: bjoern@math.hawaii.edu (B. Kjos-Hanssen), andrenies@gmail.com (A. Nies), fstephan@comp.nus.edu.sg (F. Stephan), yuliang.nju@gmail.com (L. Yu).

