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ABSTRACT 

We prove that if U is a balanced '/G (U)-domain of holomorphy in Tsirelson's space then the spectrum 
of'HtAU) is identified with U. We derive theorems of Banach Stone type for algebras of bolomorphic 

functions and algebras of holomorphic germs. 

INTRODUCTION 

Let E be a Banach space and let U be an open subset of E. In [2], it is proved that 
if E is Tsirelson's space, then the spectrum of 7%(U) is identified with U, when 
U = E. In [11], J. Mujica generalizes this result for absolutely convex open subsets 
of Tsirelson's space, and asks if the result can be improved for a more general class 
of open subsets of E, for instance, polynomially convex open subsets. In this paper 
we give a partial answer to this question, i.e., we show that the result remains true 

for balanced ~/,(U)-domains of holomorphy on Tsirelson's space. In Section 1 we 
define 7-//,(U)-convex open subsets and present properties and examples of such 

sets. We also give some auxiliary results before proving the main result. Most of 

them are generalizations to U-bounded sets of known results for compact sets. In 

Section 2 we present the main result and a corollary on finitely generated ideals of  

the algebra 7-{t,(U). In Section 3 we present theorems of  Banach-Stone type for the 

MSC." 46G20, 46E25, 32E20 

E-mail: danim(a~imc.unicamp.br (D.M. Vicira). 

I Research supported by FAPESR Process no. 04/07441-3, Brazil. 

269 



algebras 7%(U) and ~b(V), and also for algebras ofholomorphic germs 7-/(K) and 
~(L),  improving results from [14]. 

I wish to thank Prof. J. Mujica for so many helpful comments concerning this 

work. 

I. P R E L I M I N A R I E S  

We refer to [7] and [10] for background information on infinite-dimensional 
complex analysis. E and F will always denote Banach spaces. Let 79(E; F) denote 
the Banach space of all continuous polynomials from E into F. p(m E; F) denotes 
the Banach space of all continuous m-homogeneous polynomials from E into F. 
~gf(m E; F) denotes the subspace of J')(m E; F) generated by all polynomials of the 
form P(x) = qg(x )mb,  for all x ~ E, where ~p 6 E' and b ~ F. Such polynomials are 
called offinite type. When F = C, we write 79(E), T'( m E) and ~pf(m E) instead of 
7~(E; C), p(m E;C) and Pf (m E; C), respectively. 

Let U be an open subset of E. We say that a subset A C U is U-bounded if A is 
bounded and there exists e > 0 such that A + B(0, E) c U. 

We will denote by 7%(U; F) the vector space of all holomorphic mappings 
f : U > F which are bounded on every U-bounded subset. Such mappings are 
called holomorphic mappings of bounded type. If F = C, we write ~b(U) instead of 
~b(U; C). We denote by rb the topology on 7%(U; F) of the uniform convergence 
on all U-bounded subsets. 7%(U; F) is a Fr6chet space for this topology, and 
likewise 7%(U) is a Fr6chet algebra. If U is balanced, it follows from the Cauchy 
inequalities that the Taylor series of each f c 7%(U; F) at the origin converges 
uniformly on each U-bounded subset. In particular, if Pv denotes the restriction of 
mappings to U, then pv(79(E; F)) is rb-dense in 7-/b(U; F). 

We denote by Sb(U) the spectrum of the algebra 7%(U), i.e., the set of all 
continuous complex homomorphisms (and by that we mean linear and multiplica- 
tive) of 7%(U). Every point of U can be associated with an element of St,(U) as 
follows: for each z ~ U fixed, let ~z :7%(U) -----+ C be defined by ~z(f) = f(z), 
for all f ~ 7-/b(U). Each 3z is called evaluation at z. It is clear that 3z ~ Sb(U), 
for all z 6 U, and the mapping 3 : U > Sb(U) is used in order to identify U with 
the subset 3(U) of Sb(U). Note that 6 is injective because the continuous linear 
forms already separate the points of E. 

In this paper we will show that under certain hypotheses on E and U, all the 
elements of S~ (U) are evaluations at some point of U, and in this sense we say that 
Sb(U) is identified with ~(U). 

In the following we give some definitions, examples and auxiliary results to the 
main result. 

Let X be a subset of E, A be a subset of X, and 5 t c C(X). Then the U-hull of 
A is the following set: 

A'~:= {xc  X: If(x) I ~< suplfl, for all f ~Y] .  
A 
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Definitions 1.1. Let E be a Banach space and let U be an open subset of  E. We say 

that U is: 

(1) 79b(E)-convex if A"PtL)~ U is U-bounded, for every U-bounded subset A; 

(2) strongly 7~(E)-conw)x if A'~IF~I C U and is U-bounded, for every U-bounded 
subset A; 

(3) ~(E) -conw~x  if A"~,t~) ~ U is U-bounded, for every U-bounded subset A; 
(4) strongly ~h(E)-conw~x if A"~/,I~) C U and is U-bounded, for every U-bounded 

subset A; 
(5) ~/~(U)-convex if A'~,tu) is U-bounded, for every U-bounded subset A. 

The following lemma shows that the notions of (strongly) 79b(E)-convex and 

(strongly) ~/~ (E)-convex set coincide. 

Lemma 1.2. Let A be a bounded subset orE. Then A~,(E) = AT~(~'). 

Proof. Since 72 ( E)C  ~/,(E),  we have that ~ , / / ; l  _c A"P/E). Now let us 

suppose that there exists a ~ A'~¢EI such that a ~ A~t,¢E t. Let f e ~/ , (E) be such 

that If(a)l  > supA If[. Since A"PtEI is bounded and 79(E) is dense in ~/ , (E) for the 
r/, topology, given e. > 0 there exists P e 72(E) such that supA-p~ I f  - PI < ~. 

In particular we have that supA IPI ~< supA IP - f l  + supA Il l  < 2 + supA Il l .  
Finally we get that I.lt .)l  ~< If(a)  - P(a)l q- IP(a)l < ~ + sup z IPI < ~ + 
supa If  I, tbr all ~' > 0, which is a contradiction. [] 

The next lemma shows that the last condition on Definition 1.1.2 (and 1.1.4) is 

superfluous. 

A 

Lemma 1.3. [[ A,~,lr:l C U, .[br every U-bounded subset A, then U is strongly 
~t,( E)-convex. 

Proof. We follow ideas of [10, Lemma 54.8]. Let A be a U-bounded subset. We 
must show that A"~,/~.I is U-bounded. Since it is clear that A~'~,IE) is bounded, it 
remains to show that there exists e: > 0 such that A~,(L~ + B(0, e) C U. Let e > 0 be 
such that A + B(0, ~) is U-bounded. Then (A + B(0, ~))2~,(Et C U. Let y e A"~j,(Et, 
t e B(0, ~:) and 0 < 0 < I. Then for each f ~ ~/ ,(E) we have that 

I.f<y +0t)l 0n'lP/"(f/0')l 0 n'  uplPf'(.l)l i I - e ) - '  sup 
A m=O m=O / ~ ± o t u , ~  

Ill ,  

where the second inequality follows because P/" ( f )  E 7%(E) and y 6 A"~I, fEt- The 
third inequality tbllows by applying [10, Corollary 7.3], with t e B(0, e) and r = 1. 

Next we apply the above inequality to f " ,  take n-th roots and let n ~ ~ to get 

that If(Y + Ot)l <~ supA ~ B(0.~)Ill, that is, y + Ot e (A + B(O, e))~h(~ ) C U. By 
letting 0 ~ 1 we have that v + t e U, and the conclusion follows. [] 
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L e m m a  1.4. Let Jr C 7-[b(E) be a family with the property that the function x ~-~ 
f ( kx )  is an element of  ,~, for every f E ~ and [kl ~< 1. Let A c_ E be a balanced 
subset. Then A ~: is balanced. 

Proof. Let f ~ ~c. For each k E C such that 11,1 ~< 1, let fx c ~ be such that fk(x) = 

f (kx ) ,  for all x E E. Let y ~ A':x. Then [f(ky)[ = [Ix(y)[ ~< supA l/x[ ~< SUpA If  I, 
proving that ky E A:F, and hence A:x is balanced. [] 

It is clear that strongly ~b(E)-convex open subsets are always 7%(E)-convex. 

Also, it is easy to see that A~b(u) C "A~h(E) n U, and hence we have that 7-~b(E)- 

convex open subsets are always 7%(U)-convex. The next proposition shows that 

if U is balanced, then all these notions coincide. Moreover, this proposition is the 
heart of the proof of  the main result. 

P r o p o s i t i o n  1.5. Let U C E be a balanced open subset. Then the following 
conditions are equivalent. 

(1) U is strongly 79b( E)-convex. 
(2) U is strongly ~b(E)-convex. 
(3) U is 72b(E)-convex. 
(4) U is 7%(E)-convex. 

(5) U is 7-[b(U)-convex. 

Proof. The implications (1) ~ (2) and (3) ¢~ (4) were proved in Lemma 1.2. The 

implications (2) =~ (4) =, (5) were commented above. 

(5) =, (4) We show that A"~h(u ) = A'~(E) n U = A'~b(E) A U, for every U-bounded 
subset A, and then conclude that U is ~b(E)-convex. Let y E A'p(E) A U and we 

show that y E AT~b(U ). Let f ~ 7-[b(U) fixed. Since U is 7~b(U)-convex, the set B = 
An~(v) U {y} is U-bounded, and since U is balanced, given e > 0, there is P E 72(E) 

such that sup8 I f -  PI < ~. Then If(Y)l ~< I f ( Y ) -  P(Y)[ + IP(y)I < ~ +supa  IPI. 
On the other hand: 

E 
s u p l P l < ~ s u p l f - P l + s u p l f [ <  -~ + sup Ifl. 

A A A A A 

And finally we get that If(Y)] < e + supa Ifl,  for all e > 0, which implies that 

y E A7%(u). 
(4) =* (2) Let A be an U-bounded subset. By Lemma 1.3, it suffices to prove 

that AA~b(E) C U. First we assume that A is balanced. Let x ~ A'~(e). Define Di = 

{k E C: Ik] ~< l} and D = {k E DI" kx E U}. Then D is a disk centered at the origin 
because U is balanced, and D is an open subset of DI because U is open. Let e > 0 
be such that Ap(E) ('1U + B(0, e) C U. Let k E Di, kx ~ U, and let # E D1 be such 
that Jlz - kl Ilx II < e. Then kx E A'~(e) C~ U because x E A'~(f) and A"~(E) is balanced 

by Lemma 1.4. Furthermore II#x - kxll < e, hence IZX E A~(e) N U + B(0, e), and 
therefore #x 6 U. This implies that any point on the boundary of  D belongs to D, 
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and D is an open and closed subset o f  Dl,  and therefore D = D1. It follows that 

x = lx • U. Since this holds for any x • A'~(E), we have proved that A'~(E) C U. 

If  A is not balanced, we consider B = ba(A) ,  the balanced hull o f  A. I f  follows 

by [5, L e m m a  1.3(b)] that B is a balanced U-bounded subset. Then we apply the 

arguments above and get that A'~t, IE) C B~h(L'~ c U. [] 

Next we give some examples of  balanced ~ h ( E ) - c o n v e x  open subsets. 

Example  1.6. Let P • "/>(mE; F) and let U = {x • E: IIP(x)ll < 1}. Then U is a 

balanced ~ , ( U ) - c o n v e x  open set. 

Proof .  Clearly U is a balanced open set. Let A be an U-bounded subset o f  U. Let 

e > 0 denote the distance from A to the boundary of  U, and let r = suPxcA Ilxll. 

I f x • A a n d  l ~ < k <  1 +  ~ t h e n l l k x - x l l = l k - l l l l x l l < e ,  h e n c e k x • U ,  and 7, 
J)kx)ll = k -ml lP (kx ) l l  < k m Taking in the right-hand therefore II P(x)II = II P( (~  

side the infimum over all k such that 1 ~< k < 1 + ,G , we conclude that IIP(x)ll ~< 

c := (1 + ,~) " < 1 for every x • A. 

Let us show that A~,~.~ C U. Let y • A~h(L- ) and ¢p • F ' .  Then q) o P • ~ h ( E )  

and hence I¢P o P(Y)I <~ supa Iq ) o PI. Now 

l iP(>')  : sup sup supl o(P(x))l s u p l t P ( x ) l l  < l ,  
¢PEBI.~ ¢REB F, xEA xcA 

and hence y • U 

This shows that A'~bIE/ is U-bounded, because i f 0  < c < 1, then every bounded 

subset o f  {x • E: II P(x)ll  ~< c} is U-bounded.  Hence U is strongly 7%(E)-convex 

by Lemma 1.3. Finally U is ~b (U) -convex  by Proposition 1.5. [] 

Corol lary 1.7. Let P • J-)(mE) and let U = {x ¢ E: IP(x)l < 1}. Then U is a 

balanced "Hb (U )-convex open set. 

Corol lary 1.8. Let A • £ ( E 1 , . .  Era; F) and E = El x . . .  x Era. Then 

u = . . . . .  c E:  I lA(x ,  . . . . .  x,,,)ll < 1 

is a balanced 7%( U )-convex open set. 

Proof .  By [10, Theorem 3.6] it follows that A, viewed as a mapping from E 

to F, is a homogeneous polynomial o f  degree m. Then the result follows by 

Example  1.6. [] 

Corol lary 1.9. Let U = {(x, k) e E x C: Ilkxll < 1}. Then U is a balancedT-[h(U)- 

convex open set. 
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2. THE MAIN RESULT 

In [ 1 3], B. Tsirelson constructed a reflexive Banach space X, with an unconditional 

Schauder basis, that does not contain any subspace which is isomorphic to co or to 
any ~p. R. Alencar, R. Aron and S. Dineen proved in [1] that ~gf(mx) is norm-dense 
in 79(mx), for all m E l~. Inspired by this result, we will say that a Banach space E is 

a Tsirelson-like space if  E is reflexive and 79f (m E) is norm-dense in 79( m E), for all 

m ~ N .  

The following theorem is the main result of this paper. 

Theorem 2.1. Let E be a Tsirelson-like space, and let U be a balanced 7%(U)- 

convex open subset of  E. Then the spectrum of  7%(U) is identified with U. 

Proof. Since U is balanced and 7%(U)-convex, it follows by Proposition 1.5 that 
U is strongly 7%(E)-convex. Now we follow the ideas of  [11, Theorem 1.1]. 

Let T:7%(U)  ~ C be a continuous homomorphism. Then there exists C > 0 
and an U-bounded subset A C U such that 

IT ( f ) [~<Csup l f l ,  f o r a l l f c 7 % ( U ) .  
A 

Since T is multiplicative, we have that IT(f)[  n = IT(fn)[ ~< C suPA [fl n for every 

n E N. Taking n-th roots and making n ~ oo we conclude that actually C = 1. 

Let r > 0 such that A C B(0, r). In particular, we have that IT(f) l  ~< sup A Ifl ~< 

supB(0.r) I f  I, for all f 6 E'. Hence we have that TIE, ~ E" = E, so there exists a 
unique a 6 E such that T ( f )  = f (a ) ,  for all f E E', and hence T(P)  = P(a), for 
all P ~ ~ f (mE) ,  for all m E N. Since 79f(mE) is norm-dense in 79(mE), for all 
m E N, it follows that T(P)  = P(a), for all P 6 T~(E). Then we have that IP(a)l = 

A 

IP( f ) l  ~< suPa IPI, for all P E 79(E), which implies that a ~ Ap(E) = A~b(E ) C U. 
Since U is balanced, we have that 79(E) is rb-dense in 7%(U), and then we conclude 

that T ( f )  = f (a ) ,  for all f E 7%(U), proving the theorem. [] 

Definition 2.2. Let E be a Banach space and let U be an open subset of  E. We say 
that U is a 7%(U)-domain ofholomorphy if  there are no open sets V and W in E 
with the following properties: 

(1) V is connected and not contained in U; 

(2) O C W c U A V ;  

(3) for each f ~ ~b(U) there exists f c 7~(V) such that f -- f on W. 

The following corollary is the announced result for balanced 7%(U)-domains of  
holomorphy. 

Corollary 2.3. Let E be a Tsirelson-like space, and let U be a balanced 7%(U)- 

domain o f  holomorphy in E. Then the spectrum of  7%(U) is identified with U. 
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Proof. By [6, Theorem 1] or [8, Theorem 1], we have that U is 7%(U)-convex. 
Then apply Theorem 2.1. [] 

The following result is a consequence of Corollary 2.3. It says that, under the 
hypotheses of Corollary 2.3, every proper finitely generated ideal of 7%(U) has a 
common zero. 

Theorem 2.4. Let E be a Tsirelson-like space. Let U C E be a balanced 7%(U)- 

domain o f  holomorphy. Then given ./'l . . . . .  J;, ¢ ~h(U) without common zeros, we 
n 

can find gt . . . . .  gn c 7%(U) such that ~ i= l  J)gi = 1. 

Proof. The p roo fo f [ l l ,  Theorem 1.5] applies. [] 

3. T H E O R E M S  OF BANACH STONE TYPE 

In [3], S. Banach proved that two compact metric spaces X and Y are home- 
omorphic if and only if the Banach algebras C(X) and C(Y) are isometrically 
isomorphic. M.H. Stone, in [12], generalized this result to arbitrary compact 
Hausdorff topological spaces, the well-known Banach-Stone theorem. 

In [14], we present similar results for algebras of holomorphic functions of 
bounded type, using results on the spectrum of such algebras. More specifically, 
let E and F be reflexive spaces, one of them a Tsirelson-like space, and let U C E 
and V c F be absolutely convex opens subsets. Then it is shown that the algebras 
7%(U) and "Ht,(V) are topologically isomorphic, if and only if there is a special 
type ofbiholomorphic mapping between U and V. To show these results we use the 
characterization of the spectra of T-&(U) with U due to J. Mujica, [ 11, Theorem 1.1]. 

In this section we generalize this result to balanced 7%(U)-domains of holomor- 
phy, using the characterization of the spectrum of 7-{t,(U), Corollary 2.3 of this 
paper. 

Let E and F be Banach spaces, and U c E and V C F be open subsets of E 
and F, respectively. We denote by 7%(V, U) the set of all holomorphic mappings 
¢p: V ~ E, with of(V) C U, such that ¢p maps V-bounded subsets into U-bounded 
subsets. 

Next theorem is the result announced, and improves [14, Corollary 14]. 

Theorem 3.1. Let E and F be reflexive Banach spaces, one o f  them a Tsirelson- 

like space. Let U C E and V C F be balanced 7%-domains o f  holomorphy. Then 

the fi)llowing conditions are equivalent. 

(1) Thereexistsabijectivemappingq):V ~ Usuchthat~oE~b(V,U)and~o l c 

7%(U, V). 

(2) The algebras ~ ,  ( U ) and ~h ( V ) are topologically isomorphic. 

Proof. The proof of[14, Corollary 14] applies. [] 
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In [14, Theorem 16] it is shown that if K C E and L C F are absolutely convex 
compact subsets of Tsirelson-like spaces, then the algebras ~ ( K )  and 7~(L) are 
topologically isomorphic if and only if K and L are biholomorphically equivalent. 
The key to the proof of such result is a theorem of Banach-Stone type between 
algebras of holomorphic functions of bounded type [14, Corollary 14]. We are 
going to present a generalization of this result to greater class of compact sets, 
using Theorem 3.1. But before we need some preparation. 

Let E be a Banach space, and let K C E be a compact subset. We define ~ ( K )  
to be the algebra of all functions that are holomorphic on some open neighborhood 
of K. The elements of ~ ( K )  are called germs of holomorphic functions. We 
endow 7~(K) with the locally convex inductive limit of the locally convex algebras 
(7-/(U), r~o), where U varies among the open subsets of E such that K c U. If 
Un = K + B(0, 1), for all n 6 N, then it is easy to see that 

(~(K) ,  rw) = lira 7%(Un). 
n61N 

We refer to [4,7] or [9] for background information on algebras of germs of holo- 
morphic functions. 

Definition 3.2. Let E be a Banach space, let K be a compact subset of E and let 
m c N. We say that K is 79(mE)-convex i f K  = K~(mE). 

Before we present examples of balanced 79(m E)-convex compact sets, we shall 
need the next lemma, which is inspired in [10, Proposition 1 1.1]. I fA is a subset of 
a Banach space, we denote by F(A) the closed, absolutely convex hull of A. 

Lemma 3.3. Let E be a Banach space and let A be a bounded subset of E. Then 
A~pf(mE) C F(a), for all m E N. 

Proof. Let y ~ F(A). By the Hahn-Banach theorem, there exists ~o 6 E' such that 
]~P(Y)I > SUPxE~A(A)]~o(x)]. Hence I~0m(y)[ > SUPxe~(A ) ]qgm(X)l ~ SUpA ]g0m], which 

shows that y ~ A 79 f (m E) . [] 

Example 3.4. Every absolutely convex compact subset of a Banach space E is 
79(m E)-convex, for all m 6 N. 

Proof. Let K C E be an absolutely convex compact set. Since 79f(mE) C 79(mE), 
we have that K"~(me) C K"~I(,,E ~ C F(K) = K, where the last inclusion follows by 
Lemma3.3. [] 

Example 3.5. Let E be a Banach space, and L C E be a compact, balanced and 
79(mE)-convex set. Let P c 79(mE) .  Then K = {x ~ L: IP(x)l ~< 1} is compact, 
balanced and 79 (m E)-convex. 
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R e m a r k  3.6. If K is a 7)(mE)-convex compact  set, then it is clear that K is 

polynomially convex. But the converse is not true. Indeed, it is easy to see that 

if  K = K~I"  E), then K is balanced. Now let K be a convex compact  set, which is 
not balanced. Then K is polynomially convex by [10, Examples  24.2(a)], but is not 

7~( " E)-convex,  fbr any m • N. 

The next theorem will be useful to prove the main result o f  this section. 

Theorem 3.7. Let E be a Banach space and let K be a compact, balanced and 

7~ (m E)-convex subset o f  E, Jor some m • N. Let U be an open subset o f  E such that 

K C U. Then there exists an open set V C E which is' balancedandT~h(V)-eonvex, 

such that K C V C U. 

Proof .  We begin with a slight modification of  [10, Lemma  24.7]. If  F (K)  C U, 

then we take V = F (K)  + B(0, e), where e is such that F ( K )  + B(0, e) C U. I f  

F (K)  is not contained in U, then for each a • F (K)  \ U there is P • 7~(m E) such 

that supK IPI < I < IP(a)l .  Since F (K)  \ U is compact ,  we can find polynomials  
PI . . . . .  Pk • 79( ''' E) such that 

k 

u U l x  • E= I}, 
j _  i 

Now it is easy to see that {x • F (K) :  [pi(x)[ ~< 1, f o r j  = 1 . . . . .  k} C U. Next we 

follow the arguments of  [ 10, Theorem 28.2], finding a positive number  6 > 0 such 

that V = (F (K)  + B(0,6))  • {x • E: Ipi(x)] < I, for j = 1 . . . . .  k} c U. Now V is 
balanced and 7-¢~,(V)-convex, by Corollary 1.7. [] 

Let E and F be Banach spaces, and let K C E and L C F be compact  subsets. 

We say that K and L are biholomorphically equivalent if  there exist open subsets 

U c E and V C F with K c U and L C V and a biholomorphic  mapping 
~p : V ~ U such that ~0(L) = K. The next theorem is the announced result for 
algebras o f  holomorphic germs, and generalizes [14, Theorem 16]. 

T h e o r e m  3.8. Let E and F be Tsirelson-like spaces. Let K C E and L C F be 

balanced compact subsets, such that K is 7~( '' E)-convex, and L is 7~(k F)-convex, 

.[~)r some m, k • N. Then the following conditions are equivalent. 

( 1 ) K and L are biholomorphically equivalent. 

(2) The algebras 7-{ ( K ) and ~ (  L ) are topologically isomorphic. 

Proof .  ( 1 ) :~  (2) The proof  o f  [14, Theorem 16] applies. 

(2) ~ (1) We claim that ~ ( K )  is the inductive limit o f  a sequence of  

Frachet spaces "Hj,(V,,), where each V,, is balanced and Ph(E) -convex  (and the 

same for 7~(L)). Indeed, let U,, = K + B(0; ~-), for every n • 1~. Applying 

Theorem 3.7, for each n • N there exists a balanced Hb-convex open subset V,, 
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such that K C V~ C U,. Since ~ ( K )  = lim, cN7%(U,) and the inclusion ~b(U,) ~-~ 
- - - - +  

7-[b(V,) is continuous, we have that ~ ( K )  - -  limn~N7%(Vn), and our claim is 

proved. Next we apply the same arguments of (2) ~ (1) of  [14, Theorem 16], 
replacing [14, Corollary 14] there by Theorem 3.1 here. [] 

CONCLUDING REMARKS 

We go back to the introduction of  this paper, where we say that we give a partial 
answer to Mujica's question. He asks if, in Tsirelson-like spaces, Sb(U) can be 
identified with U, when U is a polynomially convex open subset. On the one hand, 
we think that maybe this question could be reformulated to 7)b(E)-convex open 
subsets. Then, as showed in Lemma 1.2, Pb (E)-convex open sets are always ~b(E)-  
convex, and hence ~b (U)-convex open subsets, so in this sense Theorem 2.1 gives a 
partial answer to Mujica's question. On the other hand, it is clear that 7~b (E)-convex 
open subsets are always polynomially convex, but we don't know if the converse 
holds in general. 

We still don't know whether it is possible to remove the hypothesis that U is 
balanced on our results. It is known that if E is separable and has the bounded 
approximation property, then the spectrum of (~ (U) ,  r0) is identified with U if 
and only if U is a domain of  holomorphy (see [10, Theorem 58.11]). We also ask 
whether it is possible to state an analogous result for the algebra 7~b(U). 
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