Spectra of algebras of holomorphic functions of bounded type

by Daniela M. Vieira¹

Caixa Postal 6065 CEP 13083-859, Campinas-SP Brasil

Communicated by Prof. J.J. Duistermaat at the meeting of September 25, 2006

ABSTRACT

We prove that if U is a balanced $\mathcal{H}_b(U)$ -domain of holomorphy in Tsirelson's space then the spectrum of $\mathcal{H}_b(U)$ is identified with U. We derive theorems of Banach–Stone type for algebras of holomorphic functions and algebras of holomorphic germs.

INTRODUCTION

Let *E* be a Banach space and let *U* be an open subset of *E*. In [2], it is proved that if *E* is Tsirelson's space, then the spectrum of $\mathcal{H}_b(U)$ is identified with *U*, when U = E. In [11], J. Mujica generalizes this result for absolutely convex open subsets of Tsirelson's space, and asks if the result can be improved for a more general class of open subsets of *E*, for instance, polynomially convex open subsets. In this paper we give a partial answer to this question, i.e., we show that the result remains true for balanced $\mathcal{H}_b(U)$ -domains of holomorphy on Tsirelson's space. In Section 1 we define $\mathcal{H}_b(U)$ -convex open subsets and present properties and examples of such sets. We also give some auxiliary results before proving the main result. Most of them are generalizations to *U*-bounded sets of known results for compact sets. In Section 2 we present the main result and a corollary on finitely generated ideals of the algebra $\mathcal{H}_b(U)$. In Section 3 we present theorems of Banach–Stone type for the

MSC: 46G20, 46E25, 32E20

E-mail: danim@ime.unicamp.br (D.M. Vicira).

¹ Research supported by FAPESP, Process no. 04/07441-3, Brazil.

algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$, and also for algebras of holomorphic germs $\mathcal{H}(K)$ and $\mathcal{H}(L)$, improving results from [14].

I wish to thank Prof. J. Mujica for so many helpful comments concerning this work.

1. PRELIMINARIES

We refer to [7] and [10] for background information on infinite-dimensional complex analysis. *E* and *F* will always denote Banach spaces. Let $\mathcal{P}(E; F)$ denote the Banach space of all continuous polynomials from *E* into *F*. $\mathcal{P}(^{m}E; F)$ denotes the Banach space of all continuous *m*-homogeneous polynomials from *E* into *F*. $\mathcal{P}_{f}(^{m}E; F)$ denotes the subspace of $\mathcal{P}(^{m}E; F)$ generated by all polynomials of the form $P(x) = \varphi(x)^{m}b$, for all $x \in E$, where $\varphi \in E'$ and $b \in F$. Such polynomials are called *of finite type*. When $F = \mathbb{C}$, we write $\mathcal{P}(E)$, $\mathcal{P}(^{m}E)$ and $\mathcal{P}_{f}(^{m}E)$ instead of $\mathcal{P}(E; \mathbb{C})$, $\mathcal{P}(^{m}E; \mathbb{C})$ and $\mathcal{P}_{f}(^{m}E; \mathbb{C})$, respectively.

Let U be an open subset of E. We say that a subset $A \subset U$ is U-bounded if A is bounded and there exists $\varepsilon > 0$ such that $A + B(0, \varepsilon) \subset U$.

We will denote by $\mathcal{H}_b(U; F)$ the vector space of all holomorphic mappings $f: U \longrightarrow F$ which are bounded on every U-bounded subset. Such mappings are called *holomorphic mappings of bounded type*. If $F = \mathbb{C}$, we write $\mathcal{H}_b(U)$ instead of $\mathcal{H}_b(U; \mathbb{C})$. We denote by τ_b the topology on $\mathcal{H}_b(U; F)$ of the uniform convergence on all U-bounded subsets. $\mathcal{H}_b(U; F)$ is a Fréchet space for this topology, and likewise $\mathcal{H}_b(U)$ is a Fréchet algebra. If U is balanced, it follows from the Cauchy inequalities that the Taylor series of each $f \in \mathcal{H}_b(U; F)$ at the origin converges uniformly on each U-bounded subset. In particular, if ρ_U denotes the restriction of mappings to U, then $\rho_U(\mathcal{P}(E; F))$ is τ_b -dense in $\mathcal{H}_b(U; F)$.

We denote by $S_b(U)$ the spectrum of the algebra $\mathcal{H}_b(U)$, i.e., the set of all continuous complex homomorphisms (and by that we mean linear and multiplicative) of $\mathcal{H}_b(U)$. Every point of U can be associated with an element of $S_b(U)$ as follows: for each $z \in U$ fixed, let $\delta_z : \mathcal{H}_b(U) \longrightarrow \mathbb{C}$ be defined by $\delta_z(f) = f(z)$, for all $f \in \mathcal{H}_b(U)$. Each δ_z is called *evaluation at* z. It is clear that $\delta_z \in S_b(U)$, for all $z \in U$, and the mapping $\delta : U \longrightarrow S_b(U)$ is used in order to identify U with the subset $\delta(U)$ of $S_b(U)$. Note that δ is injective because the continuous linear forms already separate the points of E.

In this paper we will show that under certain hypotheses on E and U, all the elements of $S_b(U)$ are evaluations at some point of U, and in this sense we say that $S_b(U)$ is identified with $\delta(U)$.

In the following we give some definitions, examples and auxiliary results to the main result.

Let X be a subset of E, A be a subset of X, and $\mathcal{F} \subset \mathcal{C}(X)$. Then the \mathcal{F} -hull of A is the following set:

$$\widehat{A}_{\mathcal{F}} = \left\{ x \in X \colon \left| f(x) \right| \leq \sup_{A} |f|, \text{ for all } f \in \mathcal{F} \right\}.$$

Definitions 1.1. Let E be a Banach space and let U be an open subset of E. We say that U is:

- (1) $\mathcal{P}_b(E)$ -convex if $\widehat{A}_{\mathcal{P}(E)} \cap U$ is U-bounded, for every U-bounded subset A;
- (2) strongly $\mathcal{P}_b(E)$ -convex if $\widehat{A}_{\mathcal{P}(E)} \subset U$ and is *U*-bounded, for every *U*-bounded subset *A*;
- (3) $\mathcal{H}_b(E)$ -convex if $\widehat{A}_{\mathcal{H}_b(E)} \cap U$ is U-bounded, for every U-bounded subset A;
- (4) strongly $\mathcal{H}_b(E)$ -convex if $\widehat{A}_{\mathcal{H}_b(E)} \subset U$ and is U-bounded, for every U-bounded subset A;
- (5) $\mathcal{H}_b(U)$ -convex if $\widehat{A}_{\mathcal{H}_b(U)}$ is U-bounded, for every U-bounded subset A.

The following lemma shows that the notions of (strongly) $\mathcal{P}_b(E)$ -convex and (strongly) $\mathcal{H}_b(E)$ -convex set coincide.

Lemma 1.2. Let A be a bounded subset of E. Then $\widehat{A}_{\mathcal{H}_b(E)} = \widehat{A}_{\mathcal{P}(E)}$.

Proof. Since $\mathcal{P}(E) \subset \mathcal{H}_b(E)$, we have that $\widehat{A}_{\mathcal{H}_b(E)} \subseteq \widehat{A}_{\mathcal{P}(E)}$. Now let us suppose that there exists $a \in \widehat{A}_{\mathcal{P}(E)}$ such that $a \notin \widehat{A}_{\mathcal{H}_b(E)}$. Let $f \in \mathcal{H}_b(E)$ be such that $|f(a)| > \sup_A |f|$. Since $\widehat{A}_{\mathcal{P}(E)}$ is bounded and $\mathcal{P}(E)$ is dense in $\mathcal{H}_b(E)$ for the τ_b topology, given $\varepsilon > 0$ there exists $P \in \mathcal{P}(E)$ such that $\sup_{\widehat{A}_{\mathcal{P}(E)}} |f - P| < \frac{\varepsilon}{2}$. In particular we have that $\sup_A |P| \leq \sup_A |P - f| + \sup_A |f| < \frac{\varepsilon}{2} + \sup_A |f|$. Finally we get that $|f(a)| \leq |f(a) - P(a)| + |P(a)| < \frac{\varepsilon}{2} + \sup_A |P| < \varepsilon + \sup_A |f|$, for all $\varepsilon > 0$, which is a contradiction. \Box

The next lemma shows that the last condition on Definition 1.1.2 (and 1.1.4) is superfluous.

Lemma 1.3. If $\widehat{A}_{\mathcal{H}_b(E)} \subset U$, for every U-bounded subset A, then U is strongly $\mathcal{H}_b(E)$ -convex.

Proof. We follow ideas of [10, Lemma 54.8]. Let *A* be a *U*-bounded subset. We must show that $\widehat{A}_{\mathcal{H}_b(E)}$ is *U*-bounded. Since it is clear that $\widehat{A}_{\mathcal{H}_b(E)}$ is bounded, it remains to show that there exists $\varepsilon > 0$ such that $\widehat{A}_{\mathcal{H}_b(E)} + B(0, \varepsilon) \subset U$. Let $\varepsilon > 0$ be such that $A + B(0, \varepsilon)$ is *U*-bounded. Then $(A + B(0, \varepsilon))_{\mathcal{H}_b(E)} \subset U$. Let $y \in \widehat{A}_{\mathcal{H}_b(E)}$, $t \in B(0, \varepsilon)$ and $0 < \theta < 1$. Then for each $f \in \mathcal{H}_b(E)$ we have that

$$\left|f(y+\theta t)\right| \leq \sum_{m=0}^{\infty} \theta^{m} \left|P_{t}^{m}(f)(y)\right| \leq \sum_{m=0}^{\infty} \theta^{m} \sup_{A} \left|P_{t}^{m}(f)\right| \leq (1-\theta)^{-1} \sup_{A+B(0,\varepsilon)} |f|,$$

where the second inequality follows because $P_t^m(f) \in \mathcal{H}_b(E)$ and $y \in \widehat{A}_{\mathcal{H}_b(E)}$. The third inequality follows by applying [10, Corollary 7.3], with $t \in B(0, \varepsilon)$ and r = 1.

Next we apply the above inequality to f^n , take *n*-th roots and let $n \to \infty$ to get that $|f(y + \theta t)| \leq \sup_{A+B(0,\varepsilon)} |f|$, that is, $y + \theta t \in (A + B(0,\varepsilon))_{\mathcal{H}_b(E)} \subset U$. By letting $\theta \to 1$ we have that $y + t \in U$, and the conclusion follows. \Box

Lemma 1.4. Let $\mathcal{F} \subset \mathcal{H}_b(E)$ be a family with the property that the function $x \mapsto f(\lambda x)$ is an element of \mathcal{F} , for every $f \in \mathcal{F}$ and $|\lambda| \leq 1$. Let $A \subseteq E$ be a balanced subset. Then $\widehat{A}_{\mathcal{F}}$ is balanced.

Proof. Let $f \in \mathcal{F}$. For each $\lambda \in \mathbb{C}$ such that $|\lambda| \leq 1$, let $f_{\lambda} \in \mathcal{F}$ be such that $f_{\lambda}(x) = f(\lambda x)$, for all $x \in E$. Let $y \in \widehat{A_{\mathcal{F}}}$. Then $|f(\lambda y)| = |f_{\lambda}(y)| \leq \sup_{A} |f_{\lambda}| \leq \sup_{A} |f|$, proving that $\lambda y \in \widehat{A_{\mathcal{F}}}$, and hence $\widehat{A_{\mathcal{F}}}$ is balanced. \Box

It is clear that strongly $\mathcal{H}_b(E)$ -convex open subsets are always $\mathcal{H}_b(E)$ -convex. Also, it is easy to see that $\widehat{\mathcal{A}}_{\mathcal{H}_b(U)} \subset \widehat{\mathcal{A}}_{\mathcal{H}_b(E)} \cap U$, and hence we have that $\mathcal{H}_b(E)$ -convex open subsets are always $\mathcal{H}_b(U)$ -convex. The next proposition shows that if U is balanced, then all these notions coincide. Moreover, this proposition is the heart of the proof of the main result.

Proposition 1.5. Let $U \subset E$ be a balanced open subset. Then the following conditions are equivalent.

- (1) U is strongly $\mathcal{P}_b(E)$ -convex.
- (2) U is strongly $\mathcal{H}_b(E)$ -convex.
- (3) U is $\mathcal{P}_b(E)$ -convex.
- (4) U is $\mathcal{H}_b(E)$ -convex.
- (5) U is $\mathcal{H}_b(U)$ -convex.

Proof. The implications (1) \Leftrightarrow (2) and (3) \Leftrightarrow (4) were proved in Lemma 1.2. The implications (2) \Rightarrow (4) \Rightarrow (5) were commented above.

 $(5) \Rightarrow (4)$ We show that $\widehat{A}_{\mathcal{H}_b(U)} = \widehat{A}_{\mathcal{P}(E)} \cap U = \widehat{A}_{\mathcal{H}_b(E)} \cap U$, for every *U*-bounded subset *A*, and then conclude that *U* is $\mathcal{H}_b(E)$ -convex. Let $y \in \widehat{A}_{\mathcal{P}(E)} \cap U$ and we show that $y \in \widehat{A}_{\mathcal{H}_b(U)}$. Let $f \in \mathcal{H}_b(U)$ fixed. Since *U* is $\mathcal{H}_b(U)$ -convex, the set $B = \widehat{A}_{\mathcal{H}_b(U)} \cup \{y\}$ is *U*-bounded, and since *U* is balanced, given $\varepsilon > 0$, there is $P \in \mathcal{P}(E)$ such that $\sup_B |f - P| < \frac{\varepsilon}{2}$. Then $|f(y)| \leq |f(y) - P(y)| + |P(y)| < \frac{\varepsilon}{2} + \sup_A |P|$. On the other hand:

$$\sup_{A} |P| \leq \sup_{A} |f - P| + \sup_{A} |f| < \frac{\varepsilon}{2} + \sup_{A} |f|.$$

And finally we get that $|f(y)| < \varepsilon + \sup_A |f|$, for all $\varepsilon > 0$, which implies that $y \in \widehat{A}_{\mathcal{H}_b(U)}$.

(4) \Rightarrow (2) Let *A* be an *U*-bounded subset. By Lemma 1.3, it suffices to prove that $\widehat{A}_{\mathcal{H}_b(E)} \subset U$. First we assume that *A* is balanced. Let $x \in \widehat{A}_{\mathcal{P}(E)}$. Define $D_1 = \{\lambda \in \mathbb{C}: |\lambda| \leq 1\}$ and $D = \{\lambda \in D_1: \lambda x \in U\}$. Then *D* is a disk centered at the origin because *U* is balanced, and *D* is an open subset of D_1 because *U* is open. Let $\varepsilon > 0$ be such that $\widehat{A}_{\mathcal{P}(E)} \cap U + B(0, \varepsilon) \subset U$. Let $\lambda \in D_1, \lambda x \in U$, and let $\mu \in D_1$ be such that $|\mu - \lambda| ||x|| < \varepsilon$. Then $\lambda x \in \widehat{A}_{\mathcal{P}(E)} \cap U$ because $x \in \widehat{A}_{\mathcal{P}(E)}$ and $\widehat{A}_{\mathcal{P}(E)}$ is balanced by Lemma 1.4. Furthermore $||\mu x - \lambda x|| < \varepsilon$, hence $\mu x \in \widehat{A}_{\mathcal{P}(E)} \cap U + B(0, \varepsilon)$, and therefore $\mu x \in U$. This implies that any point on the boundary of *D* belongs to *D*,

and D is an open and closed subset of D_1 , and therefore $D = D_1$. It follows that $x = 1x \in U$. Since this holds for any $x \in \widehat{A}_{\mathcal{P}(E)}$, we have proved that $\widehat{A}_{\mathcal{P}(E)} \subset U$.

If A is not balanced, we consider B = ba(A), the balanced hull of A. If follows by [5, Lemma 1.3(b)] that B is a balanced U-bounded subset. Then we apply the arguments above and get that $\widehat{A}_{\mathcal{H}_{h}(E)} \subset \widehat{B}_{\mathcal{H}_{h}(E)} \subset U$. \Box

Next we give some examples of balanced $\mathcal{H}_b(E)$ -convex open subsets.

Example 1.6. Let $P \in \mathcal{P}(^{m}E; F)$ and let $U = \{x \in E: ||P(x)|| < 1\}$. Then U is a balanced $\mathcal{H}_{b}(U)$ -convex open set.

Proof. Clearly *U* is a balanced open set. Let *A* be an *U*-bounded subset of *U*. Let $\varepsilon > 0$ denote the distance from *A* to the boundary of *U*, and let $r = \sup_{x \in A} ||x||$. If $x \in A$ and $1 \le \lambda < 1 + \frac{\varepsilon}{r}$, then $||\lambda x - x|| = |\lambda - 1| ||x|| < \varepsilon$, hence $\lambda x \in U$, and therefore $||P(x)|| = ||P((\frac{1}{\lambda})\lambda x)|| = \lambda^{-m} ||P(\lambda x)|| < \lambda^{-m}$. Taking in the right-hand side the infimum over all λ such that $1 \le \lambda < 1 + \frac{\varepsilon}{r}$, we conclude that $||P(x)|| \le c := (1 + \frac{\varepsilon}{r})^{-m} < 1$ for every $x \in A$.

Let us show that $\widehat{A}_{\mathcal{H}_b(E)} \subset U$. Let $y \in \widehat{A}_{\mathcal{H}_b(E)}$ and $\varphi \in F'$. Then $\varphi \circ P \in \mathcal{H}_b(E)$ and hence $|\varphi \circ P(y)| \leq \sup_A |\varphi \circ P|$. Now

$$\left\|P(y)\right\| = \sup_{\varphi \in B_{F'}} \left|\varphi(P(y))\right| \leq \sup_{\varphi \in B_{F'}} \sup_{x \in A} \left|\varphi(P(x))\right| \leq \sup_{x \in A} \left\|P(x)\right\| = c < 1,$$

and hence $y \in U$.

This shows that $\widehat{A}_{\mathcal{H}_b(E)}$ is *U*-bounded, because if 0 < c < 1, then every bounded subset of $\{x \in E : ||P(x)|| \leq c\}$ is *U*-bounded. Hence *U* is strongly $\mathcal{H}_b(E)$ -convex by Lemma 1.3. Finally *U* is $\mathcal{H}_b(U)$ -convex by Proposition 1.5. \Box

Corollary 1.7. Let $P \in \mathcal{P}(^m E)$ and let $U = \{x \in E : |P(x)| < 1\}$. Then U is a balanced $\mathcal{H}_b(U)$ -convex open set.

Corollary 1.8. Let $A \in \mathcal{L}(E_1, \ldots, E_m; F)$ and $E = E_1 \times \cdots \times E_m$. Then

 $U = \{(x_1, \dots, x_m) \in E \colon ||A(x_1, \dots, x_m)|| < 1\}$

is a balanced $\mathcal{H}_b(U)$ -convex open set.

Proof. By [10, Theorem 3.6] it follows that A, viewed as a mapping from E to F, is a homogeneous polynomial of degree m. Then the result follows by Example 1.6. \Box

Corollary 1.9. Let $U = \{(x, \lambda) \in E \times \mathbb{C} : \|\lambda x\| < 1\}$. Then U is a balanced $\mathcal{H}_b(U)$ -convex open set.

In [13], B. Tsirelson constructed a reflexive Banach space X, with an unconditional Schauder basis, that does not contain any subspace which is isomorphic to c_0 or to any ℓ_p . R. Alencar, R. Aron and S. Dineen proved in [1] that $\mathcal{P}_f(^m X)$ is norm-dense in $\mathcal{P}(^m X)$, for all $m \in \mathbb{N}$. Inspired by this result, we will say that a Banach space E is a *Tsirelson-like space* if E is reflexive and $\mathcal{P}_f(^m E)$ is norm-dense in $\mathcal{P}(^m E)$, for all $m \in \mathbb{N}$.

The following theorem is the main result of this paper.

Theorem 2.1. Let *E* be a Tsirelson-like space, and let *U* be a balanced $\mathcal{H}_b(U)$ convex open subset of *E*. Then the spectrum of $\mathcal{H}_b(U)$ is identified with *U*.

Proof. Since U is balanced and $\mathcal{H}_b(U)$ -convex, it follows by Proposition 1.5 that U is strongly $\mathcal{H}_b(E)$ -convex. Now we follow the ideas of [11, Theorem 1.1]. Let $T: \mathcal{H}_b(U) \longrightarrow \mathbb{C}$ be a continuous homomorphism. Then there exists C > 0 and an U-bounded subset $A \subset U$ such that

$$|T(f)| \leq C \sup_{A} |f|, \text{ for all } f \in \mathcal{H}_b(U).$$

Since *T* is multiplicative, we have that $|T(f)|^n = |T(f^n)| \leq C \sup_A |f|^n$ for every $n \in \mathbb{N}$. Taking *n*-th roots and making $n \to \infty$ we conclude that actually C = 1. Let r > 0 such that $A \subset B(0, r)$. In particular, we have that $|T(f)| \leq \sup_A |f| \leq \sup_{B(0,r)} |f|$, for all $f \in E'$. Hence we have that $T|_{E'} \in E'' = E$, so there exists a unique $a \in E$ such that T(f) = f(a), for all $f \in E'$, and hence T(P) = P(a), for all $P \in \mathcal{P}_f(^m E)$, for all $m \in \mathbb{N}$. Since $\mathcal{P}_f(^m E)$ is norm-dense in $\mathcal{P}(^m E)$, for all $m \in \mathbb{N}$, it follows that T(P) = P(a), for all $P \in \mathcal{P}(E)$. Then we have that $|P(a)| = |P(f)| \leq \sup_A |P|$, for all $P \in \mathcal{P}(E)$, which implies that $a \in \widehat{A}_{\mathcal{P}(E)} = \widehat{A}_{\mathcal{H}_b(E)} \subset U$. Since *U* is balanced, we have that $\mathcal{P}(E)$ is τ_b -dense in $\mathcal{H}_b(U)$, and then we conclude that T(f) = f(a), for all $f \in \mathcal{H}_b(U)$, proving the theorem. \Box

Definition 2.2. Let *E* be a Banach space and let *U* be an open subset of *E*. We say that *U* is a $\mathcal{H}_b(U)$ -domain of holomorphy if there are no open sets *V* and *W* in *E* with the following properties:

- (1) V is connected and not contained in U;
- (2) $\emptyset \neq W \subset U \cap V$;
- (3) for each $f \in \mathcal{H}_b(U)$ there exists $\tilde{f} \in \mathcal{H}(V)$ such that $\tilde{f} = f$ on W.

The following corollary is the announced result for balanced $\mathcal{H}_b(U)$ -domains of holomorphy.

Corollary 2.3. Let E be a Tsirelson-like space, and let U be a balanced $\mathcal{H}_b(U)$ -domain of holomorphy in E. Then the spectrum of $\mathcal{H}_b(U)$ is identified with U.

Proof. By [6, Theorem 1] or [8, Theorem 1], we have that U is $\mathcal{H}_b(U)$ -convex. Then apply Theorem 2.1. \Box

The following result is a consequence of Corollary 2.3. It says that, under the hypotheses of Corollary 2.3, every proper finitely generated ideal of $\mathcal{H}_b(U)$ has a common zero.

Theorem 2.4. Let *E* be a Tsirelson-like space. Let $U \subset E$ be a balanced $\mathcal{H}_b(U)$ domain of holomorphy. Then given $f_1, \ldots, f_n \in \mathcal{H}_b(U)$ without common zeros, we can find $g_1, \ldots, g_n \in \mathcal{H}_b(U)$ such that $\sum_{i=1}^n f_i g_i = 1$.

Proof. The proof of [11, Theorem 1.5] applies. \Box

3. THEOREMS OF BANACH-STONE TYPE

In [3], S. Banach proved that two compact metric spaces X and Y are homeomorphic if and only if the Banach algebras C(X) and C(Y) are isometrically isomorphic. M.H. Stone, in [12], generalized this result to arbitrary compact Hausdorff topological spaces, the well-known Banach–Stone theorem.

In [14], we present similar results for algebras of holomorphic functions of bounded type, using results on the spectrum of such algebras. More specifically, let *E* and *F* be reflexive spaces, one of them a Tsirelson-like space, and let $U \subset E$ and $V \subset F$ be absolutely convex opens subsets. Then it is shown that the algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$ are topologically isomorphic, if and only if there is a special type of biholomorphic mapping between *U* and *V*. To show these results we use the characterization of the spectra of $\mathcal{H}_b(U)$ with *U* due to J. Mujica, [11, Theorem 1.1].

In this section we generalize this result to balanced $\mathcal{H}_b(U)$ -domains of holomorphy, using the characterization of the spectrum of $\mathcal{H}_b(U)$, Corollary 2.3 of this paper.

Let *E* and *F* be Banach spaces, and $U \subset E$ and $V \subset F$ be open subsets of *E* and *F*, respectively. We denote by $\mathcal{H}_b(V, U)$ the set of all holomorphic mappings $\varphi: V \longrightarrow E$, with $\varphi(V) \subset U$, such that φ maps *V*-bounded subsets into *U*-bounded subsets.

Next theorem is the result announced, and improves [14, Corollary 14].

Theorem 3.1. Let *E* and *F* be reflexive Banach spaces, one of them a Tsirelsonlike space. Let $U \subset E$ and $V \subset F$ be balanced \mathcal{H}_b -domains of holomorphy. Then the following conditions are equivalent.

- (1) There exists a bijective mapping $\varphi: V \longrightarrow U$ such that $\varphi \in \mathcal{H}_b(V, U)$ and $\varphi^{-1} \in \mathcal{H}_b(U, V)$.
- (2) The algebras $\mathcal{H}_b(U)$ and $\mathcal{H}_b(V)$ are topologically isomorphic.

Proof. The proof of [14, Corollary 14] applies. \Box

In [14, Theorem 16] it is shown that if $K \subset E$ and $L \subset F$ are absolutely convex compact subsets of Tsirelson-like spaces, then the algebras $\mathcal{H}(K)$ and $\mathcal{H}(L)$ are topologically isomorphic if and only if K and L are biholomorphically equivalent. The key to the proof of such result is a theorem of Banach–Stone type between algebras of holomorphic functions of bounded type [14, Corollary 14]. We are going to present a generalization of this result to greater class of compact sets, using Theorem 3.1. But before we need some preparation.

Let *E* be a Banach space, and let $K \subset E$ be a compact subset. We define $\mathcal{H}(K)$ to be the algebra of all functions that are holomorphic on some open neighborhood of *K*. The elements of $\mathcal{H}(K)$ are called *germs of holomorphic functions*. We endow $\mathcal{H}(K)$ with the locally convex inductive limit of the locally convex algebras $(\mathcal{H}(U), \tau_{\omega})$, where *U* varies among the open subsets of *E* such that $K \subset U$. If $U_n = K + B(0, \frac{1}{n})$, for all $n \in \mathbb{N}$, then it is easy to see that

$$(\mathcal{H}(K), \tau_{\omega}) = \lim_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} \mathcal{H}_b(U_n).$$

We refer to [4,7] or [9] for background information on algebras of germs of holomorphic functions.

Definition 3.2. Let *E* be a Banach space, let *K* be a compact subset of *E* and let $m \in \mathbb{N}$. We say that *K* is $\mathcal{P}({}^{m}E)$ -convex if $K = \widehat{K}_{\mathcal{P}({}^{m}E)}$.

Before we present examples of balanced $\mathcal{P}({}^{m}E)$ -convex compact sets, we shall need the next lemma, which is inspired in [10, Proposition 11.1]. If A is a subset of a Banach space, we denote by $\overline{\Gamma}(A)$ the closed, absolutely convex hull of A.

Lemma 3.3. Let *E* be a Banach space and let *A* be a bounded subset of *E*. Then $\widehat{A}_{\mathcal{P}_f}({}^mE) \subset \overline{\Gamma}(A)$, for all $m \in \mathbb{N}$.

Proof. Let $y \notin \overline{\Gamma}(A)$. By the Hahn–Banach theorem, there exists $\varphi \in E'$ such that $|\varphi(y)| > \sup_{x \in \overline{\Gamma}(A)} |\varphi(x)|$. Hence $|\varphi^m(y)| > \sup_{x \in \overline{\Gamma}(A)} |\varphi^m(x)| \ge \sup_A |\varphi^m|$, which shows that $y \notin \widehat{A}_{\mathcal{P}_f}({}^{m}E)$. \Box

Example 3.4. Every absolutely convex compact subset of a Banach space *E* is $\mathcal{P}(^{m}E)$ -convex, for all $m \in \mathbb{N}$.

Proof. Let $K \subset E$ be an absolutely convex compact set. Since $\mathcal{P}_f({}^m E) \subset \mathcal{P}({}^m E)$, we have that $\widehat{K}_{\mathcal{P}({}^m E)} \subset \widehat{K}_{\mathcal{P}_f({}^m E)} \subset \overline{\Gamma}(K) = K$, where the last inclusion follows by Lemma 3.3. \Box

Example 3.5. Let *E* be a Banach space, and $L \subset E$ be a compact, balanced and $\mathcal{P}(^{m}E)$ -convex set. Let $P \in \mathcal{P}(^{m}E)$. Then $K = \{x \in L: |P(x)| \leq 1\}$ is compact, balanced and $\mathcal{P}(^{m}E)$ -convex.

Remark 3.6. If K is a $\mathcal{P}({}^{m}E)$ -convex compact set, then it is clear that K is polynomially convex. But the converse is not true. Indeed, it is easy to see that if $K = \widehat{K}_{\mathcal{P}({}^{m}E)}$, then K is balanced. Now let K be a convex compact set, which is not balanced. Then K is polynomially convex by [10, Examples 24.2(a)], but is not $\mathcal{P}({}^{m}E)$ -convex, for any $m \in \mathbb{N}$.

The next theorem will be useful to prove the main result of this section.

Theorem 3.7. Let *E* be a Banach space and let *K* be a compact, balanced and $\mathcal{P}(^{m} E)$ -convex subset of *E*, for some $m \in \mathbb{N}$. Let *U* be an open subset of *E* such that $K \subset U$. Then there exists an open set $V \subset E$ which is balanced and $\mathcal{H}_{b}(V)$ -convex, such that $K \subset V \subset U$.

Proof. We begin with a slight modification of [10, Lemma 24.7]. If $\overline{\Gamma}(K) \subset U$, then we take $V = \overline{\Gamma}(K) + B(0, \varepsilon)$, where ε is such that $\overline{\Gamma}(K) + B(0, \varepsilon) \subset U$. If $\overline{\Gamma}(K)$ is not contained in U, then for each $a \in \overline{\Gamma}(K) \setminus U$ there is $P \in \mathcal{P}(^m E)$ such that $\sup_K |P| < 1 < |P(a)|$. Since $\overline{\Gamma}(K) \setminus U$ is compact, we can find polynomials $P_1, \ldots, P_k \in \mathcal{P}(^m E)$ such that

$$\overline{\Gamma}(K) \setminus U \subset \bigcup_{j=1}^{k} \{ x \in E \colon |P_j(x)| > 1 \}.$$

Now it is easy to see that $\{x \in \overline{\Gamma}(K): |P_j(x)| \leq 1, \text{ for } j = 1, ..., k\} \subset U$. Next we follow the arguments of [10, Theorem 28.2], finding a positive number $\delta > 0$ such that $V = (\overline{\Gamma}(K) + B(0, \delta)) \cap \{x \in E: |P_j(x)| < 1, \text{ for } j = 1, ..., k\} \subset U$. Now *V* is balanced and $\mathcal{H}_b(V)$ -convex, by Corollary 1.7. \Box

Let *E* and *F* be Banach spaces, and let $K \subset E$ and $L \subset F$ be compact subsets. We say that *K* and *L* are *biholomorphically equivalent* if there exist open subsets $U \subset E$ and $V \subset F$ with $K \subset U$ and $L \subset V$ and a biholomorphic mapping $\varphi: V \longrightarrow U$ such that $\varphi(L) = K$. The next theorem is the announced result for algebras of holomorphic germs, and generalizes [14, Theorem 16].

Theorem 3.8. Let *E* and *F* be Tsirelson-like spaces. Let $K \subset E$ and $L \subset F$ be balanced compact subsets, such that *K* is $\mathcal{P}(^{m}E)$ -convex, and *L* is $\mathcal{P}(^{k}F)$ -convex, for some $m, k \in \mathbb{N}$. Then the following conditions are equivalent.

(1) K and L are biholomorphically equivalent.

(2) The algebras $\mathcal{H}(K)$ and $\mathcal{H}(L)$ are topologically isomorphic.

Proof. (1) \Rightarrow (2) The proof of [14, Theorem 16] applies.

(2) \Rightarrow (1) We claim that $\mathcal{H}(K)$ is the inductive limit of a sequence of Fréchet spaces $\mathcal{H}_b(V_n)$, where each V_n is balanced and $\mathcal{P}_b(E)$ -convex (and the same for $\mathcal{H}(L)$). Indeed, let $U_n = K + B(0; \frac{1}{n})$, for every $n \in \mathbb{N}$. Applying Theorem 3.7, for each $n \in \mathbb{N}$ there exists a balanced \mathcal{H}_b -convex open subset V_n

such that $K \subset V_n \subset U_n$. Since $\mathcal{H}(K) = \lim_{n \in \mathbb{N}} \mathcal{H}_b(U_n)$ and the inclusion $\mathcal{H}_b(U_n) \hookrightarrow \mathcal{H}_b(V_n)$ is continuous, we have that $\mathcal{H}(K) = \lim_{n \in \mathbb{N}} \mathcal{H}_b(V_n)$, and our claim is proved. Next we apply the same arguments of $(2) \Rightarrow (1)$ of [14, Theorem 16], replacing [14, Corollary 14] there by Theorem 3.1 here. \Box

CONCLUDING REMARKS

We go back to the introduction of this paper, where we say that we give a partial answer to Mujica's question. He asks if, in Tsirelson-like spaces, $S_b(U)$ can be identified with U, when U is a polynomially convex open subset. On the one hand, we think that maybe this question could be reformulated to $\mathcal{P}_b(E)$ -convex open subsets. Then, as showed in Lemma 1.2, $\mathcal{P}_b(E)$ -convex open sets are always $\mathcal{H}_b(E)$ convex, and hence $\mathcal{H}_b(U)$ -convex open subsets, so in this sense Theorem 2.1 gives a partial answer to Mujica's question. On the other hand, it is clear that $\mathcal{P}_b(E)$ -convex open subsets are always polynomially convex, but we don't know if the converse holds in general.

We still don't know whether it is possible to remove the hypothesis that U is balanced on our results. It is known that if E is separable and has the bounded approximation property, then the spectrum of $(\mathcal{H}(U), \tau_0)$ is identified with U if and only if U is a domain of holomorphy (see [10, Theorem 58.11]). We also ask whether it is possible to state an analogous result for the algebra $\mathcal{H}_b(U)$.

ACKNOWLEDGEMENTS

The author wishes to thank the referee for the careful examination of the paper and for his/her helpful comments.

REFERENCES

- Alencar R., Aron R., Dineen S. A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Soc. 90 (1984) 407-411.
- [2] Aron R., Cole B., Gamelin T.W. Weak-star continuous analytic functions, Canad. J. Math. 47 (1995) 673–683.
- [3] Banach S. Théorie des opérations linéaires, Warsaw, 1932.
- [4] Bierstedt K.-D., Meise R. Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to the study of (*H(U)*, τ_ω), in: J.A. Barroso (Ed.), Advances in Holomorphy, North-Holland Math. Stud., vol. 34, North-Holland, Amsterdam, 1979, pp. 111–178.
- [5] Burlandy P, Moraes L.A. The spectrum of an algebra of weakly continuous holomorphic mappings, Indag. Math. 11 (2000) 525–532.
- [6] Dineen S. The Cartan–Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa 24 (3) (1970) 667–676.
- [7] Dineen S. Complex Analysis in Infinite Dimensional Spaces, Springer-Verlag, Berlin, 1999.
- [8] Matos M. On the Cartan-Thullen theorem for some subalgebras of holomorphic functions in a locally convex space, J. Reine Angew. Math. 270 (1974) 7–11.
- [9] Mujica J. Spaces of germs of holomorphic functions, in: Adv. Math. Suppl. Stud., vol. 4, Academic Press, 1979, pp. 1–41.
- [10] Mujica J. Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, Amsterdam, 1986.
- [11] Mujica J. Ideals of holomorphic functions on Tsirelson's space, Arch. Math. 76 (2001) 292-298.

- [12] Stone M.H. Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937) 375–481.
- [13] Tsirelson B. Not every Banach space contains an imbedding of l_p or c_0 , Funct. Anal. Appl. 8 (1974) 138–141.
- [14] Vieira D.M. Theorems of Banach–Stone type for algebras of holomorphic functions on infinite dimensional spaces, Math. Proc. R. Ir. Acad. A 106 (2006) 97–113.

(Received March 2005)