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In this paper the concept of convexity in directed graphs is described. It is 
shown that the set of convex subgraphs of a directed graph G partially ordered 
by inclusion forms a complete, semimodular, A-regular lattice, denoted 6~a. 
The lattice theoretic properties of the convex subgraph lattice lead to in- 
ferences about the path structure of the original graph G. In particular, a graph 
factorization theorem is developed. In Section 4, several graph homomorphism 
concepts are investigated in relation to the preservation of convexity properties. 
Finally we characterize an interesting class of locally convex directed graphs. 

l .  PRELIMINARY CONCEPTS 

A directed graph,  or  more  briefly, digraph, G = (P, E) is a re la t ion E 
on a po in t  set P.  Ordered  pairs  (p,  q) ~ E are called edges o f  G. G will be 
said to con ta in  apath f r o m p  to q, deno ted  p(p, q), i f  there exists a sequence 
of  points  

P = P 0 , P l  ..... pn = q ,  n ~ 0 ,  

such that  (1) P~-I @P~ and (2) (P~-I ,P~) e E  for  1 ~< i ~< n. In  this case 
the pa th  is said to have length n, deno ted  I p(P, q)[ ---- n. A pa th  of  length 
>~2 f rom p to i tself  is called a cycle; in view of  condi t ion  (1) it  is impossible  
to have cycles o f  length 1, and  in par t icu la r  loops  are no t  considered 
cycles. The  symbol ism p(p, q) will also be used to denote  " there  exists 
a pa th  f rom p to q in G." 

Given a d ig raph  G = (P, E)  we can define a new re la t ion  H on the 
po in t  set P as follows: (p,  q ) ~ H  if  and  only i f  p(p,  q) in G. This der ived 
d igraph  (P, H )  is simply the transitive closure of  G, usual ly  deno ted  G t. 
The re la t ion H is clearly t ransi t ive and  we admi t  pa ths  o f  length zero in 
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our definition so that H is also reflexive. Further, it is not hard to show 
that if G = (P, E) is acyclic, then H is a partial ordering of P. 

A digraph H = (PH, E~) 1 is said to be a subgraph ~ of  G = (Pc ,  Ec), 
denoted H ~< G, i f ( l )  PH __C Pc and (2) (p, q) E EH if and only if p, q ~ P/~, 
(p, q )~  E c .  Thus any set of  points P _C Pc defines a unique subgraph 
of G which we denote by [P]. 

A subgraph H of G is said to be convex in G if for any pair of  points 
P, q ~ P H ,  every path pc(P, q) is completely contained in P n .  I f  
/-/1 ~< H~ ~< G it follows immediately that (1)/ /1 convex in G implies Ha 
is convex i n / / 2 ,  and (2) Ha convex in / /2  and / /2  convex in G implies Ha 
is convex in G. Also any digraph G is convex in itself, while the empty 
digraph ~ ---- [ ;~ ] is convex in any graph. 

I f  the intersection of two subgraphs Ha -~ (Px, Ea) and H~ = (Pz, E2) 
is defined as //1 n H~ = (/)1 n P~, Ea n E~), it is easy to show that an 
arbitrary intersection of convex subgraphs is convex. As is the case with 
normal subgroups, the union of  convex subgraphs need not be convex; 
indeed the union need not be a subgraph. Instead we define the convex hull 
of a subset P C P c ,  denoted ch(P), as the intersection of  all convex 
subgraphs of G which contain P. 

Since convexity is preserved under arbitrary intersections, the set of  all 
convex subgraphs of G, partially ordered by ~<, is a complete lattice [1]. 
We denote this convex subgraph lattice of G by 5a~. Evidently if {Hi = 
(Pi ,  Et)} are elements of Sac (i.e., convex subgraphs of G) then the sup 
and inf operators in 5a(; are defined by (1) A Hi = 0 Hi and (2) V Hi = 
ch(U P~). Figure 1 illustrates three typical digraphs and their associated 
convex subgraph lattices. 

Since convexity is a condition imposed upon paths between points of  
a subgraph, it is easy to show that, if G = (P, E) and G ~ = (P, I1) is its 
transitive closure, then SP c =-5eG,. Further any two digraphs on a 
common point set P which have the same transitive closure, must have 
the same convex subgraph lattice. 

The next theorem provides a useful characterization of the convex hull 
operator. 

THEOREM 1. I f  P is any subset o f  P c ,  then ch(P) = [{q I P(Pl , q) and 
P(q, P2) f o r  some Pl , Pz ~ P}] where Pl , P2 need not be distinct. 

Proof. Clearly this subgraph (call it Q) must be contained in any 
convex subgraph which contains P, and hence Q _c ch(P). On the other 

1 We use subscripts, where necessary, to distinguish point sets and relations. Similarly 
pn(p, q) denotes a path from p to q contained entirely in H. 

2 Several definitions of "subgraph" are commonly found in the literature. 
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hand Q itself is convex. Indeed let r be any point of  G such that P(ql, r) 
and p(r, q~) where ql ,  q2 c Q. Then by transitivity P(Pl, r) and p(r, P2) 
for some P l ,  P2 E P, implying r ~ Q. Since P _c Q, ch(P) C Q. [l 

o b c d 

G= [obcd] 

b 

b 

[o b ~ d  c 1 , 

¢ 

G = [abcde] 

[ a b ] ~ [ b  cde] 

O 
F1o. 1 

As a simple corollary of this theorem, it follows that i f p  is any point 
of G, then ch({p}) ----- [{q I P(P, q) and p(q, p)}]. Thus p ~ ch{q} if and only 
ifq ~ ch{p}, or equivalently the convex hull of  a single point is the subgraph 
on all cycles which include the point. 

If  one further defines the border of  a subgraph to be its set of extremal 
points, then clearly if G is acyclic every subgraph has a border. One can 
then state an immediate analog of  the Krein-Milman theorem, if G is 
acyclic then every convex subgraph is the convex hull of  its border. 
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2. THE CONVEX SU~ORAPH LAT'rICE Se a 

Just as the lattice of normal subgroups may be used to characterize 
aspects of  the internal structure of  a group, the convex subgraph lattice 
may be used to investigate properties of  a digraph. I t  is of  particular 
value in studying the effects of  graph homomorphisms which are 
considered in Section 4. In this section we first investigate properties 
of  the lattices themselves. 

THEOREM 2. For any digraph G, its convex subgraph lattice Seo is lower 
semimodular. 

Proof. Recall that a lattice *,ce is lower semimodular (LSM) if x v y 
covers both x and y implies that both x and y cover x ^ y. We suppose 
//1 and Hz are convex subgraphs of G, hence elements of SeG ; that 
/1 = / / 1  v //2 and ~ =/- /1 ^/-/2 ; and that H covers both //1 and 112. 
By symmetry it will suffice to show tha t / /1  covers/~.  

Suppose there existed a convex subgraph H '  such that H < H '  < / / 1  • 
Let P0 ~ H '  ~ / ~ ,  so that P0 is in HI  but not/-/2 ; and let PI ~ H i  ~ n '  
so that pl  @ P0 and Pl ~ / / 2 .  Now H2 < [PH~ u {Po}] </~r, and s i n c e / t  
covers //2 this implies that the subgraph [PH~ u {P0}] is not convex. 
Hence there exists a path between P0 and some point qo ~/ /2  which does 
not lie completely in [PH~ u {P0}]- We may assume the path ~s of  the form 
P(qo ,P0); in the case P(Po, qo) we simply give a symmetric argument 
below. 

Let X = {p ~ H'  ,~ 1~1 J p(q, p) for some q ~//2}. Since Po ~ X, X is 
non-empty and we have H2 < [Pn, u X]. Further, since p l ¢  X (in fact, 
px ¢ H ' ) ,  we have [PH 2 u X] < H, so that this subgraph [PH, u X] too 
cannot be convex. There thus exists a path p(r, s) between two points r 
and s of  PH~ w X which contains a point t in neither H2 nor X. It  is safe 
to assume that t ~ /~  since [PH, u X] cannot be convex in _Q either. 
We now consider four possible cases: 

Case L r and s are both in / /2  • This yields an immediate contradiction 
to the convexity of  H2 • 

Case IL r ~ X, s ~ H2. Since r ~ X, we have r 6 / / 2 ,  and p(q, r) for 
some q E H z . This together with p(r, s) contradicts convexity of  H2 • 

Case I lL  r and s are both in X. Since r E X, there is a path p(q, r) 
for some q e / / 2 ,  which together with p(r, t) implies p(q, t). But t ~ X 
so we must have t ¢ H '  ~ Jq. Since t ¢/-/2, it cannot be in H, so t ¢ H ' .  
But r, s ~ X _C H ' ,  thus contradicting assumed convexity of  H ' .  
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Case IV. r e H2, s e X. Here again since p(r, t) and t q~ X, we must 
have t ¢ H '  ~-- Jq; and since t ¢/-/2 this implies t ¢ H ' .  N o w / ~  covers / /2  
and t ¢ H2,  so we must have ch(PH2 u (t)) = H; thus every point o f / - )  
is in t itself, is in Ha ,  or else lies on some path between t and a point of  H2 
(in some direction). In particular, consider Po e X. We know P(qo ,Po) 
and that p(t, s). I f  Po~ P(q, t) where q ~ / / 2 ,  then we have t e P(Po, s) 
contradicting the convexity of  H ' .  On the other hand, if  Poe p(t, q), 
then Po ~ P(qo, q) contradicting convexity o f / / 2 .  11 

It  is known [1] that the Jordan-Dedekind chain condition, which 
asserts that all unrefinable chains between two elements have the same 
length, holds in any LSM lattice. In the case of 5:c it is easy to prove a 
stronger result which is analogous to the Jordan-H61der theorem in that 
it relates the increments in cardinality between successive convex subgraphs 
in two such unrefinable chains, under an appropriate permutation. 

We also recall that in lattices which satisfy the Jordan-Dedekind 
condition the length of any unrefinable chain f rom A to B is equal to 
the dimension of B over A (denoted d im(B:A) ,  we shall abbreviate 
dim(B : 0) by dim B). Further dimension is additive, justifying later proofs 
using induction on dimension in S:'~. 

The atoms of  a lattice £~a, are those elements which cover the least 
element 0. We call a convex subgraph H an atom of G if it is an atom in oq'G ; 
that is, H contains no proper convex subgraphs. From the observations 
following Proposition 1, it is evident that a convex subgraph of G is an 
atom if and only if it is the convex hull of a single point; that all points 
on a cycle belong to the same atom; and that the atoms of a digraph 
are simply its strongly connected components. We next prove an important 
property which relates the dimension of H in 5:c to the number of  atoms 
contained in H. 

LEMMA. Let H cover H'  in S:c , and let p, q be points o f  H but not o f  H'  ; 
then ch({p}) = ch({q}). 

Proof. Since H covers H ' ,  we have ch(PH" U {p}) = ch(PH' W {q}) = 
H' .  Hence p lies in a path between q and a point of  H ' ,  and vice versa. 
I f  p(p, q) and p(q, p), we are done; but if both paths have the same 
direction (say) from p to q, we have p(p, r) and p(s, p) with r, s points 
of  H ' ,  contradicting convexity of  H ' .  ][ 

In any finite dimensional lattice ~ ,  we can let A~ denote the set of  
atoms a e ~a such that a ~< x. Evidently if ~ ----5eG we have AH---- 
{ch(p) I P e H} for all H e S:a. Also A ~ = ~ ,  and Aeh(~) = {ch(p)} for 
all p. 
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THEOREM 3. dim H = [ Aa  ] for all H ~ 5°<;. 

Proof. This is clear if  d im H ---- 1 since H is then an a t o m  in 5:a .  
Suppose it is true for  all convex subgraphs of  dimension k > 1 and let 
dim H ---- k -? 1. Let  H cover  the subgraph H ' ;  then dim H '  = k so that  
by induct ion hypothesis I AH. I = k. Moreover  by the preceding l emma 
there is exactly one a tom below H which is not  below H ' ,  so that  
]A~]  = k  q- 1. [1 

I f  x is an arbi trary element o f  any finite dimensional  lattice, we will call 
l a x  ] the A-rank (short for  " a t o m - r a n k " )  of  x. A finite dimensional  
lattice in which [ A~ I = dim x for  all x ~ £~a will be called A-regular. 

One m a y  now consider a class o f  abst ract  lattices, called G-lattices, 
which are both  lower semimodular  and A-regular. Clearly every lattice 
of  convex subgraphs Sac is a G-lattice; a l though the converse is not  true. 
G-lattices have many  interesting lattice theoretic propert ies  [6] which 
we will s imply assert without  proofs.  

PROPOSITION A. In any finite dimensional lattice £z o, 

(1) x <~ y implies A~ C_ Au ,  

(2) A~,v D_ Ax U A v, 

(3) A~^~ = A~ n A~. 

I f  further .L~ is A-regular, 

(4) A~ = Au i f  and only i f  x = y, 

(5) A ,  C A~ i f  and only i f  x < y. 

A set S ---- (al ..... a,} of  a toms  in a lattice is called ful l  if  Asups = S. 

PROPOSITION B. In an A-regular lattice LP, 

(1) S is full  i f  and only i f S  = A~for some x ~ L~', 

(2) The relation {(x, A~) ] x e La} is an order isomorphism of £t" with 
the ful l  sets of  atoms of  L# under inclusion. 

PROPOSITION C. If ~ is A-regular and satisfies the Jordan-Dedekind 
condition, then 

(1) L: is lower semimodular. 

(2) I f  x v y covers both x and y, then Axvv = Ax u A~. 
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PROPOSITION D. In  a G-lat t ice ,  

(1) dim x ~> 2 impl ies  the e l e m e n t  x covers  a t  leas t  two  e lements .  

(2) x covers  e x a c t l y  two e l e m e n t s  i f  a n d  on ly  i f  x is the sup o f  a unique 

p a i r  o f  d is t inc t  a toms ,  al  a n d  as • 

(3) i f  x covers  three  (or more )  e lements ,  say  Y l ,  Y2 ,  Y 3 ,  and  we  let  

z3 : Y l  ^ Y2 ,  z2 : Y l  A Y3 , --71 : Y2 ^ Y3 , then  z 1 ^ z2 = z l  A z 3 = 

-73 AZ3"  

Proposition D asserts that G-lattices, and in particular convex subgraph 
lattices rag, show a surprising regularity in their internal structure, even 
though they are not in general modular. It is this regularity which makes 
possible the derivation of significant algebraic results concerning convex 
subgraph lattices, and permits easy transition from S:G to the digraph G 
itself. For example, Proposition D(2) asserts that, if H ~ 6:~; covers exactly 
two elements, then H = ch({al} u {a2}) and hence H is precisely convex 
subgraph consisting of all paths between the atoms (points if G is acyclic) 
al and as in G. Further all such subgraphs which consist of all paths 
between two atoms are characterized in 6:c by this covering property. 

Proposition D(3) accounts for the very striking "cubic" structure 
beneath all other elements in S:G : 

X 

/?-... Y~Ya 
Z ~ ~ I  

W= Zl A Z2 = Zl A Z3 = Z2AZ3 

By way of illustration consider the digraph G in Figure 2 and its convex 
subgraph lattice 6ec. The paths a, b, c and a, b, d stand out in 6ec since 
they are of dimension ~>3 but still cover only two elements. 

3. GRAPHS WITH A GIVEN CONVEX SUBGRAPH LATTICE 

In this section we assume 6ac is given and we are concerned with those 
properties of the digraph G that are reflected in 6:c. It is easily verified 
that non-isomorphic digraphs may have isomorphic subgraph lattices, 
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l a y  c 

~ = [G] 
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so that, in particular, SPa does not completely characterize G. Our first 
result is a formal statement of  the last observation of the preceding section. 

THEOREM 4. Let  H = A 1 v A2,  where A 1 and A2 are atoms o f  5:o 
and let dim H ~ 3. I f  p and q are any points o f  A1 and Az , respectively, 
then every point r ~ H lies on some path (with unspecified direction) 
between p and q. 

Proof. Since dim H ~ 3, I A H [ ~  3, implying there exists at least 
one other a tom < H .  So there exists a point r0 E H which is not a point 
of either A 1 or A2 • Since r0 E ch(A1, A2) it is a member  of  some path 
between s e A1 and t ~ Az • For  concreteness we may assume r o E p(s, t). 
But A1 and A2 are atoms, thus strongly connected which implies p(p, s) 
and p(t, q). Thus by transitivity of  paths, ro ~ p(p, q). We are done if 
r 0 = r. To complete the proof  suppose r ~ A1 (or A2). Since the existence 
of at least one path p(p, q) has been established, and A1 is strongly 
connected, the desired result follows immediately, l[ 

I f  Gis acyclic, so that the atoms of 5°c are just the points of  G themselves, 
then the preceding theorem may be restated as: (1) there exists a path 
between p and q through r if and only if r < p v q in 5:c ; or, equivalently, 
(2) there exists a path of length ) 2  between p and q if and only if 
dim p v q ~> 3 in 5:c. 
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Let p be any point in a digraph G, and inductively define 

CO(p) = {p}  

Ca(P) = {q I P(P, q) or p(q, p)} 

Ck(P) = U (Ca(q) [ q E ck-~(p)}. 
tl  

Thus Ca(p) is the set of  all points which are elements of  paths to or 
from p. (Note that C°(p)C_ Ca(p) since by definition there exists a path 
of length zero from p to itself.) Similarly, Ck(p) is the set of  all points 
that are joined to p by a sequence of  k or fewer paths. Readily the subgraph 
C(p) = [Uk C~(P)], called the component of G containing p, is simply 
the maximal "connected" subgraph containing p, and thus corresponds 
to the standard definition [2, 7]. I t  is well known that the components 
of G form a disjoint partition of G and clearly every component  is convex 
in G. 

THEOREM 5. Let G be acyclic and let (p, q) ~ Ea , then the orientation 
of  every path in C(p) = C(q) is uniquely determined by SPa . 

Proof. Let r ~ Cl(p) be different from p, so that either p(p, r) or 
p(r, p), but not both, since G is acyclic. Now, in 5~c, either p < q v r 
o r p  <k q v r. I f p  ~Z q v r, then we must have p(p, r), since the alternative 
p(r, p) together with p(p, q) imply p ~ p(r, q) or equivalently p < q v r, 
a contradiction. On the other hand, p < q v r implies p lies on some 
path between q and r by the preceding theorem. The case p ~ p(q, r) 
implies, in particular, p(q,p), contradicting acyclicity. Thus we must 
have p(r, q) and, in particular, p(r, p). Thus SPc determines the orientation 
of every path between p and any point r ~ Cl(p). 

Let s, t be any points in C(p) that are joined by a path. s ~ CJ(p) for 
some j ,  hence t ~ CJ+~(p). It  is thus sufficient to show, for any j ,  that the 
orientation of all paths between points of  CJ(p) and C~+X(p) is determined 
by ~c • This has already been shown f o r j  = 0; we proceed by induction. 
Let t ~ cJ+a(p) and there exists r E C~-a(p) such that either p(r, s) or 
p(s, r) where, by the induction hypothesis, the orientation is determined 
by ~G. We can now apply the argument used for Cl(p), with r and s 
assuming the roles o f p  and q if p(r, s), or of  q and p if p(s, r). [] 

Consequently we see that a convex subgraph lattice Saa determines 
the existence of a path of  length >~2 (although not necessarily its 
constituent edges) between any two points of  G. Further, if G is acyclic 
and the orientation of a single edge is known, then boa also determines 
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the orientation of all of  these paths (including all other shorter paths 
and edges) in that component. 

As a corollary to Theorem 5, one sees that, if G' is obtained from G 
by reversing the orientation of  some set S of the edges in E c ,  then 
5:c ----- 5:~,, if  and only if S consists of all the edges in one or more com- 
ponents of  G. 

It is customary to partition the point-set P of a digraph G in terms 
of either strongly connected or just connected components. Such partitions 
lead toward the idea of simplifying a digraph by factoring it into 
constituent components. We next develop a natural factorization concept 
which yields a partition of S which is finer than, yet at the same time 
compatible with, that induced by its connected components. 

The cardinal product of the lattices ~ ..... £#, (denoted -~1 x --- x .L#,) 
is the set of  all n-tuples (xx .... , x,,), where x~ e L#~, under the order relation 

defined by (xx ..... x,,) ~< (Yx ..... y,,) if and only ifx~ ~ y~ in ~ for all i. 
It is not difficult to show 

PROPOSITION E. ~ X "'" × £~°n is a G-lattice i f  and only i f  each factor 
is a G-lattice. 

Suppose that Gx ..... G,~ are subgraphs of G and that S:a ~ 5:c~ ×. . .  x S:a. 
under the natural correspondence in which any atom A~ in G~ corresponds 
to the atom (0 ..... A~ ..... 0) in 6:c~ × "'" x S#a ; then we call Gx ..... G, 
factors of  G and write G = Gx × "'" x G~. 

THEOREM 6. I f  G is acyelic, then G = Gx × G~ i f  and only i f  Pa 
can be partitioned into two disjoint sets Px and P2 such that 

(i) Gx = [P1] and G~ ---- [P2] are convex; 

(ii) any path of  length >~2 lies entirely in Gx or entirely in Ga. 

Proof. If  G = G1 x G~., we have S:a ~ £:% x S:c, under the natural 
correspondence. Hence Pal r3 PG, = ~ ,  since otherwise p e P% t~ P ~  
would imply that p corresponds to both (p, o) and (o,p). Similarly 
Pal u Pc, = P c ,  since otherwise the correspondence would not be onto. 
Moreover G1 = [Pc 1] is convex in G, since (G1,0)+-~ H e S:c. Under 
the correspondence p ~ H in 5:c if and only if (p, o) ~< (G t , 0) in 
5:% × ~G,,  so that [Pc,] = Hwhich is known to be convex in G. Similarly 
G2 = [P%] is convex in G. Finally, we consider a path p(p, q) where 
J p(p, q)f >/2. By a corollary remark to Theorem 4, d imp v q ~> 3. 
If  we had p ¢ Gx, q z G~, then p ~ (p, o) and q ~ (o, q) under the natural 
correspondence, so thatp v q+-~ (p, o) v (o, q) = (p, q); but dim(p, q) = 2 
in 5:% x 5:c, ,  a contradiction. 
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Conversely suppose that there exists a partition of PG satisfying the 
hypotheses. We may evidently establish a 1-1 correspondence between 
the atoms of  Sac and Sac 1 x 6Pc, by lettingp ~ (p, o) i fp  e Pa and q*-+ (o, q) 
if q ~ P2 • We shall now show that a set of atoms is full in SPc if and only 
if the corresponding set is full in Sacl x S~a 2 . Let S ----- {(Pa, o),..., (Pro, o), 
(o, ql),..-, (o, qn)} be full in Sa% X SPc,, so that S = A(nl.n2 for some 
element (//1,/-/2) ~ S~c~ x Sa%, where Ha ~< Ga and/-/2 ~< G2. By proper- 
ties (i) and (ii) the subgraph//1 u / / 2  = [PH, u P~q] is readily convex in G, 
so that {Pl ..... Pro, ql .... , qn} = Aniun~ is full in Sac. Conversely, if S 
is not full, there exists another atom (p, o) (or (o, q)) such that 
(p, o) ~< sup S = (Pav .-- v pro, ql v ... v q,), implyingp < P l v  ... v pm 
so that {P l  . . . . .  P~,~, qa ..... q,} is also not full. We thus have a 1 - - 1  
correspondence between the full sets of atoms of  Sac and 6aol x ~ % .  
Consequently we may extend the original correspondence, which was 
defined only on the atoms, as follows: 

(/-/1,//2) ~ / / 1  W H2 if and only if A(~tl,H~) 6-+ A/~xut& • 

Since both Sac and 5t'c~ x Sac, are G-lattices, by Proposition B there is a 
1 -  1 correspondence between their elements and full sets of atoms 
so that the correspondence defined above is a 1 - - 1  correspondence 
between the elements of Sac and 5zc~ x Sac S . Moreover the correspondence 
is obviously order preserving in both directions and hence is the natural 
isomorphism, l[ 

The conditions of this theorem are analogous to those required in 
algebra, for a group G to be isomorphic (in the natural way) to the direct 
product of its normal subgroups: namely, Ga c~ G~ = {e} and G~ • G~ = G. 
Figure 3 illustrates the ideas of  Theorem 6. The reader can verify that 
G = Ga x G2, where G1 = [abcd] and G2 = [e], is also a factorization. 
Here Sao~ is the second example of Figure l, while Sa, q is the trivial lattice 
on two elements. The unique factorization of G into indecomposible 
factors is G = G1 × G2 x G3, where G1 = [abe], G2 = [d], G3 = [e]. 

It is known that any lattice has a unique factorization as a cardinal 
product of  lattices which are themselves indecomposable (as cardinal 
products) [1]. Now if G = G1 x "'" x G, where Sao, is decomposable, 
say Sa% = -~x x ~e 2 , there are principal ideals of Sa% order isomorphic 
to the ~,e~'s, and these ideals must be convex subgraph lattices of two 
convex subgraphs of H which are as in the theorem. Thus repeated 
application of  the decomposition procedure of Theorem 6 must eventually 
yield the unique factorization of both G and Sao. Further it is evident 
that, if G~ is a component of G, then G~ must be a factor of  G, although 
not necessarily an indecomposable factor. 
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b 
G=GI × G2= o a ~  I 

where Gt ---- [abc] and  G~ = [de] are  factors.  

~obc'] 

t o .b '~ ]  Sec~ = [dd 

Fm~. 3. The sublattice (or ideal) under the element ( a l ,  0) has been indicated by 
double lines, as have three other replicas of it generated by the cardinal product. The 
sublattice under (0, G2) and its copies are indicated by single lines. 

Let  6 a be any convex subgraph  lattice. A d igraph  G is said to be a 
realization 3 of  S# i f  6:G ~__ S~. I t  is said to be minimal realization of  S :  (or  
briefly min imal )  i f  no graph  on fewer points  or  with fewer edges has  
the same convex subgraph  lattice. 

THEOREM 7. Any convex subgraph lattice ~9 ~ has a minimal realization. 

Proof. Let  f# be the set o f  all rea l iza t ions  of  S~, and  let  f~l be the subset  
of  ~ consis t ing o f  all d igraphs  wi th  fewest points.  F r o m  ~1 choose  any 

3 It can be shown that there exist G-lattices ~ which cannot be realized, that is there 
exist no graphs G such that 6:~ ~ Z~'. 
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digraph G with fewest edges; we will show that G is minimal. If  not, 
let G ' e  f¢ have fewest edges; since G is not minimal, we have 
I EG, I < [ Eo t implying that G' ~ f¢1 • If  G' were acyclic, G could not 
have fewer points than G', since G' would already have as few points 
as there are atoms in 6 e. Hence at least two points of G' belong to the 
same atom, so that the graph G" obtained from G' by condensing this 
atom to a single point has the same convex subgraph lattice, but fewer 
edges, contradiction. II 

Finally it can be shown that, if  G is minimal, then G is loop-free, 
acyclic and every edge belongs to a path of length ~2.  (The converse 
of this statement, however, is not true.) Also if G1 ..... G,~ are connected 
components of  a minimal graph G, then G1 x "" × Gn is the unique 
factorization of  G into indecomposable factors and each G¢ is minimal. 

4. GRAPH HOMOMORPHISMS 

Several different graph homomorphism concepts have appeared in the 
literature, depending on what properties of the graph are to be preserved 
under the mapping. Of particular interest will be convexity concepts 
under homomorphic maps. A mapping cp:G ~ G' is called a graph 
homomorphism if ~ maps Pc onto Pc" and 

(i) (p, q) E Ec implies ((p(p), cp(q)) ~ Ec , ,  

(ii) (p', q') e E6' implies there exist p e ~p-l(p,) and q e cp-X(q ') such 
that (p, q) ~ Ec .  

I f  the mapping satisfies only condition (i), it will be called a weak graph 
homomorphism. If  instead we require that (p, q )e  Ec if and only if 
(cp(p), cp(q))e Ec , ,  then we call ~0 an E-homomorphism. The standard 
definition of graph isomorphism is a 1-! E-homomorphism. 

We note that, if  G = (P, E) is a digraph, and cp is any mapping of P 
onto a point set P' ,  then there exist digraphs on P '  that are homomorphic, 
or weakly homomorphic images of G under ~p, while in general there 
may be no digraph on P '  which is an E-homomorphic image of G. Further 
one can show that, given ~ : P ~ P' ,  the digraph on P '  which is a graph 
homomorphic image of G under ~ is unique. Also every 1-1 graph 
homomorphism is an isomorphism (i.e., an E-homomorphism). 

Let ~p : G ~ G' be any homomorphism, and let H ---- (P/c, EH) be a 
subgraph of  G. By ~(H) we shall mean [~(PH)]. Note that ~(H) need 
not be the same as the graph obtained by restricting ~o to H. In particular 
(p', q ' )~  E~(/c) need not imply that there exist p, q ~ Pn such that 
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(p, q) e EI-z. I f  H '  is a subgraph of  G', then by tp - l (n  ') we shall mean 
[~-~(Ph,)], the subgraph of G on the set of  points which map onto Px" 
under ~o. 

THEOREM 8. Let c? : G -~ G' be a homomorphism (of any k i n d ) . / f  H '  
is convex in G', then 9-1(H') is convex in G. 

Proof. Readily pc(P, q) implies pc,(~0(p), 9(q)). I f  there were a path 
between two points p, q of  cp-l(H ') containing a point r not in 9-1(H'), 
then 9(r) 6 H '  would lie on a path between cp(p) and 9(q) in H ' ,  contra- 
dicting convexity of  H ' .  I[ 

Thus homomorphisms of digraphs may be likened to continuous 
functions, 4 in that convexity is preserved under inverse mappings. In 
general, however, ~(H) need not be convex even though H is. Analogously 
to the definition of open mappings, a homomorphism will be called 
convex if  it takes convex subgraphs onto convex subgraphs. 

THEOREM 9. Let 9 : G -+ G' be a convex homomorphism. I f  A is an 
atom o f  G, then q~(A) is an atom o f  G'. Conversely i f  A" is an atom o f  G', 
then there exists an atom A o f  G such that cp(A) = A'. 

Proof. I f  9(A) were not an atom, there would exist an atom 
< A' < ~(A). But then ~ < ~o-l(A ') n A < A, where ~0-1(A ') c~ A 

is convex, contradicting the fact that A is an atom. Conversely let A' be an 
atom and let A be any atom contained in 9-a(A'). Then ~ < ~o(A) ~< A', 
and since A' is an atom this implies cp(A) = A'. 1[ 

Thus it follows that convex homomorphisms take acyclic digraphs onto 
acyclic digraphs; since G acyclic implies every point p is an a tom and 
consequently its image, a point p '  in G' must be an atom. In the remainder 
of  this section we consider convex homomorphisms whose images are 
acyclic. 

I f  cp is a homomorphism, then pc(P, q) implies pc'(P', q') while the 
converse is not true in general. Under suitable conditions, however, 
we can prove a partial converse. 

THEOREM 10. Let q~ : G-+  G' be a convex homomorphism with G' 
acyclic. I f  pc,(p', q') is a path o f  length >~2 in G', then .for any p ~ 99-1(p'), 
q ~ q~-l(q,) there exists a path pc(P, q). 

4 If one defines topologies on G and G' by means of the natural Galois-connection 
closure operator [4], then every homomorphism is a continuous function with respect 
to these topologies, and indeed convexity is preserved under the inverse of all continuous 
functions, f :  G ~ G'. 
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Proof. We cannot  have po(q, P), since the existence o f  such a pa th  
would imply po'(q', P'), contradict ing acyclicity of  G'.  Suppose there were 
no pa th  pc(P, q). We would then have H = ch{p} u ch{q) convex in G. 
But cp(H) = [cp(ch{p}) u ~0(ch{q))] ---- [p '  L) q'] cannot  be convex since 
I pG'(p', q')l ~ 2 implies this pa th  contains a point  o ther  than  p '  and q' .  [[ 

In  the same spirit one can construct  a p roo f  by induct ion on pa th  
length to show that, if  p '  is any  pa th  p' =Po',  .... Pn' ----q' of  length ~/2 
and p,  q are any preimages of  p '  and  q' ,  then there exists a pa th  f rom p 
to q in G which contains, in sequence, preimages of  p l ' ,  .... p'~_~ • 

Since convex homomorph i sms  m a p  convex subgraphs onto  convex 
subgraphs,  and convexity is preserved under  inverse images, every convex 
h o m o m o r p h i s m  cp : G --~ G' induces an onto  correspondence between Sec 
and 6 @ .  I t  is thus natural  to ask whether  this correspondence homo-  
morphical ly  preserves the algebraic sup and inf  propert ies  o f  the lattices 
involved. 

I t  appears  that  the "cor rec t"  question to ask is whether  S@ is a lower 
semihomomorph ic  image o f  Sec ; where lower semihomomorphisms are 
defined as onto  mappings  cr : L,e ~ ~e '  such that  

O) cr(x ^ y) : a(x) ^ o(y)  for  all x, y e S~; 

(ii) if  x v y covers x and y in -L~ o, then cr(x v y) : o(x) v o(y).  

Lower  semihomomorph i sms  (LSH's )  o f  lower semimodular  lattices have 
m a n y  interesting propert ies [5, 6]. We need only the facts that:  

(1) every L S H  on a G-lattice is completely  characterized by its kernel, 
k(~) (the set o f  elements o f  La which map  onto  0'  under  or); 

(2) cr is a lattice i somorphism if  and only if k(cr) = {0}; and  

(3) ~ is dimension reducing, so that  it maps  a toms of  f e  either onto  
a toms  o f  ~ '  or 0'. 

Now let ~ : G ~ G' be a convex h o m o m o r p h i s m  and let cr : 6ec ~ S~, 
be an LSH. We say that  cr is compatible with qo if A~(H) = cr(AH) (deleting 
O's) for  all H e Sec. Fo r  example,  let ~0 be defined by 

d d '  

G : a c ~ a" e - G' 

e 

i.e., ¢p(a) = a', ~p(b) = ~(e) = e', ~p(c) = c', and 9~(d) = d' .  
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~9 

Then the subgraph lattice owo, shown below is the image of Sdc under 
the compatible LSH cr whose kernel is {0, [b]}: 

[a' d ~ d  e ] 

[a ~ c ' ]  

Equivalence classes on S~c induced by cr have been circled. Note that this 
is not the only LSH compatible with q~; for example, or* with kernel 
{ ~ ,  [el} is also compatible. 

Not every convex homomorphism has a compatible LSH. In particular let 

b c a :  

G -- O ~  / 

\ . .  
d e 
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and let 

G ! 

C ! 

be its image under the convex homomorphism which sets ~0(b) = cp(d) ---- b'. 
It can be shown that Sac, cannot be an image of SaG under any LSH. 

A convex homomorphism cp : G --* G' for which there exists a compatible 
LSH tr : Sa~ ~ S~c, we will call strong: 

THEOREM 11. Let ~o : G --~ G' be a convex homomorphism, where G' 
is acyclic, and suppose that whenever qD(p) = ~(q) we have Cl(p) C_ Cl(q) 
or CX(q) C_ C~(p); then ~o is strong. 

Proof. For  each atom p' ~ G', the set {Cl(p) J ~(p) = p'} is totally 
ordered by inclusion; let Cl(p *) be its greatest element. Define ~ by 

(i) ~(~)= ~', 
(ii) c~(ch{p*}) = p', and ~(p) = ~' for all other p e tp-l(p'), 

(iii) or(H) = sup(cr(A,)) for all H. 

Clearly a is order preserving. Let H ' E  SaG' and let H = ~0-Z(H'); by 
Theorem 8, H ~ Sac. Readily o(AH) = An ; hence tr(H) ---- sup(or(An)) --- 
sup(An,) = H' ,  proving cr onto. Note that, by (ii), the preimage of any 
atom consists of  precisely one atom. 

We next prove that cr takes full sets of atoms into full sets of atoms. 
Let A be full, and suppose that q' ~< sup(or(A)), i.e., q' e ch(cr(A)). Thus 
either q' ---- or(q) for some q E A, in which case we are done, or there exist 
r* , s*  in A, with o r ( r * ) = r ' @  ~ '  and g ( s * ) = s ' @  ~ ' ,  such that 
q'E p(r', s'). By the remark following Theorem 10, there exists a path 
px(r*, s*) containing a point q such that ~ ( q ) =  q'. Thus r*, s* are in 
Cl(q) C C~(q*). In fact, q* must lie on a path p2(r*, s*) since, by the 
convexity of  ~-~(q'), P3(q*, r*) and pl(r*, q) implies r* ~ ~o-l(q'), contra- 
diction, and similarly pa(s*, q*) yields a contradiction. Since A is full, 
this implies q* e A, so that or(q*) = q' E or(A). 

It follows that p '  ~< or(H) implies p* ~< H. Indeed, since cr(AH) is full, 
p '~< sup(gAH)) implies p ' e  or(An); but, since the only atom mapped 
onto p '  by cr is p*, we thus have p* ~ AH. 

We can now show that cr is a meet homomorphism. Let 

q' ~ Ao(H~)^o(Hs) -~ -4o(H~) ~ -4otHs) ; 

582b/xo/2-5 
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then, as just  shown, q* ~ Axl c3 An, = AAI^u ~ , so that  q'  ~ A~(HI^~) • 
Thus A~(H1)^~(~2 ) C A~(~I^~0, implying or(H1) ^ cr(H2) ~< ~ ( H  z ^ H2), 
while ~ is immediate  since ~r is order  preserving. 

Finally, let H1 v H~ cover  H I  and / /2 ,  say ABIV~ ' -----An I w {r} 
An~ v {s}. I f  a(r)  = or(s) = ~ '  we have cr(Hz v / / 2 )  = or(H1) = or(H2) = 
~(H1) v e(H~). I f  0r(r) = r '  @ ~ '  and or(s) = s '  @ ~ '  we have Ao(~vn2) -~ 
A~(H~ ~9 {r'} = A~(n~) w {s'}, so tha t  cr(Hz v Hz) covers or(H0 and ~r(Hz), 
and since r and s are distinct so are r '  and s ' ,  p roving  tha t  cr(H~ v / / 2 )  
or(H0 v e(H~). On the other  hand,  suppose that  ~ ( r ) =  r ' ~  ~ and 
or(s) = ~ '  (or  vice versa). By LSM,  Hz covers/-/1 ^ H~,  so that  we must  
have A~q = A~q^~ ~ {s}. Hence  ~(Ant) = a(Azc~,a~), whence o ' ( H 1 )  : 

a(H1 n/-/2) = cr(Hz) ^ a(H~), i.e., ~(H1) ~< a(H~), so that  ~r(Hz) v cr(H~) = 
a(H~). Since a(An~,n~) = a ( A n ) ,  we thus have cr(H~ v H~) = cr(H~) = 
~(n l )  v ~(HD. II 

The hypothesis  o f  Theorem 11 holds in the case o f  the following 
impor t an t  example.  Let G : (P, E)  be any digraph and  define the relation 
S on P by  (p,  q) e S if and only if p,  q belong to the same a tom of  5e~. 
Clearly S is an equivalence relat ion on P. Let G* : (P*,  E*) the digraph 
in which P*  : P/S and (S~,  S~) ~ E*  whenever (p,  q) e E; this graph is 
called the condensation graph of  G )  The cannonical  funct ion ~0 of  S is 
evidently a h o m o m o r p h i s m  o f  G onto  G*. Readily we have: 

(1) G* is acyclic, 

(2) G* - -  G if and only if G is acyclic, 

(3) ~o is a convex h o m o m o r p h i s m ,  and 

(4) ~0(p) : q~(q) implies CX(p) = Ca(q). 

Hence we can apply Theorem 11 to obtain 

COROLLARY 12. f iG*  is the condensation graph of  G, then 5ec _~ 5ec, . 

Proof. Let cr be as in Theo rem 11. By definition G* has the same 
number  o f  a toms as G, hence k((r) = {0} making  cr an i somorphism.  1[ 

This result  yields considerable insight into the significance of  the 
convex subgraph lattice. F r o m  several earlier results we see that  Saa 
describes what  might  be called the pa th  structure o f  a digraph G, in 
par t icular  the longer paths involving more  than a single edge o f  G. Further ,  
in view o f  Corol lary 12, 5~G describes only the acyclic " co re "  o f  the path  
structure, that  is, the condensat ion graph  of  G. 

5 As remarked earlier, the atoms of a graph are precisely its strongly connected 
components, so that this definition of G agrees with that in [3]. 
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Homomorphic  mappings of  graphs are designed to preserve the presence 
of local edge structure, and by transitivity the presence of  paths. As the 
conditions for homomorphism become stronger, they also preserve to 
some degree the absence of edges and paths. Convex homomorphisms 
preserve convexity properties that are derived from the presence and 
absence of  paths in G, while strong homomorphisms preserve those 
aspects of the path structure which reflect a (possibly incomplete) partial 
ordering of  the points of G. Finally E-homomorphisms, which form a 
proper subset of all the other homomorphism classes, totally preserve 
both the presence and absence of  edges. 

5. LOCALLY CONVEX DIAGRAPHS 

In this final section, we describe an interesting class of digraphs which 
can be defined by means of convexity concepts. 

Let p be a point of the digraph G. By the left neighborhood of  p, denoted 
L(p), we mean the subgraph on the set (ql r P(q,P)[ ---- 1}. Similarly we 
define the right neighborhood of p by R(p) = [{q J [ p(p, q)[ = 1}]. Note 
that a point p cannot be in its own left or right neighborhood, even if 
there is a loop at p. G will be called locally convex at p if  both L(p) and 
R(p) are convex subgraphs of G. It will be called locally convex if  it is 
locally convex at each of its points. For  example: 

G = 

b C 

o f-- 0 

is not locally convex since R(a) = [{b} u {d}] is not convex. Similarily L(d) 
is not convex. 

THEOREM 13. Every locally convex digraph is acyclic. 

Proof. Suppose there existed points p, q E G such that p(p, q) and 
p(q,p). Le tp  = P o  ..... pm -~ q and q = q0 .... , qn = P  be such paths. Then 
Pl E R(p) but the path pl ,...,pro = qo ..... q,~ ---- P, PI is not contained in 
R(p), since p ~ R(p). II 

A digraph G is called transitive if G = G t, that is, if r ~ p(p, q) implies 
(r, q) and (p, r) ~ E. The following weaker property turns out to be closely 
related to local convexity. We call a digraph semitransitive if  p(p, q) and 
(p, q) ~ E together imply that for all points r ~ p(p, q), (p, r), (r, q) ~ E. 
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THEOREM 14. A digraph is locally convex if  and only i f  it is acyclic 
and semitransitive. 

Proof Let G be locally convex, let there be an edge f rom p to q and 
let p, r 1 .... , rn-1, q be a path  p(p, q). Since rl and q are both in R(p), 
by local convexity every point of  the path is contained in R(p), so there 
is an edge from p to every point r, of  the path. Similarly, since r,,_l and p 
are in L(q), there is an edge f rom every point ri to q. 

Conversely let G be semitransitive and acyclic, and let p(r, s) be a path 
between the points r, s of  L(p). Thus (s, p) ~ E implies p(r, p) and, since 
(r, p) e E, there is an edge f rom every point of  p to p. Moreover, since G 
is acyclic, p itself cannot lie on p, so all of  these edges are paths of  length 1, 
implying p(r, s) C L(p). Similarily for R(p). II 

THEOREM 15. Convex graph homomorphisms take locally convex 
digraphs onto locally convex digraphs. 

Proof By Theorem 13 and the remark following Theorem 9, G' is 
acyclic, hence we need only show that G' is semitransitive. Let (p ' ,  q') e Ec, 
and let r '  e ( p ' ,  q'). Since 9 is a graph homomorphism, there exist 
preimages p, q of  p ' ,  q '  such that (p, q) e E c .  Moreover, by the remark 
following Theorem 10, there exists a path p(p, q) containing a preimage r 
of  r ' .  Since G is locally convex, it is semitransitive, so there exist edges 
(p, r) and (r, q) in E; hence there exist edges (p' ,  r ' )  and (r' ,  q') in E'.  11 
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