-~

metadata, citation and similar papers at core.ac.uk brought to you by 4 CQ
provided by Elsevier - Publisher Conne
L) SCIENCE ((J)DIRECT®
¢ C PHYSICS LETTERS B
ELSEVIER Physics Letters B 572 (2003) 81-90

www.elsevier.com/locate/npe

Boundary states in IIA plane wave background

Yeonjung Kim?, Jaemo Park

@ Department of Physics, KAIST, Tagjon 305-701, South Korea
b Department of Physics, POSTECH, Pohang 790-784, South Korea

Received 20 July 2003; accepted 29 July 2003
Editor: M. Cvett

Abstract

We work out boundary states for type IlA string theory on a plane wave background. By directly utilizing the channel duality,
the induced conditions from the open string boundary conditions are imposed on the boundary states. The resulting boundary
states correctly reproduce the partition functions of the open string theorygbrpland DpDp cases where p branes are
half BPS brane if located at the origin of the plane wave background.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Recently there have been great interests on the string theory on the plane wave background [1]. Initially Metsaev
worked out type IIB string theory on the plane wave background in the lightcone gauge [2,3]. Subsequently the
type 1IB string theory on the plane wave background attracted great interests in relation to the correspondence with
N = 4 supersymmetric Yang—Mills theories [4].

In a series of paper [5-9], simple type IIA string theory on the plane wave background have been studied.
The background for the string theory is obtained by compactifying the 11-dimensional plane wave background on
a circle and taking the small radius limit. The resulting string theory has many nice features. It admits light cone
gauge where the string theory spectrum is that of the free massive theory as happens in type |I1B theory. Furthermore
the worldsheet enjoy&t, 4) worldsheet supersymmetry. The structure of supersymmetry is simpler in the sense
that the supersymmetry commutes with the Hamiltonian so that all members of the same supermultiplet has the
same mass. The varioug2lBPS D-brane states were analyzed in the lightcone gauge, which gives consistent
results with the BPS branes in the matrix model. Subsequently, covariant analysis was carried out for the D-brane
spectrums, which agrees with the previous results [10].

In this Letter, we initiated the study of boundary states of type IIA string theories. Partly we were motivated
by the works in type 1B side. In [11], the boundary states for type IIB theories were worked out and were shown
to exhibit interesting channel duality between open string and closed string. In [12,13], more general cases were
studied. In their developments, the lightcone supersymmetries, kinematical as well as dynamical, have played a
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crucial role in the construction of the boundary states. However in the construction of the boundary states in the
more general conformal field theories [16,17], the supersymmetries are not important. And many of the theories
considered do not have the spacetime supersymmetries. Rather, by directly utilizing the channel duality, one can
first construct the boundary states, and then figure out the open string spectrums after the modular transformation
and vice versa. In the simplest example of the flat space, starting from the open string boundary conditions, one
can obtain the conditions to be imposed on the boundary states by simply interchanging the-ratedafof the
worldsheet coordinates [14,15].

Indeed Michishita worked out type IIB boundary states along this line of idea and obtained the consistent results
with the previous works whenever the comparison is available [19]. Also this approach was adopted in [20]. Here
we adopt the same philosophy to obtain the boundary states in type IlA string theory on the plane wave background.
The resulting boundary states give the correct open string partition function after the modular transformation. In
this Letter we just work out the boundary states fgsp and DpDp case where P branes are half BPS at
the origin of the plane wave. Obviously there are more general cases to be studied. The detailed explorations of
the boundary states of the IlA theory will appear elsewhere [24]. An interesting fact for theseaDes is that
they do not have the dynamical supersymmetries away from the origin of the plane wave background [10]. Similar
phenomenon occurs in type 1IB cases as well [21,22]. As we finish the draft, we are aware of the work [18] where
type lIlA boundary states are constructed following the approach of [11,12].

2. Freestring theory and D-branesin I A plane wave background

We closely follow the notation of [7] to describe the type IIA string theory on the plane wave background. The
background is given by

8

ds? = —2dX*dX~ — A(x")(dx*)? + ) dx'dx’, (2.2)
i=1
%
Fi123= 1, Fig= 3 (2.2)

and
4 M 8 2
= Ll X! 2.3
)= Z (X2 (2.3)
i=1 i'=
where we define&(* = iz(X0 + X9). Throughout this Letter, we use the convention that unprimed coordinates

denote 12, 3,4 directions while primed coordinates denote57, 8 directions. Also unprimed quantities are
associated with 12, 3,4 directions and primed ones are related t®,%,8 directions. For the worldsheet
coordinates, we usg. = %(8, + d,). The worldsheet action for the closed string is given by

1 m2 4 Y,
Sic= do [-d,xtorx— + 2o, X 0" X + —) X' x' + =) x'x
Le Ao’ ( T2 2" + Z 36 ,/Z
. . 2im im
+ D (v vy — o) + vyl - ?wfy“x/fi), (2.4)
b=+

wherem = o' ptp andy’ are 8x 8 matrices satisfyingy’, y/} = 6¥/. The sign of subscrip{ denotes the
eigenvalue ofy 1234 while the superscript = 1,2 denotes the eigenvalue pP. The theory of interest contains
two supermultiplet§X’, y1, 1/fJ2r) and(X', ‘/f~1w ¥2) of (4, 4) worldsheet supersymmetry with the mas&eand
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“, respectively. The fermions of the first supermultiplet jd$**° eigenvalue of 1 while those of the second has
the eigenvalue of-1.
The mode expansion for the bosonic coordinates is given by

. /0" / 1 . it i
Xl =i E w_o(aé)e lwor_ao elwor)

Lo © 1 , .. . , , . o
+i )= Z {efzwnr(altqema +&Z€71nﬂ) _ezwnr(alzq‘l'efma +&;1Tem(r)}’ (2.5)
2 n=1"V @n
where we have, = /(%)% +n? with n > 0 and
o i @0 i o i [wo i
i NP T it _ wp P Tl X 26
aoz \/E . ao = \/E . ( . )

The commutation relation is given by

[a am] 84U 8ym, n,m=0, [&‘ Ez,ﬁ,T] =8U8um, n,m>0. 2.7)

And the mode expansion for the primed coordinates is given by
. a’ 1 SN, it i
=i IE /w_(/)(aée lwgT _ aé elwo‘[)

g s L e e
iw), T a)l1 eino +a;1€ tno) _elwnr(aﬁl'l‘e ino 4 gi Tetno)}’ (2.8)

n
where we havey, = /(%)% +n?with n > 0 and
_V p _l\/a_o iT/_\/Z_é;pi/—HV%xi/

. a = 29
7 0 7 #9)
The commutation relation is given by
[@), "] =6"7 8m, n,m >0, [@,a},"] = 6" Sum, n,m>0. (2.10)
The bosonic part of the lightcone Hamiltoniah, is
2 2
Hp =;/doo Ipipi 4 Lo xio, x4 2(™) xix
T 2napt 2 2707 2\ 3
0
1 -/ -/ 1 -/ -/ 1 m 2 -/ -/
_Pl Pl —8 Xl a Xl - Xl Xl 211
3PP x5 () xx) (2.11)

with Pi = 3, X' and P! = 3, X"'. In terms of the oscillators

pTHy = woao aO + wéagTaO + an a’Ta’ + alTa’) +w (alT a, + a’T a ) + epe0, (2.12)
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whereep o is the zero-point energy contribution. Throughout the Letter, repeated indaesi’ are assumed to
be summed over,P, 3,4 and 56, 7, 8, respectively. The fermionic mode expansion is given by

/

1_ /= —iwpT iwgT
(s > (xe + x Tefeor)
+ Z \/Jcn {em)nr (Wne”m _on )/4Wnem(r) +elonT (wl;l'em(r +i n J/41ﬂ,:r€”m) }’
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(2.13)
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k] X -
V2 V2
with
2 o 4 —iwpT 4 1 iwgt
W2 = [ iy xeor — iyyteor)
> . .
+ Z«/o?cn{e_'w"f (wne_’"" +
n=1

wp—Nn g~ . . Wy —N g~ .
; &on y41//nemo> + etwnf(l/f’;l‘ema o y41//"1l‘e—mo) }
wo @0

(2.15)
The anticommutation relations are

{1//,?, ,T}:S”b&lm, n,m>0, {1/},‘;, ~,€’1T}=3”b3nm, n,m>0, {X”,XbT}z(S”b, (2.16)

whereqa, b range from 1 to 4. The mode expansion of the superpartneis fos

/
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The anticommutation relation is given by

{va, g™ =698, n,m >0, (020, 4T = 698, nym >0, [x'¢ x'"*"} = 5. (2.20)

m

The fermionic contribution to the Hamiltonian is

00
p+ch = CUOXTX + wé)X/TX/ + an (1//;1//” + &;&n) + wp (wyjl/fn + 1/721/711) +efco- (2.21)

n=1

For the closed string, the zero point energy contribution is zerogp@.:+ e sc0 = 0.
Now we discuss the Hamiltonian of the open strings and their mode expansions. First we deal with the bosonic
part of the Hamiltonian

1 1 . . 1 . . .o 1 .. . 1 . . 0
Hbzizna/p_i_/da (Eplpl +§agxlaax'+nglx’ +5P P+ S0, X 0, X + wpX’ X’) (2.22)

with Pi =9, X’ andP? = 3, X". For the Neumann boundary condition,

, o . . ivt i o o 1 , . . . . .
XiN — [ & alV e—iwoT _ ,INT jiwoT i [ 2 : aiNeTionT _ alNTelwnT e 4 pmino , 2.23
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with the commutation relation being

[aZN , a’LNT] = 8nm(3l‘NjN , in,jv 20 (2.24)
The contribution to the Hamiltonian is
oo . .
ptHy = Z wna¥ al¥ T + epory . (2.25)
n=1

For the Dirichlet boundary conditions witi? (¢ = 0) = x{?, x'? (0 = ) = x}°

xé" (e®00 — p=®w00) _ X(i)D (ewo(afn) _ efwo(afn))

X0 =

eTnwo — p—TWo

o — 1 ip —iwpT ipt oyt ino —ino
[\ — " " — 2.26
+iy 5 nz=1 = (@Pe T a ) (e — ) (2.26)

with the commutation relation

[aP, @] = 8,m8™/P, ip, jp > 0. (2.27)
The contribution to the Hamiltonian is
- ip\2 ip\2 ip ip 00
4, @0 (€0 + e ) ((x17) + (xg”) — 4x1"xg i it
prH= 4o’ w0 — =T Wo +’;wnanuanu + €poD- (2.28)

For thex!' directions, we have the similar expressions, but we should replace unprimed quantities by primed
quantities, e.g, by w),. The total bosonic Hamiltonian is given by

o
/

o ;
L i it o i
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wp_ ("0 + ) () + (3g)% — 4P - 3g)

+ 4o w0 — =T
wh (€70 +eTTU0)((FP)2 + (FgP)? — 471D - 7P)
v - + epo. (2.29)
Ao 00 — ¢~
For the fermion, we impose the boundary conditions
1 2
wi|o:0,n’ = ngw¥|a:0,n' (230)

Heren =1 is DpDp case, which means that open string ends orpeébEane at one end and ends on anothgr D
brane at the other end. Ang= —1 denotes PDp case where [p means an anti-p brane. In this Letter we only

deal with DpD p and DpD p cases, but certainly more general possibilities exist, which will be explored elsewhere.
Let us discusg = +1 case first. In order for the Pbrane to have the supersymmetry at the origin of the plane
wave background should satisfy

YAyt =-1, {2,y%)=0, {2,y =0. (2.31)

The actual form of the2 depends on the dimension of the world volume. D2, D4, D6, D8 branes were shown
to have the supersymmetry at the origin and the expressiof2sark tabulated at [7]. However the detailed form
of £2 is not important for the subsequent discussions. One interesting point is that depending on the position, the
number of the supersymmetries to be preserved by the D-brane is different. The D-branes away from the origin
have no dynamical supersymmetry as shown in the covariant analysis [10]. From the conditions above, one obtain
the conditions for the open string modes

V=2V, Uy =1, (2.32)

for all n. To obtain the open string mode expansion one should re;ﬂa&é,g by the above conditions in the closed
string expressions (2.13), (2.15), (2.17) and (2.19). The fermionic contribution to the Hamiltonian is

o0 . .
l l
P Hpo =Y (on¥)n +ont ) + (Ewolﬂo7/491ﬁo - Ewawéy“:zwa) +e¢50. (2.33)
n=1
For n = 1, the zero point energy contribution forpDbrane is given bye,o + efo = %a)onN + %w{)nQ\, with
ny + nQ\, = p — 1 whereny is the number of Neumann directions amon@,13, 4 directions and1§\, is the

number of Neumann directions amongs57, 8 directions.
For the DpDp, we haven = —1 and the fermion modes have half-integer modings in worldsheet coordinates

and the energy eigenvalues are givendyy= /(%)% + (n — %)2, w,=,/(%)?+(n— %)2 and

o0

+ _ - 1 =7 gt

P Hf—zl(wnl/fni%l/fn_%+w;ﬂ/fn7%1/fr/l_%)+e/fo, (2.34)
n=

where{lp;‘_%, wfi%} = 33}4’, and the similar relation holds faf’s. The value of zero point energyp + e/fO will

be given shortly after introducing suitable quantities.
Now one can evaluate the cylinder amplitude for the open string

oo

Zo=f?/ "dpTdp~ Tr€72nt(72a’p+p‘+P+H), (2.35)
0
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whereH = Hy, + Hy, of (2.29) and (2.33). For the evaluation, it is convenient to define

K@=~ (1= [Ta-aV") i @=a""(1+¢") " [T(2+qV"),

n=1 n=1

P [n_1 P [n_1
fgfm)(‘I) — qum 1_[(1+q (n 2)2+m2)’ fim)(q) _ qum 1_[(1_ q (n 2)2+m2)’ (2.36)
n=1 n=1

whereq = e=%"" andA,,, A/, are defined as

_nTTm=— m 1 ad T
— A —_1)? A
Ay = (2;1)2 Z/ A==y > =D /e (2.37)
p=1 0
The modular transformation property is proved to be [11]
MMao=1"@  HBo=L"@.  K@=1"@, (2.38)

wherem = mt andg = e~ With this expression, the cylinder amplitude is easily evaluated following [11]. The
resultis

T 00, \4 £20( )4
Zo=/ 2(Zsmhmcoo)2 " (2 sinhrrawg)” ”N—fA (@) Ja @)
0

ff’°(q>4f1 0(g)4
47[0(/ eTWo — p—Two

Ty —T ] 21 D\2 1DN2Y -'/D >/'D
><exp|:—2nt( wp_ (0O )TH (o )T) 407 )], (2.39)

471'“ enwE) —e 7'[(()0

whereA = 1 for DpDp andA = 4 for DpD p. The last two lines of (2.39) are coming from the Dirichlet directions.

Using the result of [11], one can see that zero energy contribution fdd Dis "N_Zwo + 444 — 4A;)O +
"N’2 2 ! o +44, - 4A/ . See also [23]. After the modular transformation, with 2€,wo = wot, we have

T 4 ¢90 =14
Zc2=/d£ (2 sinh d0)? " (2 sinhr d)?~ ”N—fB @75 @
0 FR@A 1@

p|: (6)0 (6226)071 +e—2€&)071)(()‘C’1D)2+ (XOD)Z) _4"D "D):|
xexpl —| =—

20’ e2biom _ p—2Ldom

xexp[—(‘:’—é(e”%”+e‘”‘?’5”>(<fi’)>2+(x”)>2>— ax}P q‘/’D)}

20’ 2L _ p— 20y

(2.40)

with § = e=#"¢ where B = 1 for DpDp and B = 2 for DpDp. This will be compared with the overlap of the
boundary states in the next section.
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3. Boundary state construction

As explained in [11], if we have the usual lightcone gauge in the open string we have to take the nonstandard
lightcone gauge in the closed string channel where the raleofind p™ are reversed. In this case,

X+HC=P+Hbc+P+ch, (3.1)

wherep™ H,. and p* H. are given by (2.12) and (2.21) respectively with replagingy /= = mz. This change
of the mass parameter is due to the conformal transformation needed going from the open string channel to the
closed string channel [11]. If we have a channel duality between closed strings and open strings we can obtain the
condition for the boundary states from the boundary conditions for the open strings by interchanging the role of
andt coordinates of the world sheets.

For the Neumann boundary conditions for a bosonic coordiXaté, X = 0 ato = 0, the corresponding
condition for the boundary statesdsX = 0 att = 0. This gives the condition

an+al =0,  dy+a) =0, ag+al=0 (3.2)

whose solution is

exp( Y alal -3 )|o> (3.3)
n>1

Here|0) is the vacuum which is annihilated lay, a,, ag. Its CPT conjugate state is given by

] exp( > anin — 5 ) (3.4)
n>1

For the Dirichlet conditions, we imposig X = 0 att = 0 with x’ = x. We have

- - 2w
an—a,I:O, ap—a,=0 (n>=1), ao—ag:—i 0

X0 (3.5)

a/

1/ + . 200 \? ot
exp(é(ao—l - xo> +Zanan |0). (3.6)

n=>1

For the evaluation of the overlap of the boundary conditions we need

1 2 2 1 2 2
(0] exp(é (ao +i aio x1> )ez’”“’o“g“o exp(— (ag —i aio xo) ) |0)
o 2 o

2., .2 —27tawo
—(1- 6747:&»0)*1/2 exp(—@ xg +x1 — 2xoxge )

- o 1 — e—4mlowo

exp( (xO + x%)) p( o (eFrteo 4 ¢ 27”5“’0)()6 + x%) - 4x0x1>

a1- 6_4”&"0)1/2 2’ e2mlaoy _ p—2mlwg 3.7)

Thus the total bosonic boundary state is given by

o0
. o l TZ -/T~~/T 1 .,Tz
exp(—r;a;“az”* - 5(ag")" e @l = 5(ag") )
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2 o0
1 ipt_ . [2w0 i ipt=ipt
ool 3 (a2 ) + D).
n=1

L/ it [2w0 in)\? o~ iptaipt

1 . 1 1 ~1

exp(§<a0” —iy xOD> + E al al >|O), (3.8)
n=1

where the bosonic vacuun®) is annihilated by all lowering operators associated with the raising operators
appearing in the expression.
Now the boundary condition for the fermions at the open string channel

Vilpmo =12, (3.9)

is translated into the conditions at the closed string channel

17lfi’r=0zim’[/i’r:O' (310)

Fromy! =iny? atr =0, we obtain

xT=—n2y*x, x=n2y*" (3.11)

which are equivalent if we use*2y 42 = 2y*2y* = —1, which can be proved by using the fact tiaandy*
are either commute or anticommute. For nonzero modes we have

Un=inR2y), Y =—inQ2Ty! (3.12)

which lead to the same boundary state. From the above conditions we obtain

1 > .
exp(énxTQV“xT+in21/f,191/f2>|0), (3.13)
n=1

where the fermionic vacuum sta@ is annihilated by, , ¥, andy. Fromwi =iny? att =0 gives

x' =-n2y*y't xT=n2y*y (3.14)

and

U=yt v =—in2" 9" (3.15)

The total fermionic boundary state is given by

1 1 oo - o0 5
exp(énfoZV“xT — eyt T in ) el + inZw,;Tw,’,*) 0). (3.16)
n=1 n=1

where the fermionic vacuurf0) is annihilated by all of the corresponding lowering operators for the raising
operators appeared in the expressions. The total boundary states are the product of the bosonic boundary statt
and the fermionic one. Boundary states at other tg are generated by the closed string Hamiltonian acting on
boundary states at=0, i.e.,|B, T = 1) = !X He™|B 1 = 0). From now on all boundary states are assumed to
be those at =0.

Let |Bg, n) be the boundary states corresponding to the D-branes locatgavih n appearing in the definition
of the fermion boundary states angh, n’) be an analogous states with different valuespéndr’. Let (B1, n’|
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be the CPT conjugate states &, n'). The evaluation of the overlap of the boundary state leads to

o0
Zc =/d€ (B, y/|le” 27X He gy )
0
_ / g Qo m'e T2 — g TIR2 g ety (A -y T3 e~ *7en)*
(1 — e—4mlwo)2(] — 152, e—4mtomyd (1 — ]2, e~ lwy )4

A A 2l —20aom >D\2 =>D\2\ _ 4"D 2D
% exp( W0 (/>p D)2)) exp( wo (e +e () + (X)) X1 %o )

0 (W) +

A/ AL p2lagT =20y 3/ Dy2 2/ Dy2y _ gx!D . gD
xexp(—&((i’D)2+(#’D)2)) exp( @ (¢ te My )7+ (g )7 4 ¥ )

20 62&;)071 _ 672&?)07'[

x -5 - -
2q/ \V0 1 2a’ Q2T _ g—2UapT

For the DpDp boundary condition we haven’ = 1 and DpDp boundary condition we haven’ = —1. In

the process of the calculation we crucially use the fat®y*2 = —1. Sinces2 commutes withy 12349 two
supermultiplets can be separately dealt with. One can check that the above result is coincident with the open string
results up to overall normalization factor which can be absorbed into the normalization factor of the boundary state.
This provides a consistency check for the boundary state construction carried out here.
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