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Abstract

We work out boundary states for type IIA string theory on a plane wave background. By directly utilizing the channel
the induced conditions from the open string boundary conditions are imposed on the boundary states. The resulting
states correctly reproduce the partition functions of the open string theory for DpDp and DpDp̄ cases where Dp branes are
half BPS brane if located at the origin of the plane wave background.
 2003 Published by Elsevier B.V.

1. Introduction

Recently there have been great interests on the string theory on the plane wave background [1]. Initially
worked out type IIB string theory on the plane wave background in the lightcone gauge [2,3]. Subseque
type IIB string theory on the plane wave background attracted great interests in relation to the corresponde
N = 4 supersymmetric Yang–Mills theories [4].

In a series of paper [5–9], simple type IIA string theory on the plane wave background have been
The background for the string theory is obtained by compactifying the 11-dimensional plane wave backgr
a circle and taking the small radius limit. The resulting string theory has many nice features. It admits lig
gauge where the string theory spectrum is that of the free massive theory as happens in type IIB theory. Fur
the worldsheet enjoys(4,4) worldsheet supersymmetry. The structure of supersymmetry is simpler in the
that the supersymmetry commutes with the Hamiltonian so that all members of the same supermultiple
same mass. The various 1/2 BPS D-brane states were analyzed in the lightcone gauge, which gives con
results with the BPS branes in the matrix model. Subsequently, covariant analysis was carried out for the
spectrums, which agrees with the previous results [10].

In this Letter, we initiated the study of boundary states of type IIA string theories. Partly we were mo
by the works in type IIB side. In [11], the boundary states for type IIB theories were worked out and were
to exhibit interesting channel duality between open string and closed string. In [12,13], more general cas
studied. In their developments, the lightcone supersymmetries, kinematical as well as dynamical, have
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crucial role in the construction of the boundary states. However in the construction of the boundary state
more general conformal field theories [16,17], the supersymmetries are not important. And many of the
considered do not have the spacetime supersymmetries. Rather, by directly utilizing the channel duality,
first construct the boundary states, and then figure out the open string spectrums after the modular trans
and vice versa. In the simplest example of the flat space, starting from the open string boundary conditi
can obtain the conditions to be imposed on the boundary states by simply interchanging the role ofσ andτ of the
worldsheet coordinates [14,15].

Indeed Michishita worked out type IIB boundary states along this line of idea and obtained the consisten
with the previous works whenever the comparison is available [19]. Also this approach was adopted in [20
we adopt the same philosophy to obtain the boundary states in type IIA string theory on the plane wave bac
The resulting boundary states give the correct open string partition function after the modular transforma
this Letter we just work out the boundary states for DpDp and DpDp̄ case where Dp branes are half BPS a
the origin of the plane wave. Obviously there are more general cases to be studied. The detailed explor
the boundary states of the IIA theory will appear elsewhere [24]. An interesting fact for these Dp branes is tha
they do not have the dynamical supersymmetries away from the origin of the plane wave background [10].
phenomenon occurs in type IIB cases as well [21,22]. As we finish the draft, we are aware of the work [18
type IIA boundary states are constructed following the approach of [11,12].

2. Free string theory and D-branes in IIA plane wave background

We closely follow the notation of [7] to describe the type IIA string theory on the plane wave backgroun
background is given by

(2.1)ds2 = −2dX+ dX− −A
(
xI
)(
dX+)2 +

8∑
i=1

dXi dXi,

(2.2)F+123= µ, F+4 = µ

3

and

(2.3)A
(
xI
)=

4∑
i=1

µ2

9

(
Xi
)2 +

8∑
i′=5

µ2

36

(
Xi′)2,

where we defineX± = 1√
2
(X0 ± X9). Throughout this Letter, we use the convention that unprimed coordin

denote 1,2,3,4 directions while primed coordinates denote 5,6,7,8 directions. Also unprimed quantities a
associated with 1,2,3,4 directions and primed ones are related to 5,6,7,8 directions. For the worldshe
coordinates, we use∂± = 1

2(∂τ ± ∂σ ). The worldsheet action for the closed string is given by

SLC = − 1

4πα′

∫
d2σ

(
−∂µX

+∂µX− + 1

2
∂µX

i∂µXi + m2

9

4∑
i=1

XiXi + m2

36

4∑
i′=1

Xi′Xi′

(2.4)+
∑
b=±

(−iψ1
b ∂+ψ1

b − iψ2
b ∂−ψ2

b

)+ 2im

3
ψ2+γ 4ψ1− − im

3
ψ2−γ 4ψ1+

)
,

wherem = α′p+µ andγ i are 8× 8 matrices satisfying{γ i, γ j } = δij . The sign of subscriptψA± denotes the
eigenvalue ofγ 1234 while the superscriptA = 1,2 denotes the eigenvalue ofγ 9. The theory of interest contain
two supermultiplets(Xi,ψ1−,ψ2+) and(Xi′ ,ψ1+,ψ2−) of (4,4) worldsheet supersymmetry with the massesm

3 and
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as
m
6 , respectively. The fermions of the first supermultiplet hasγ 12349eigenvalue of 1 while those of the second h
the eigenvalue of−1.

The mode expansion for the bosonic coordinates is given by

Xi = i

√
α′
2

√
1

ω0

(
ai

0e
−iω0τ − a

i†
0 eiω0τ

)

(2.5)+ i

√
α′
2

∞∑
n=1

1√
ωn

{
e−iωnτ

(
ai
ne

inσ + ãi
ne

−inσ
)− eiωnτ

(
ai†
n e−inσ + ãi†

n einσ
)}
,

where we haveωn =
√
(m3 )

2 + n2 with n � 0 and

(2.6)ai
0 ≡

√
α′
ω0

pi − i

√
ω0
α′ xi

√
2

, a
i†
0 ≡

√
α′
ω0

pi + i

√
ω0
α′ xi

√
2

.

The commutation relation is given by

(2.7)
[
ai
n, a

j†
m

]= δij δnm, n,m � 0,
[
ãi
n, ã

j†
m

]= δij δnm, n,m > 0.

And the mode expansion for the primed coordinates is given by

Xi′ = i

√
α′
2

√
1

ω′
0

(
ai′

0 e
−iω′

0τ − a
i′†
0 eiω

′
0τ
)

(2.8)+ i

√
α′
2

∞∑
n=1

1√
ω′
n

{
e−iω′

nτ
(
ai′
n e

inσ + ãi′
n e

−inσ
)− eiω

′
nτ
(
ai′†
n e−inσ + ãi′†

n einσ
)}
,

where we haveω′
n =

√
(m6 )

2 + n2 with n � 0 and

(2.9)ai′
0 ≡

√
α′
ω′

0
pi′ − i

√
ω0
α′ xi′

√
2

, a
i†′
0 ≡

√
α′
ω′

0
pi′ + i

√
ω′

0
α′ xi′

√
2

.

The commutation relation is given by

(2.10)
[
ai′
n , a

j ′†
m

]= δi
′j ′

δnm, n,m � 0,
[
ãi′
n , ã

j ′†
m

]= δi
′j ′

δnm, n,m > 0.

The bosonic part of the lightcone HamiltonianHbc is

Hbc = 1

2πα′p+

2π∫
0

dσ0

(
1

2
P iP i + 1

2
∂σX

i∂σX
i + 1

2

(
m

3

)2

XiXi

(2.11)+ 1

2
P i′P i′ + 1

2
∂σX

i′∂σXi′ + 1

2

(
m

6

)2

Xi′Xi′
)

with P i = ∂τX
i andP i′ = ∂τX

i′ . In terms of the oscillators

(2.12)p+Hbc = ω0a
i†
0 ai

0 + ω′
0a

′i†
0 ai′

0 +
∞∑
n=1

ωn

(
ai†
n ai

n + ãi†
n ãi

n

)+ ω′
n

(
ai†′
n ai′

n + ãi†′
n ãi′

n

)+ ebc0,
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o
whereebc0 is the zero-point energy contribution. Throughout the Letter, repeated indicesi andi ′ are assumed t
be summed over 1,2,3,4 and 5,6,7,8, respectively. The fermionic mode expansion is given by

ψ1− =
√

α′
2

(
χe−iω0τ + χ†eiω0τ

)

(2.13)

+
∞∑
n=1

√
α′ cn

{
e−iωnτ

(
ψ̃ne

inσ − i
ωn − n

ω0
γ 4ψne

−inσ

)
+ eiωnτ

(
ψ̃†

ne
−inσ + i

ωn − n

ω0
γ 4ψ†

ne
inσ

)}
,

wherecn = 1/
√

1+ (ωn−n
ω0

)2 and

(2.14)χ = ψ̃0 − iγ 4ψ0√
2

, χ† = ψ̃0 + iγ 4ψ0√
2

with

ψ2+ =
√

α′
2

(
iγ 4χe−iω0τ − iγ 4χ†eiω0τ

)

(2.15)

+
∞∑
n=1

√
α′ cn

{
e−iωnτ

(
ψne

−inσ + i
ωn − n

ω0
γ 4ψ̃ne

inσ

)
+ eiωnτ

(
ψ†

ne
inσ − i

ωn − n

ω0
γ 4ψ̃†

ne
−inσ

)}
.

The anticommutation relations are

(2.16)
{
ψa

n ,ψ
b†
m

}= δabδnm, n,m > 0,
{
ψ̃a

n , ψ̃
b†
m

}= δabδnm, n,m > 0,
{
χa,χb†}= δab,

wherea, b range from 1 to 4. The mode expansion of the superpartners forXi′ is

ψ1+ =
√

α′
2

(
χ ′e−iω′

0τ + χ ′†eiω′
0τ
)

(2.17)

+
∞∑
n=1

√
α′ c′

n

{
e−iω′

nτ

(
ψ̃ ′

ne
inσ + i

ω′
n − n

ω′
0

γ 4ψ ′
ne

−inσ

)
+ eiω

′
nτ

(
ψ̃ ′†

n e−inσ − i
ω′
n − n

ω′
0

γ 4ψ ′†
n einσ

)}
,

wherec′
n = 1/

√
1+ (

ω′
n−n

ω′
0

)2 and

(2.18)χ ′ = ψ̃ ′
0 + iγ 4ψ ′

0√
2

, χ ′† = ψ̃ ′
0 − iγ 4ψ ′

0√
2

with

ψ2− =
√

α′
2

(−iγ 4χ ′e−iω′
0τ + iγ 4χ ′†eiω′

0τ
)

(2.19)

+
∞∑
n=1

√
α′ c′

n

{
e−iω′

nτ

(
ψ ′

ne
−inσ − i

ω′
n − n

ω′
0

γ 4ψ̃ ′
ne

inσ

)
+ eiω

′
nτ

(
ψ ′†

n einσ + i
ω′
n − n

ω′
0

γ 4ψ̃ ′†
n e−inσ

)}
.
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bosonic

primed
The anticommutation relation is given by

(2.20)
{
ψ ′a

n ,ψ ′b†
m

}= δabδnm, n,m > 0,
{
ψ̃ ′a

n , ψ̃ ′b†
m

}= δabδnm, n,m > 0,
{
χ ′a,χ ′b†}= δab.

The fermionic contribution to the Hamiltonian is

(2.21)p+Hfc = ω0χ
†χ + ω′

0χ
′†χ ′ +

∞∑
n=1

ωn

(
ψ†

nψn + ψ̃†
nψ̃n

)+ ωn

(
ψ†

nψn + ψ̃†
nψ̃n

)+ ef c0.

For the closed string, the zero point energy contribution is zero, i.e.,ebc0 + ef c0 = 0.
Now we discuss the Hamiltonian of the open strings and their mode expansions. First we deal with the

part of the Hamiltonian

(2.22)Hb = 1

2πα′p+

π∫
0

dσ

(
1

2
P iP i + 1

2
∂σX

i∂σX
i + ω2

0X
iXi + 1

2
P i′P i′ + 1

2
∂σX

i′∂σX
i′ + ω′2

0 Xi′Xi′
)

with P i = ∂τX
i andP i′ = ∂τX

i′ . For the Neumann boundary condition,

(2.23)XiN = i

√
α′
ω0

(
a
iN
0 e−iω0τ − a

iN†
0 eiω0τ

)+ i

√
α′
2

∞∑
n=1

1√
ωn

(
aiN
n e−iωnτ − aiN†

n eiωnτ
)(
einσ + e−inσ

)
,

with the commutation relation being

(2.24)
[
aiN
n , a

jN†
m

]= δnmδiN jN , iN, jN � 0.

The contribution to the Hamiltonian is

(2.25)p+Hb1 =
∞∑
n=1

ωna
iN
n aiN†

n + eb01N.

For the Dirichlet boundary conditions withxiD (σ = 0) = x
iD
0 , xiD (σ = π) = x

iD
1

XiD = x
iD
0 (eω0σ − e−ω0σ )− x

iD
0 (eω0(σ−π) − e−ω0(σ−π))

eπω0 − e−πω0

(2.26)+ i

√
α′
2

∞∑
n=1

1√
ωn

(
aiD
n e−iωnτ + aiD†

n eiωnτ
)(
einσ − e−inσ

)
with the commutation relation

(2.27)
[
aiD
n , a

jD†
m

]= δnmδiDjD , iD, jD > 0.

The contribution to the Hamiltonian is

(2.28)p+H = ω0

4πα′
(eπω0 + e−πω0)((x

iD
1 )2 + (x

iD
0 )2 − 4xiD

1 x
iD
0 )

eπω0 − e−πω0
+

∞∑
n=1

ωna
iD
n aiD†

n + eboD.

For thexi′ directions, we have the similar expressions, but we should replace unprimed quantities by
quantities, e.g.,ωn by ω′

n. The total bosonic Hamiltonian is given by

p+Hbo =
∞∑
n=1

(
ωna

iD
n aiD†

n + ωna
i′D
n a

i′D†
n + ωna

iN
n aiN†

n + ωna
i′N
n a

i′N†
n

)
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+ ω0

4πα′
(eπω0 + e−πω0)((�xD

1 )2 + (�xD
0 )2 − 4�xD

1 · �xD
0 )

eπω0 − e−πω0

(2.29)+ ω′
0

4πα′
(eπω′

0 + e−πω′
0)((�x ′D

1 )2 + (�x ′D
0 )2 − 4�x ′D

1 · �x ′D
0 )

eπω′
0 − e−πω′

0
+ eb0.

For the fermion, we impose the boundary conditions

(2.30)ψ1±
∣∣
σ=0,π = ηΩψ2∓

∣∣
σ=0,π .

Hereη = 1 is DpDp case, which means that open string ends on a Dp brane at one end and ends on anotherp

brane at the other end. Andη = −1 denotes DpDp̄ case where D̄p means an anti-Dp brane. In this Letter we onl
deal with DpDp and DpDp̄ cases, but certainly more general possibilities exist, which will be explored elsew
Let us discussη = +1 case first. In order for the Dp brane to have the supersymmetry at the origin of the p
wave background,Ω should satisfy

(2.31)γ 4Ωγ 4Ω = −1,
{
Ω,γ 9}= 0,

{
Ω,γ 1234}= 0.

The actual form of theΩ depends on the dimension of the world volume. D2, D4, D6, D8 branes were s
to have the supersymmetry at the origin and the expressions ofΩ are tabulated at [7]. However the detailed fo
of Ω is not important for the subsequent discussions. One interesting point is that depending on the pos
number of the supersymmetries to be preserved by the D-brane is different. The D-branes away from th
have no dynamical supersymmetry as shown in the covariant analysis [10]. From the conditions above, on
the conditions for the open string modes

(2.32)ψ̃n = Ωψn, ψ̃ ′
n = Ωψ ′

n,

for all n. To obtain the open string mode expansion one should replaceψ̃n, ψ̃ ′
n by the above conditions in the close

string expressions (2.13), (2.15), (2.17) and (2.19). The fermionic contribution to the Hamiltonian is

(2.33)p+Hfo =
∞∑
n=1

(
ωnψ

†
nψn + ωnψ

′†
n ψ ′

n

)+
(
i

2
ω0ψ0γ

4Ωψ0 − i

2
ω′

0ψ
′
0γ

4Ωψ ′
0

)
+ ef 0.

For η = 1, the zero point energy contribution for Dp brane is given byeb0 + ef0 = 1
2ω0nN + 1

2ω
′
0n

′
N with

nN + n′
N = p − 1 wherenN is the number of Neumann directions among 1,2,3,4 directions andn′

N is the
number of Neumann directions among 5,6,7,8 directions.

For the DpDp̄, we haveη = −1 and the fermion modes have half-integer modings in worldsheet coordinaσ

and the energy eigenvalues are given byω̄n ≡
√
(m3 )2 + (n − 1

2)
2, ω̄′

n ≡
√
(m6 )

2 + (n− 1
2)

2 and

(2.34)p+Hf =
∞∑
n=1

(
ω̄nψ

†
n− 1

2
ψ

n− 1
2
+ ω̄′

nψ
′†
n− 1

2
ψ ′

n− 1
2

)+ e′
f0,

where{ψa

n− 1
2
,ψ

b†
n− 1

2
} = δabnm and the similar relation holds forψ ′s. The value of zero point energyeb0 + e′

f 0 will

be given shortly after introducing suitable quantities.
Now one can evaluate the cylinder amplitude for the open string

(2.35)ZO =
∞∫

0

dt

t

∫
α′ dp+ dp− Tr e−2πt(−2α′p+p−+p+H),
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The

ns.

e

whereH = Hbo + Hfo of (2.29) and (2.33). For the evaluation, it is convenient to define

f
(m)
1 (q)= q−∆m

(
1− qm

)1/2
∞∏
n=1

(
1− q

√
n2+m2 )

, f
(m)
2 (q)= q−∆m

(
1+ qm

)1/2
∞∏
n=1

(
1+ q

√
n2+m2 )

,

(2.36)f
(m)
3 (q)= q−∆′

m

∞∏
n=1

(
1+ q

√
(n− 1

2)
2+m2 )

, f
(m)
4 (q)= q−∆′

m

∞∏
n=1

(
1− q

√
(n− 1

2)
2+m2 )

,

whereq = e−2πt and∆m, ∆′
m are defined as

(2.37)∆m = − 1

(2π)2

∞∑
p=1

∞∫
0

e−p2se− π2m2
s , ∆′

m = − 1

(2π)2

∞∑
p=1

(−1)p
∞∫

0

e−p2se− π2m2
s .

The modular transformation property is proved to be [11]

(2.38)f
(m)
1 (q)= f

(m̂)
1 (q̃), f

(m)
2 (q)= f

(m̂)
4 (q̃), f

(m)
3 (q) = f

(m̂)
3 (q̃),

wherem̂ = mt andq̃ = e− 2π
t . With this expression, the cylinder amplitude is easily evaluated following [11].

result is

ZO =
∞∫

0

dt

2t2
(2 sinhπtω0)

2−nN (2 sinhπtω′
0)

2−n′
N
f

ω0
A (q)4f

ω′
0

A (q)4

f
ω0
1 (q)4f

ω′
0

1 (q)4

× exp

[
−2πt

(
ω0

4πα′
(eπω0 + e−πω0)((�xD

1 )2 + (�xD
0 )2)− 4�xD

1 · �xD
0

eπω0 − e−πω0

)]

(2.39)× exp

[
−2πt

(
ω′

0

4πα′
(eπω′

0 + e−πω′
0)((�x ′D

1 )2 + (�x ′D
0 )2)− 4�x ′D

1 · �x ′D
0

eπω′
0 − e−πω′

0

)]
,

whereA = 1 for DpDp andA = 4 for DpDp̄. The last two lines of (2.39) are coming from the Dirichlet directio
Using the result of [11], one can see that zero energy contribution for DpDp̄ is nN−2

2 ω0 + 4∆ω0 − 4∆′
ω0

+
nN ′ −2

2 ω′
0 + 4∆ω′

0
− 4∆′

ω′
0
. See also [23]. After the modular transformation, witht = 1

22 , ω̂0 = ω0t , we have

ZC2 =
∞∫

0

d2 (2 sinhπω̂0)
2−nN (2 sinhπω̂′

0)
2−n′

N
f

ω̂0
B (q̃)4f

ω̂′
0

B (q̃)4

f
ω̂0
1 (q̃)4f

ω̂′
0

1 (q̃)4

× exp

[
−
(

ω̂0

2α′
(e22ω̂0π + e−22ω̂0π )((�xD

1 )2 + (�xD
0 )2)− 4�xD

1 · �xD
0

e22ω̂0π − e−22ω̂0π

)]

(2.40)× exp

[
−
(

ω̂′
0

2α′
(e22ω̂′

0π + e−22ω̂′
0π )((�x ′D

1 )2 + (�x ′D
0 )2)− 4�x ′D

1 · �x ′D
0

e22ω̂′
0π − e−22ω̂′

0π

)]

with q̃ = e−4π2 whereB = 1 for DpDp andB = 2 for DpDp̄. This will be compared with the overlap of th
boundary states in the next section.
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3. Boundary state construction

As explained in [11], if we have the usual lightcone gauge in the open string we have to take the nons
lightcone gauge in the closed string channel where the role ofX+ andp+ are reversed. In this case,

(3.1)X+Hc = p+Hbc + p+Hfc,

wherep+Hbc andp+Hfc are given by (2.12) and (2.21) respectively with replacingm by m̂ ≡ mt . This change
of the mass parameter is due to the conformal transformation needed going from the open string chann
closed string channel [11]. If we have a channel duality between closed strings and open strings we can o
condition for the boundary states from the boundary conditions for the open strings by interchanging the rσ

andτ coordinates of the world sheets.
For the Neumann boundary conditions for a bosonic coordinateX, ∂σX = 0 at σ = 0, the correspondin

condition for the boundary states is∂τX = 0 atτ = 0. This gives the condition

(3.2)an + ã†
n = 0, ãn + a†

n = 0, a0 + a
†
0 = 0

whose solution is

(3.3)exp

(
−
∑
n�1

a†
nã

†
n − 1

2

(
a

†
0

)2)|0〉.

Here|0〉 is the vacuum which is annihilated byan, ãn, a0. Its CPT conjugate state is given by

(3.4)〈0|exp

(
−
∑
n�1

anãn − 1

2
a2

0

)
.

For the Dirichlet conditions, we impose∂σX = 0 atτ = 0 with xi = xi
0. We have

(3.5)an − ã†
n = 0, ãn − a†

n = 0 (n � 1), a0 − a
†
0 = −i

√
2ω0

α′ x0

whose solution is

(3.6)exp

(
1

2

(
a

†
0 − i

√
2ω0

α′ x0

)2

+
∑
n�1

a†
nã

†
n

)
|0〉.

For the evaluation of the overlap of the boundary conditions we need

〈0|exp

(
1

2

(
a0 + i

√
2ω0

α′ x1

)2)
e−2π2ω0a

†
0a0 exp

(
1

2

(
a

†
0 − i

√
2ω0

α′ x0

)2)
|0〉

= (
1− e−4π2ω0

)−1/2 exp

(
−ω0

α′
x2

0 + x2
1 − 2x0x1e

−2π2ω0

1− e−4π2ω0

)

(3.7)= exp
(− ω0

2α′ (x2
0 + x2

1)
)

(1− e−4π2ω0)1/2 exp

(
− ω0

2α′
(e2π2ω0 + e−2π2ω0)(x2

0 + x2
1)− 4x0x1

e2π2ω0 − e−2π2ω0

)
.

Thus the total bosonic boundary state is given by

exp

(
−

∞∑
n=1

aiN†
n ãiN†

n − 1

2

(
a
iN†
0

)2 − a
i′N†
n ã

i′N†
n − 1

2

(
a
i′N†
0

)2)
,
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ators

sing
dary state
on

d to
exp

(
1

2

(
a
iD†
0 − i

√
2ω0

α′ x
iD
0

)2

+
∞∑
n=1

aiD†
n ãiD†

n

)
,

(3.8)exp

(
1

2

(
a
i′D†
0 − i

√
2ω0

α′ x
i′D
0

)2

+
∞∑
n=1

a
i′D†
n ã

i′D†
n

)
|0〉,

where the bosonic vacuum|0〉 is annihilated by all lowering operators associated with the raising oper
appearing in the expression.

Now the boundary condition for the fermions at the open string channel

(3.9)ψ1±
∣∣
σ=0 = ηψ2∓

∣∣
σ=0

is translated into the conditions at the closed string channel

(3.10)ψ1±
∣∣
τ=0 = iηψ2∓

∣∣
τ=0.

Fromψ1− = iηψ2+ at τ = 0, we obtain

(3.11)χ† = −ηΩγ 4χ, χ = ηΩγ 4χ†

which are equivalent if we useγ 4Ωγ 4Ω = Ωγ 4Ωγ 4 = −1, which can be proved by using the fact thatΩ andγ 4

are either commute or anticommute. For nonzero modes we have

(3.12)ψ̃n = iηΩψ†
n, ψn = −iηΩT ψ̃†

n

which lead to the same boundary state. From the above conditions we obtain

(3.13)exp

(
1

2
ηχ†Ωγ 4χ† + iη

∞∑
n=1

ψ̃†
nΩψ†

n

)
|0〉,

where the fermionic vacuum state|0〉 is annihilated byψn, ψ̃n andχ . Fromψ1+ = iηψ2− at τ = 0 gives

(3.14)χ ′ = −ηΩγ 4χ ′†, χ ′† = ηΩγ 4χ ′

and

(3.15)ψ̃ ′
n = iηΩψ ′†

n , ψ ′
n = −iηΩT ψ̃ ′†

n .

The total fermionic boundary state is given by

(3.16)exp

(
1

2
ηχ†Ωγ 4χ† − 1

2
ηχ ′†Ωγ 4χ ′† + iη

∞∑
n=1

ψ̃†
nΩψ†

n + iη

∞∑
n=1

ψ̃ ′†
n Ωψ ′†

n

)
|0〉,

where the fermionic vacuum|0〉 is annihilated by all of the corresponding lowering operators for the rai
operators appeared in the expressions. The total boundary states are the product of the bosonic boun
and the fermionic one. Boundary states at otherτ = τ0 are generated by the closed string Hamiltonian acting
boundary states atτ = 0, i.e.,|B,τ = τ0〉 = eiX

+Hcτ0|B,τ = 0〉. From now on all boundary states are assume
be those atτ = 0.

Let |B0, η〉 be the boundary states corresponding to the D-branes located atx0 with η appearing in the definition
of the fermion boundary states and|B1, η

′〉 be an analogous states with different values ofx1 andη′. Let 〈B1, η
′|
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e work
be the CPT conjugate states for|B1, η
′〉. The evaluation of the overlap of the boundary state leads to

ZC =
∞∫

0

d2 〈B1, η
′|e−2π2X+HC |B2, η〉

=
∫

d2
(1− ηη′e−4π2ω0)2(1− ηη′∏∞

n=1 e
−4π2ωn)4(1− ηη′∏∞

n=1 e
−4π2ω′

n)4

(1− e−4π2ω0)2(1−∏∞
n=1 e

−4π2ωn)4(1−∏∞
n=1 e

−4π2ω′
n)4

× exp

(
− ω̂0

2α′
((�xD

0

)2 + (�xD
1

)2))exp

(
− ω̂0

2α′
(e22ω̂0π + e−22ω̂0π)((�xD

1 )2 + (�xD
0 )2) − 4�xD

1 · �xD
0

e22ω̂0π − e−22ω̂0π

)

× exp

(
− ω̂′

0

2α′
((�x ′D

0

)2 + (�x ′D
1

)2))exp

(
− ω̂′

0

2α′
(e22ω̂′

0π + e−22ω̂′
0π)((�x ′D

1 )2 + (�x ′D
0 )2)− 4�x ′D

1 · �x ′D
0

e22ω̂′
0π − e−22ω̂′

0π

)
.

For the DpDp boundary condition we haveηη′ = 1 and DpDp̄ boundary condition we haveηη′ = −1. In
the process of the calculation we crucially use the factγ 4Ωγ 4Ω = −1. SinceΩ commutes withγ 12349, two
supermultiplets can be separately dealt with. One can check that the above result is coincident with the op
results up to overall normalization factor which can be absorbed into the normalization factor of the bounda
This provides a consistency check for the boundary state construction carried out here.
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