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Abstract

No-scale models arise in many compactifications of string theory and supergravity, the most prominent recent example being
type 1B flux compactifications. Focussing on the case where the no-scale field is a single unstabilized volume modulus (radion),
we analyse the general form of supergravity loop corrections that affect the no-scale structure of the Kéhler potential. These
corrections contribute to the 4d scalar potential of the radion in a way that is similar to the Casimir effect. We discuss the
interplay of this loop effect with string-theoreti¢ corrections and its possible role in the stabilization of the radion.

0 2005 Elsevier B.VOpen access under CC BY license,

In flux compactifications of type 11B supergravity, bative corrections generically renormalize the Kahler
all complex structure moduli and the dilaton are gener- potential, destroy the no-scale structure and lift the flat
ically fixed by the non-trivial superpotential induced directions. We will be interested in loop corrections
by the 3-form field strengtfL,2]. However, this super-  to the no-scale Kéhler potential of the volume mod-
potential is independent of the Kéhler moduli. Even ulus T (the radion). In the large-volume limit, such
if supersymmetry is broken by the non-zero vacuum corrections should be calculable within the low-energy
expectation value of the superpotentid| one of the effective field theory. They are potentially relevant for
flat directions associated with the Kahler moduli sur- the stabilization of the radion and the uplifting to a
vives. The resulting 4d model is of no-scale type and metastable de Sitter vacuyi4].
the no-scale field" is the K&hler modulus related to To understand the supergravity 1-loop corrections,
an overall rescaling of the compact volume. Pertur- we first focus on a situation wher® = 0 and su-

persymmetry is unbroken. We consider the corrections

to the radion kinetic term and to the Einstein—Hilbert
" E-mail addresses: gero@pha.jhu.ed(G. von Gersdorf), term of the 4d effective theory. Before Weyl rescaling,
a.hebecker@thphys.uni-heidelberg(de Hebecker). these corrections are independent of the 10d Planck
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mass and their form can therefore be inferred from di-  We further assume that the effective 4d theory is
mensional arguments. It is then straightforward to de- an N = 1 no-scale mode]5] where the flat direc-
rive the corresponding Kéhler corrections, which are tion R is described by a no-scale fieldwith ReT =

of the form Y(T + T)2, with the compact volume  R*. By comparing Eq(4) with the kinetic term de-
scaling asV ~ (ReT)%?2. After a small non-zerd¥v rived from the standard no-scale Kéhler potenkiak
has been introduced as a perturbation, they induce a—3In(T + T), we find

potentially important contribution to the radion scalar
a=+k(k+2)/3. 5)

potential.
For the purpose of our technical discussion, we first . e

Although our analysis is general, we will primarily fo-

cus on two cases:

adopt a slightly more general perspective. Consider a
d-dimensional supergravity theory, compactified to 4d
on ak-dimensional manifoldd = 4 + k) for which

its total volumeV corresponds to a flat direction. We
write the metric as

e d =5 (k =1) compactifications of minimal 5d su-
pergravity ons'/Z, with supersymmetry broken
by the Scherk—Schwarz mechanigfj. In this
case, the no-scale field is given By= R + i As,

As being the fifth component of the graviphoton.
This is in agreement with the valve= 1 implied

by Eq.(5). The constant superpotential character-
istic of the no-scale model is proportional to the
Scherk—Schwarz parameter. This simple and fa-

ds2=g,w dx*dx’ + R(x)zgmn dy™ dy", (1)

where Greek and Latin indices run over.0,3
and §...,d, respectively, and the decomposition
gmn = R?Zmy is defined in such a way that the vol-
ume of the compact space measured with the metric

Zmn is 1. The physical volume i¥ = R¥. In spite of
its various interesting physical effed®], we neglect

for simplicity the possible warp factor, i.e., we assume

that g,,, does not depend on This is justified in the

miliar example will provide us with a useful con-
sistency check for our results.

d = 10 (k = 6) flux compactifications of type IIB
string theory, where the internal compact space is

large volume limit.

Assuming that the fundamental-dimensional
Einstein—Hilbert term has coefficieM?~2/2, the 4d
action reads

a Calabi—Yau orientifold. These indeed result in a
no-scale model with no-scale field = R* + ib

[2], whereb = Im T stems from the dimensional
reduction of the RR four form. Note that, again,

4 . M2 the relation between REéandR is correctly given
S =/d X /8(MR)"—- by the exponent of Eq5).
2
X [R"‘k(k - D@INR)" - ] @) Perturbative correctiona K to the Kahler potential

whereR is the 4d curvature scalar. A possible dila- generically destroy the no-scale structure. After su-
ton dependence of the coefficieht? =2 has not been ~ Persymmetry is broken by the addition of a constant
made manifest since we assume that the dilaton (asSuperpotentia (which we consider to be a paramet-

well as other moduli) are stabilized at a high scale. rically small effect), this Kahler correction generates a

We now setM = 1 and perform a Weyl rescaling non-trivial potential for the volume modulus. A com-
mon approach in field-theoretic model building is to

calculate this potential (i.e., the Casimir energy) and,
if required, to infer the corresponding Kahler correc-
tion (see, e.gJ8] and, in particulan9]).

Here, we instead consider the Kahler correction di-
rectly in the model withw = 0, i.e., before SUSY
breaking. We identify the structure of K from the

guv — R_kg;uh 3
which takes us to the Einstein frame action

S:/d“x@[%?%— k(k +2)

Note that the reason for our very explicit derivation of
this familiar action is the importance of the interme-
diate form, Eq.(2), for the subsequent discussion of 1 gor the relation of 5d Scherk-Schwarz breaking to 4d no-scale
gquantum corrections. models see Ref7].

(8InR)2+--}. (4)
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corrections to the kinetic term of the fiel® and to
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term

the 4d Einstein term. These corrections are most eas-

ily understood in the 4d action before Weyl rescaling,
Eq.(2).

The tree-level action is invariant under shifts in
ImT and we can expect the 1-loop correction to
respect this symmetry. The finite corrections, to be
added to the action of E¢R), then take the form

AS:/d4x JE[F(R)R+G(R)(3R)2], (6)
i.e., there is no explicit dependence on(im.

The form of the functiong’ andG follows from di-
mensional arguments. At 1-loop, the corrections arise
simply from the propagation of-dimensional free
fields in the compact space. Alternatively, one may
say that they arise from a summation of a Kaluza—
Klein tower of 4d fields with mass splitting 1/R.

In any case, th&-dimensional Planck mas¥ does

not enter these corrections and the only scale known
to these corrections is the compactification radius
Thus, from the requirement of a dimensionless 4d ac-
tion, we haveF(R) ~ 1/R? and G(R) ~ 1/R%, i.e.,

the corrections are

R?R and R *OR)> (7)

In the above, we have pretended that the field-
theoretic one-loop corrections are finite. If they are
not, a UV cutoff scale (say the string scal§ enters
the result. However, such cutoff-dependent contribu-
tions can always be absorbed in a log¢adimensional
action (including higher-dimension operators). The
leading operators relevant for us are those of &).

(a d-dimensional cosmological constant is not gener-
ated in supersymmetric theories). Subdominant terms
may be important. For example, thé corrections of
[10] (see alsd11]) considered recently in this context
[12] are of this type. Our present result of K@) is
limited to those corrections which cannot be viewed
as the dimensional reductions @fdimensional local
operators.

The terms in Eq(7) correspond to the operators be-
fore Weyl rescaling. Going to the Einstein frarhee
find that both operators give corrections to the kinetic

2 Note that the Weyl rescaling has to be modified in the presence
of the first operator in E((7).

(R . )R, (8)

where “ ..’ stand for terms which are suppressed by
inverse powers oR in the limit R — oco. Rewriting
Eq.(8) in terms ofT, we see that we needsK which
induces a kinetic term

(T +T)" 2T . oT. 9)

We conclude that

_k+2  [Bkt2

o

with

c
(T+T) (10)
We now have all the necessary information to calcu-
late the form of the one-loop potential f&rthat arises
if a non-zeroW is included. Using the standard su-
pergravity formula for the scalar potential we find the
Einstein-frame result

VCEasimir(R) ~WIA(T +T)= 3, (12)

The numerical prefactor, which we have suppressed in
the above expression, includes a tarta — 1). This
vanishes forc = 0 andc = 1, i.e., in the two cases
whereAK preserves the no-scale structure (at least in
the largeR limit).

Returning to the frame used in EqR) and (6)
(which we will refer to as the Brans—Dicke frame) by
undoing the Weyl rescaling E¢B), we find

BD

VER i R) ~ |W 2R3 +h=2, (12)

In the example of the 5d compactification ot
or Sl/Zz with Scherk—Schwarz SUSY breaking,
this gives the well-known 1-loop potentid (R) ~
|W|2R—*. Since the Scherk-Schwarz parameter is
dimensionless, this correction has to behave as one
would expect in a massless non-SUSY field theory on
dimensional grounds. Indeed, tRe* behaviour is the
familiar scaling of the Casimir energy, which ensures
that the 4d potential has mass dimension 4.

In the case of 10d flux compactifications, which is
our primary interest in this Letter, we obtain a correc-
tion

Vil R) ~ [W|°R ™%, (13)

This has to be compared with the perturbative string-
theoretic §’) correctiong[10,12] recently considered
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in this context, which scale as models (with knownc,/), one could attempt to iso-
VED(R) ~ [W[2R - (14) Ia_lte geometries where the.aboye minirr_\um. occurs ac-
o : cidentally at largeR. Work in this direction is under
Even though our Casimir correction is subdominant, it way [16]. In the absence of a detailed study based on
is clearly less so than non-perturbative corrections to such explicit results, we can make the following pro-
the superpotential, which are expected to be exponen-posal for how a large value dtmin may arise: Recall

tially suppressed at large volume. that ¢, is proportional to the Euler number of the
Thus, if a (meta-)stable minimum at large volume underlying manifold. We can now think of a topolog-
can be found in the combined potential ically complicated space, where the two Hodge num-
bershl1 andn?1 are large whiley = 2(ht1 — h21)
BD 2 -6 _ p—8 ; L .
VEE(R) ~ (W (Co/R + ccasimir® ) (15) is small. In this limit one might expect that, because

one may hope that this result will survive a more de- 0f the large number of light fields (and the presumably

tailed analysis. Naively, such a minimum appears at  large number of corresponding Kaluza—Klein towers),
Alccasimi the coefficientcasimirwill be large. Thus, stabilization
2 =t (16) at largeRmin should naturally occur.

3lew] To summarize, we have derived the parametrical
whenevere,, < 0 andccasimir > 0. However, as long  form of 1-loop supergravity Kahler corrections to the
as this value cannot be made parametrically large, volume modulus of type 1IB flux compactifications.
there is clearly no reason to neglect higher-order and We have found the leading finite correction to be of
non-perturbative corrections. the formAK ~ 1/(T + T)? with ReT ~ R* ~ V2/3,

A similar situation has recently been discussed in In the presence of a non-zero vacuum value of the
the 5d field-theoretic context, where the interplay of superpotential, this gives rise to a scalar poten-
1- and 2-loop Casimir energy effects was used to sta- tial of the form|W|2/R8, which is subdominant rel-
bilize a 5d model in a controlled wgy 3] (for earlier ative to the potential contributiof |2/R® induced
related ideas see, e.q14]). The key there was the by o’ corrections. We note that our correction, which
possibility of finding a class of models with a hierar- resembles the Casimir energy effect discussed exten-
chy between the coefficients of the two leading terms sively in field-theoretic models, is dominant for man-
in the 1/ R expansion. ifold with vanishing Euler number. Furthermore, for

The obvious parameter that could create such a hi- specific compact spaces, this Casimir correction may
erarchy in the present context is the valuecofTo see combine with thex” correction to ensure volume sta-
this in more detail, we write the type 1B supergrav- bilization at largeR. We expect the Casimir correction
ity action not in terms o&’ and the dilaton, but rather  discussed in this Letter to be relevant for a wide class
in terms ofa’ and the 10d Planck magg. Then the of models and stabilization mechanisms.
tree-level part depends only af while thea’ cor-
rection (and therefore the coefficiety’) involve an
explicit factora’3. Sinceccasimir depends only on the  Note added in proof
tree-level supergravity action, we conclude that

After submission of this Letter, a closely related
(RminM)? ~ 1/(M6°‘/3)’ 17 string calculation appeardi7].
which will be large at smalk’. Unfortunately, this
corresponds to the strong coupling regime of string
theory. By theS self duality of the type IIB theory, = Acknowledgements
the smalle’ regime has a dual description with Regge

sloped’ ~ o’ ~1. We expec@&’ corrections to arise in We would like to thank Jonathan Bagger, Boris
this theory, implying that the coefficient of the—® Kors, Jan Louis, Claudio Scrucca, Minho Son,
term can never be made small. Michele Trapletti and Alexander Westphal for helpful
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