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1. Introduction

There have been many works on finite element methods for the fourth order partial differential equations (PDEs, for
short), of course, containing the bi-harmonic equation as well, such as in [1-12,25,26] and so on. The problems described
by bi-harmonic equations arise from fluid mechanics and solid mechanics, such as bending of elastic plates. For the fourth
order PDEs, the mixed finite elements scheme is naturally introduced, which will reduce the order of PDEs in the mixed
system so as to be solved easily. There has been much research about mixed finite element methods for the 4th order PDEs,
for example, Ciarlet-Raviart elements, Herrmann-Miyoshi elements, Hellan-Herrmann-Johnson elements. More details
can be found in [13,4-6,9-12] and the references cited therein. Among the mixed finite element methods, Ciarlet-Raviart
mixed finite element method of the piecewise linear elements is the special case, for which the weaker convergent rate
was proved by Scholz in [12]. Optimal control problems governed by the fourth order PDEs also are encountered in many
engineering applications. In [14], Li and Liu introduced a mixed finite element method for the optimal boundary control
problem governed by the bi-harmonic equation.

The purpose of this article is to research the C-R mixed finite element method for the optimal distributed control
problem governed by the bi-harmonic equations. We investigate the a priori error estimate of the mixed finite element
approximation. In the analysis of the a priori error estimates, we improve Scholz’s results in [12] for the piecewise linear
C-R mixed elements and other C-R mixed elements of polynomial of higher degree in [6,11].

The paper is organized as follows. The model description and the notations used throughout the article are introduced,
and also the optimality conditions are given in Section 2. In Section 3, the mixed finite element approximation of the optimal
control problem is presented. The a priori error estimates are given and are proved in Section 4. At last, in Section 5, some
numerical experiments are performed to confirm the a priori error estimate given in Section 4.
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2. Optimal control problem

Let £2 be a convex domain in R? with the Lipschitz boundary 952. In this paper, we adopt the standard notations W™9(£2)
for the Sobolev spaces on £2 with norm || - ||;m 4. and seminorm | - |;m 4 0. Let Wy (22) = {w € W™9(£2) : w|ye = 0} for

m > 1and denote W™2(§2) (W 2((2))by H™(£2) (Hy'(£2)) with the norm || - ||, and seminorm | - |, . SetV = H (£2),
W =H'(£2)and U = [2(£2). Defme the functional:

1
Jé, v)=5{/(z—yd)2+f(Az>2+a/(v—uo)2}.
2 2 2

Consider the following constrained optimal-control problem:
min J(z, v) (2.1)
vek

governed by the first bi-harmonic equation:

A’z=f+v, ing,
a .
z:—Z:O, onds2, (2.2)
an

where K = {v € [?(2), v > 0} is a closed convex set in L?(£2), y4 € L>(£2) is the observation, f € [?(£2) and ug in [?(£2)
are given functions, « > 0 is a constant.
We will use the mixed form to approach the state equation. Introduce the auxiliary variable:

q=—Az

and define the functional'

4(z,q,v) = f(z—ya)2 /q2+af(v—uo)2].

Then the problem (2.1)-(2.2) can be rewritten as

min 4(z, q, v) (2.3)
vek
subject to
—Az=g¢q, in§2,
—Aqaijrv, in £2, (2.4)
z=— =0, onads2.
an
To construct the mixed finite element approximation of the above optimal control problem, we first give its weak form:
min g(z, q, v) (2.5)
vek
subject to

(2.6)

(qw)—(Vz,Vw) =0, YweW,
(Vq,Vry=( +v,r), VYrev,

where (., -) is the inner product in L?(£2).

It has been proved, (for example, see the Chapter 2 of [15]), that the convex optimal control problem (2.5)-(2.6) has
the unique solution (y, p, u) and that a triplet (y, p, u) is the solution of (2.5)-(2.6) if and only if there is a co-state
*, p*) € V x W such that (y, p, u, y*, p*) satisfies the following optimality conditions :

@@, w) —(Vy,Vw) =0, VweWw,

(b) (Vp,Vv) = (f +u,v), YveV,

() 0%, w) — (Vy*, Vw) = (—p,w), YweW, (2.7)
(d) (Vp*, Vv) = (y —y4,v), YveV,

() (x(u—1up)+y*,z—u)>0, Vzek.

It follows from (2.7)(e) that

)
)
)
)

1
u= max{O, ——y*+ uo}. (2.8)
o

The nonlinear system (2.7) gives another approach to solve the optimal control problem (2.5)-(2.6), which suits to be solved
by mixed finite element methods. The following lemma gives the regularity of the solution of the first bi-harmonic equation.
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Lemma 2.1 ([1,3]). Let £2 be a convex polygon and F € H~'(£2). The solution yr of the boundary value problem

d
—A%yp =F, ing, w:%:o, on 952

isin H3(£2), and (vr, pr), (PF = — Ayr), is the unique solution of the mixed system:

{(pp, w) — (Vyp, Vw) =0, YweWw, (29)

(va,VU):(F,U)), VUEV,
where (-, -) stands for the dual product on H=1(§2) x H'(§2). Moreover, there exist C > 0, such that for all F,
lyells,e + lIpelle < ClIFl-1,0. (2.10)

As the consequence, we have the conclusion on the regularity of the solution of the optimal control system.

Lemma 2.2. Let §2 be a convex polygon. There exists the constant C such that

Iylse + 1y lse + lIplhe + IP*lhe < C[||Uo||o,:z + Ifllo.2 + ||Yd||0.:z}, (2.11)
where C is independent of ||fllo, 2, l1Yallo,2 and [[uollo, -
Proof. Let y; satisfy

o

Ay =f, inQ2; y=
on

=0, onads2.
It follows from Lemma 2.1 that

lyills.e < Clifllo,-
Since (y, u) is the solution of the optimal control problem, hence

1 2 2 2
Jy, v EJ@I’O)ZE{f W1 —ya) +/(AJ/1) -I—Ot[uo}
2 7} 2
such that

allully o < 2(alluolly o +J, w) < 3ellugllg o + 2ly1ll5 o + 1AV115.0 + 2llyall o
which leads to

lulloa < {luollo.s + Ifllo.e + IVallo.c | (2.12)

Again using Lemma 2.1, we know that

Iplha < ¥lsa < C{Ifllo.c + luloe | = {luolos + Iflo.c + Ivalos]- (213)
On the other hand, the system (2.7) (c)-(d) lead to

pr=—-Ay"—p, —Ap"=y-—-y
such that
2. % . * ay*
AY' =f+u+y—ys, inf2; y'= o =0, onds.

As the results of Lemma 2.1, we know that
1y ls.2 = G{Ifloe + Nl + 1y = yelloe | = C{lluollo.c + Ifllo.c + Wallo.o (2.14)
such that

1" l.e =< 1Yl + Iple < C{luslloq + Ifllo.e + Iallo}- (2.15)
The proof of Lemma 2.2 is completed. O

Lemma 2.3. Let £2 be a convex polygon. For 1 < q < oo, if ug € WH9(2), thenu € W9(£2) and

lulliq.0 = C{luolas + Iflo.c + Ivalos]- (2.16)

The a priori estimate (2.16) is the direct result of (2.8) and (2.11).
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3. Mixed finite element approximation

Let us consider the approximation of the control problem (2.5). Here we consider only n-simplex elements, as they are
widely used in engineering applications. For simplicity, we assume that §2 is a polygonal domain.
Let T" be a partitioning of £2 into disjoint regular n-simplices 7 such that 2 = U, ern T, in which each element has at

most one face on 352, and T and 7’ have either only one common vertex or a whole edge or faceif r and 7’ € Th. Associated
with T" is a finite dimensional subspace W" of C(£2), such that x|, are polynomial function of the degree lesser than and
equaltok, (k > 1), foreach x € W"and v € T".Let V" = W"NH}(£2).1tis easy to see that V! C V, W" C W and V" C W".

Let T/ be another partitioning of £2 into disjoint regular n-simplices 7y such that 2 = Us, el Ty. Assume that 7y and T,
have at most either only one common vertex or a whole edge or face if 7y and 7, € T/\. Associated with T}} is another finite

dimensional subspace U" of L?(£2), such that zy|, is a constant for eachz, € U"and 7y € T} Define K" = {z, € U"; z, > 0}
as the approximation of K.

Set h(hy) denote the maximum diameter of the element 7 (7y) in T" (Tl’}). In addition, c and C denote some general positive
constants and ¢ and § some arbitrary small positive constants, which are independent of h and hy,.

The mixed finite element approximation of (2.5)-(2.6) is as follows:

min 4 (zn, gn, Vi) (3.1

vpekh

subject to
(qn, wn) — (Vzy, Vwy) =0, Ywy € Wh,

(Van, Vry) = (f +vp, 1), Y€ V.

Again, similar to the exact case, it can be proved that the control problem (3.1)-(3.2) has the unique solution (yp, ps, un),
and thata triplet (v4, pp, up) € V" x W" x U" is the solution of (3.1)-(3.2) if and only if there is a co-state (y}, p}) € V" x W"
such that (yn, pn, un, ¥, pj;) satisfies the following discretized optimality conditions:

a) (pr, wn) — (Vyn, Vwy) =0, Vwy, € W,

b) (Vpn, Vup) = (f +up, vy), Vop € V",

) (P} w) — (Vy;. Vwn) = (=pp, wy), Y wy € W', (3.3)
d) (Vp;, Von) = U — ya. vn), Yo € VP,

(e) (cr(up — up) + yj.zn —up) =0, Vzy € K"
It follows from (3.3)(e) that

(32)
(
(
(
(

1
Uy = max{O, —— Py + Phuo}, (3.4)
o

where &, is the L-projection from L?(£2) on to U" such that

(Phz.qn) = (. qn), Y aqp € UM
It is obvious that

1
:7)2|1—U:m/‘ z, VTUeThU.
u

4. A priori error estimate

In this section, we analyze the a priori error estimates for the mixed finite element approximation (3.3). We need some
regularity assumptions. One is that there exists the constant C; such that

ol + Il + 1y llse <G, fork=1,
luolle + IVllkrr.e + 1y llkr1e <G fork > 2.

In the cases of k = 1 and k = 2, it follows from Lemma 2.2 that the condition (H1) holds. Another is that there exists the
constant C; such that

(H1)

luoll.e + I¥ls.e + 1¥* 5.0 + IYl2.0.0 + 1Y l20e < G, o fork=1,
ol + Iyl 3 o + ||y*||k+%,g + Y lltt.00.2 + IV k1,000 < G fork > 2.

We will see that there exits better convergent rate for the co-state under the stronger condition (H2). The main conclusion
is the following theorem.

(H2)

Theorem 4.1. Let (y, p, u, y*, p*) and (yn, pn, Un, ¥y, b)) be the solutions of (2.7) and (3.3), respectively. Assume that the
condition (H1) holds.
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In the case of k = 1, there hold the a priori error estimates:

lu =il + Iy = yalle + Iy = yilha < C{hy +h'] (4.1)
and

1
I = prlloe + IP* = pillo.e = Cfhy+ 3], (42)

where 0 < ¢ <« 1and C is the constant dependent upon & and C; but not h and hy.
In the case of k > 2, there hold the a priori error estimates:

=il + Iy = yalle + Iy = il = Cfhy + 1] (43)
and

1P = Pilo.c + Ip* = Pillo.e = Clhy+ A"}, (44)

where C is the constant dependent upon 61 but not h and hy.
Furthermore, if the condition (H2) holds, then

1
Ip = prlloe + 1P = Billo.e = Clhu + 12, (45)

where C is the constant dependent upon C, but not h and hy.

Before the proof of Theorem 4.1, we remark that the results in Theorem 4.1 improve Scholz’s results in [12]. For the
piecewise linear C-R mixed element system

(a) (pn, wy) — (Vyn, Vwy) =0, Y wy, € Wh,

(b) (VDn, Vo) = (f + up, va), Y up € V"
Scholz proved the following a priori error estimate:

(4.6)

1
Ip = prllo.e < Ch2[Inh||ylls.e, Iy = yulle < CR**|Inhlllylls.e.
From Theorem 4.1 in the case of k = 1, we get the a priori error estimate

1 _
Iy = yall1.e + hZllp — pallo.e < CR'*llylls.e
and

1
Ip = Pilo.c < Ch3{I¥lls.0 + Il -
So (4.1)-(4.5) are better results. In the case k > 2, the following result is given in [1,6,16,11]:

Ip = pullo,e < CH* MIyllktr,0-
It follows from Theorem 4.1 that

_1

Ip — pallo.e < Ch* 2.

This also is the better result.
To derive the a priori error estimates, we need the following useful lemmas.

Lemma 4.1 ([17,12]). Define the Riesz operators RY : H}(2) — V" by

(V@ —RW), Vup) =0, Vv, eVl
and R, : H'(2) — W" by

(V(w — Ryw), Vwy) =0, Y wy, € W, / (w — Ryw) = 0,

2

then for 1 < s < oo the following error estimates hold:

IV = R llose < Ch¥vllkrise. Vv e Wy (82), (47)
and

IV(w = Raw)llos.e < CHlwlleprse, ¥ w e WH(e2). (48)

Lemma 4.2. Let Rg be the Riesz operators defined in Lemma 4.1, then there exists the constant C such that

(Vv — Rv), Vwp) < Chz % [v]ls0llwplloe. ¥Ywye W veVnHRQ) (49)
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for k = 1, where 0 < ¢ < 1 and C is the constant dependent upon ¢ but not h, and

(Vv — Rv), Vwy) < CH 2 ollesrmelwillog. Vwn € W v e VAHS (@) (4.10)
and

(Vv = Rpv), Vwp) < Ch* ol ellwnllo e, YV wn € W', veVNHY (), (4.11)
for k > 2, where C is the constant independent of h.

Proof. Divide 2 = |J, . T into two parts 2y and £, where £2; is defined by the boundary triangles corresponding to

the partition T". Then the measure of 2 is of size Ch. Relevantly, w, may be divided into two parts wy; € V" such that
wp1 = wy at the nodes in §2y and wy; = O at the nodes on 352, and wy; € W" such that wy; = 0 at the nodes in §2, and
wpy = wy at the nodes on 942. It follows from Lemma 4.2 and the inverse inequality of the finite element spaces that

(V(v = R), Vwp) = (V(v — Rjv), V(wpi + wr))
= (V(v — Ryv), V)

= / Vwp - V(v — Rgv)
21

IA

0
CliVwrz llo,2,2, IV (v — Ryv)llo,q0,52, I Tll0,91,524

IA

_1 a1
Ch™ 2 |lwpllo,2,02hllv]l2,q0, 2, h %

1
Chat lwallo,211vll2,40.2;

=<
where
1 1 1
-+ —+—=1, 2=<qp =00,
2 qQ q
such that
1_1 1
a2 qo

On the other hand, H!(£2) embeds into L9 (£2) for each 1 < gy < oo in 2-dimensional case such that lvll2,g0.2, < Cllvliz, -
So we have

1_1
[(V(v = Rpv), Vwp)| < Ch27 %0 |wyllo.ellvlse.
This is (4.9) for go = 1/e.
Next, we see that

(V(v — Rv), Vup) = / Vwp - V(v — Rjv)
2

IA

1
Chz [Vwizllo.e, I V(v — RIV) l|so. 2,

p
Ch*lwpllo,oe 1V]lk41,00,22

IA

k—1
Ch*" 2 [|whllo,2 1V llk+1,00,02-

IA

This is (4.10).
Finally, we have

(Vv = Rv), Vuy) < Ch¥ [ Vugllo.elvllkse < CH wnlloellvllict.e-
Thisis (4.11). O
We need to introduce the following auxiliary equations: (y,(u), pr(1)) € V! x W" such that
(@) (ph (W), wp) — (Vyp(w), Vwy) =0, Vwy, € Wh,

I (4.12)
(b) (Vpn(u), Vo) = (f +u, vp), Yy eV
The following lemma gives the error estimate between (y, p) and (y,(u), pn(1)).
Lemma 4.3. Let (y,(u), pr(u)) be the solutions of (4.12). Assume that the condition (H1) holds.
In the case of k = 1, there hold the a priori error estimates:
1
Ip — pr()llo.e < Ch27", (4.13)

where 0 < ¢ < 1and C is the constant dependent upon ¢ and 61 but not h.
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In the case of k > 2, there hold the a priori error estimates:

lp = pr@)lo.0 < CHT, (4.14)
where C is the constant dependent upon 61 but not h.
Furthermore, if the condition (H2) holds, then
Ip = Pr@lloe < CH 3, k=1, (4.15)
where C is the constant dependent upon 62 but not h.

Proof. It is clear that

(@) (p — pr(w), w) — (V(y — ya (), Vwy) =0, Vwy € Wh,
(b) (V(p — pn(w)), Vop) =0, VYo, e V"

such that

(Rnp — prn(u), Rpp — pr(@)) = (Rap — p, Rnp — pr(W)) + (V(y — yn(W)), V(Rpp — pn(1))) (4.16)

= (Rup — p, Rup — pr(W) + (V(y = RpY), V(Rup — pa(w))). '
In the case of k = 1, it follows from (4.16) and (4.9) that
1_

(Rnp — pn(u), Rpp — pr(w)) < C{hllpllm +h2"ylls.e } IRp — PrWlo, 2

such that
1_

IRwp — pr(lo.e < Ch2™¢|lyll3.0,

which implies
1_

P —prWllo.e < Ch27*|lyll3.0-

This is (4.13).
In the case of k > 2, it follows from (4.16) and (4.10) that

(Rep = P, Rop = P ) = O {Iplli-1.2 + Wllern0 JIRsP = Pr(@) o.c
such that

IRwp = Pr@llo.e < CHMIyllksr, @
which implies

Ip — pr o0 < CH* Myl 0.
This is (4.14).

On the other hand, it follows from (4.16) and (4.11) that
_1 _1

(Rep = P, Rep = p() = C{R 1l g o + B3 1 llt .00 | IRSP = P(@) 0.0

such that
_1

IRwp = Pr(@lloe < W2 { IVl 3.0 + I¥li .02

which implies
_1

I = Pr@llog = CH Iyl 3 0 + 1¥lks1.00
This is (4.15). The proof of Lemma 4.3 is completed. O
Lemma 4.4. Let (y;(u), pr(u)) be the solutions of (4.12). Then under the condition (H1) , there hold

Iy —yn@)ll1.e < Ch'™* (4.17)
for k =1, where 0 < ¢ < 1and C is the constant dependent upon & and 61 but not h, and

Iy — ya@ll1,e < Ch* (4.18)

for k > 2, where C depends upon 61 but not h.
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Proof. By taking w = y — y,(u) in (2.9), we obtain
(Vpp, V(y — yn(W))) = (F,y — yn(w)).
We need to estimate the term (Vpg, V(y — yn(u))), i.e.,

(Vpr, Vi = yn)) = (p — pn(w), pr) + [(VPr, VY — yr(W))) — (p — pr(w), pr)]. (4.19)

Bound the two terms of the right hand side of (4.19) one by one.
In the case of k = 1, we have

(Vpr, V¥ —yn(W))) — (0 — pn(w), pr) = (V(pr — Rupr), VY — yn(w))) — (p — pr(W), pr — RnDF)
= (V(pr — Rupe), V(y — RWY)) — (p — pi(u), pr — Rupr)

< | Wlle.e + Ip = Pa@ o0 | IVPE .-
Then, it follows from Lemmas 4.2 and 2.2 that

(» — pr(w), pr) = (Vyr, V(p — pr(u)))
= (V(r — Ryr), V(i — Rup)) + (V(vF — R\YE), V(Rup — pr(1)))

1_
c|hlpllselyelzg + 3~ IR = pa(wlo.c el |

IA

< cfnlplhe +hIls.0 fivels.c
such that
|(Vpe, V(v — yn(u)))| < Ch'™* ||}’||3,:zi||PF||1,:2 + ||J/F||3,:z} < Ch'*|ylls.elIFll-1.q- (4.20)
Thus we obtain the estimate for [|y(un) — yall1,e
(F,y — yn(u))
ly—yn@l1e = sup ————
FeH—1(£2) IFll-1.2
(Vpp, V(y — yn(W)))
= sup
FeH-1(2) IFIl-1,2
< Ch'*|yls.e.

This is (4.17).
In the case of k > 2, we have

(VPe, V(i — yn())) — (0 — pr(w), pr) = (V(br — Rupr), V(y — RY)) — (p — pu(u), pr — Rupr)
ClH W llrn.e +hllp = o llog | IPrlo.c
Ch* [ VDE o,

IA

IA

On the other hand, it follows from Lemmas 4.2 and 2.2 that
(® — o), pr) = (VF — Royp), V(0 — Rup)) + (V(F — RRYF), V(Rup — pi(1)))

= c{HIPll-1.2 ¥ 2.0 + BV Rup = pr()llo.0 Ve 3.0}
= c{HIles2 Vel + IR = Pa@ 0.2 el |
< Chllylls.e
such that
(Ve V& = ya@))] < CHE|IF ]| -1, (421)

We obtain the estimate for ||y(up) — yull1.

(F,y —yn(w)
ly —ya@lrg = sup —— < chk,

FeH=1(2) ||F||—l,s’2 -

The proof of Lemma 4.4 is completed. O
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As the consequence, we have the following conclusion.

Lemma 4.5. Let (y,p,u,y*,p*) and (Y, P, Un, ¥y, b)) be the solutions of (2.7) and (3.3), respectively. Assume that the
condition (H1) holds. Then

Iy =il < ¢{Iu = usllo.o +h'~*} (422)
and

Ip = Pallo.e < C{llu = ullo.c + 3~} (423)
for k =1, where 0 < ¢ < 1and C depends upon ¢ and 61 but not h, and

Iy = yallne = C{iu—wnlo + 1) (424)
and

Ip = Pallo.e < C{llu = ulo.c + 1"} (425)
for k > 2, where C depends upon 61 but not h. Furthermore if the condition (H2), then

Ip = pallo.e = Cfllu = wlo.c + 13} k=1, (426)

where C only depends upon C, but not h.

Proof. It follows from (3.3) and (4.12) that

(a) (pn — pa(w), wp) — (V(¥h — ya(w)), Vwy) =0, ¥ wy € W,

N (4.27)
(b) (V(pr — pr(w)), Vup) = (U — up, wy), VYo €V
Taking y» — yn(u) € V" in (4.27)(a), we get
IV = ya@)G o = (VO = ya()), V¥ — ya()))
= (pn — pr(W), Yo — Ya(W) < lIpn — P llo.2 Il¥n — Yn(Wllo. 2,
which leads to
IV —yn@)lh,e < lpn — pe@)llo, -
Taking w, = pn — pp(u) in (4.27)(a), we have
Ipn — PRI o = (Vh — ya@)), V(pr — pr()))
= (U —up, Yp —Ya(W)) < llu—unllo,2lyn — ynWllo,2-
Thus we obtained
lpn — @ llo.2 + lyn — yn@W 1.2 < Cllu — upllo, - (4.28)

Noting that

lp — pullo,e < IIp — PrWllo,2 + IPnW) — prllo,2»
ly = ynllie =y —yn@lh,e + lya(@) — yull,e

and using (4.28), Lemmas 4.3 and 4.4, we derive (4.22)-(4.26). The proof of Lemma 4.5 ends. O

Next, to estimate the term ||u — uy|lo,2, we need to introduce another auxiliary equations: (y; (u), p;(u)) € vh x wh
such that

(@) (P (W), wp) — (Vy; (), Vwp) = (—pp(u), wy), Y wy € W,
(b) (VP (), Vuy) = (ya(u) — yg, vn), Yvp e VM.

Now we are in the position of deducing the estimates for y* — y}:(u) and p* — pj;(u).

(4.29)
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Lemma 4.6. Let (y*, p*, u) and (y} (u), pj (u)) be the solutions of (2.7) and (4.29), respectively. Then under the condition (H1) ,

there holds

1_ "
IP* — PhWllo.e < Ch2™* +8]ly* —yrWllo.2
for k = 1, where 0 < ¢, 8 < 1and C only depends upon ¢, § and @1 but not h, and

Ip* — PiWllo.e < CH*' 4+ 8lly* — yiWllo.e

for k > 2, where C only depends upon 61 but not h. Furthermore, under the condition (H2), there holds

Ip* = D@ llo.e < CH2 +8ly* —yi@lloe. k=1,
where C only depends upon 62 but not h.
Proof. The proof of the estimate for ||[p*(yn) — pjllo, is similar to that in Lemma 4.3. It is clear that
@) " — pr). wp) — (VO = yi(w), Vwy) = (pa(u) —p. wp), Y wy € W',
(b) (V(p* — p(w), Vop) = (v — yn(u), v4), Vv, € V"
such that
(V(Rwp* — P (w)). Vo) = (V(p* = pj(w)), Vvn) = (v — ya(w), vp), Y vp € V",
which implies
(Rp™ — pp (), Rap™ — py(w)) = (Rpp” — p*, Rap™ — p (W) + (V" — yp (W),
V(Rwp* — p(W))) + (pa (W) — p, Rup™ — p ()
= (Rup" — p*, Rup* — pr () + (V" — Rpy"),
VRip" = pp W) — (v = yaW), y* = RY") + v = yu W), ¥* = ¥ (w))
+ (Pr(W) — p, Rap™ — py ().
In the case of k = 1, it follows from (4.33) and (4.9) that

1_ *
(Rup™ — pj(u), Rep™ — p(w)) < Cl(hllp*lll,g +llp = Pr@llo.e +h2~*lly*ll3,2) IRep™ — Py W lo,e

+h'" 7 yllsely* = yillo.e + 1y 2. Ilylls,o}
such that

1
Ip* — Py Wllo,e < Ch2™° 4+ 8[ly* — ¥y Wllo, -

This (4.30).
In the case of k > 2, it follows from (4.33) and (4.10) that

Rep” = 0, Rop” = i) < C{[H (1" ler. + 13 lksr.2) + 1P = Pr(@) o2 IRD" = P00

+H Y2y = Vi@ lo.g + 1Y T2 I lken.o )
such that

Ip* — prllo.e < CH" +8lly* — yiwllo.o-

This (4.31).
Furthermore, it follows from (4.33) and (4.11) that

_1 * * * *
(Rwp* — pji(u), Ryp* — pi(u)) < Ci[hk 2(Ip -1 lly e+ 1,00,.2) + 1P = pr@) llo,2 ] IRP* — P} W) ll0.2
_1 .
+h* 2(||J/||k+%,g + 1Y lkst.00.2) 1Y = Vi@ llo.e
1ox
Ry 2 (1 3.0 + 1Yk 1.00.2) |

such that

_1 *
Ip* — prllo.e < CH"2 +8]ly* —yr @ llo.e-
This (4.32). Then the proof of Lemma 4.6 is completed. O

(4.30)

(4.31)

(4.32)

(4.33)
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Lemma 4.7. Let (y*, p*, u) and (y; (u), p; (1)) be the solutions of (2.7) and (4.29), respectively. Then under the condition (H1),

there holds the a priori error estimate

Iy* = yih@lhe < Ch'™°

for k =1, where 0 < ¢ < 1and C only depends upon ¢ and 61 but not h, and

Iy* =yl < Ch*
for k > 2, where C only depends upon 61 but not h
Proof. Forany F € H~1(£2), by taking w = Yi(u) — y*in(2.11), we have
(Vpe, Vi (w) —y") = (F, yh (W) —y*).
We now rewrite the term (Vpg, V(y*(uy) — y})) in the following form:
(pr(W) — p* + pr(w) — p, pr) + (Vpe, V() —y)) — (p(w) — p* + pr(u) — p, pr)-
We bound the terms on the right-hand side of (4.37). In the case of k = 1, it follows Lemmas 4.2 and 4.3 that
(pr @) —p* +pa(w) —p,pr) = (V(pp (W) —p*), Vyr) + (V(pn(u) — p), Vyr)
= (Vi) —p), Vr — Ryr)) + (V(pu(u) — p),
V(v — Royr)) + n(u) — y. Royr)
= (VRp* —p"). Vr — Riyp) + (V0 (W) — Rap*),
V(ye — Reye)) + (V(Rap — p), VF — RpyE)) + (V(r(u) — Rap),
Vr = Royr)) + 0n(u) — y. Royr)
C{h(llpllm + 10" 1.2) IyFll2.2 + h%_g(llpﬁ(u) —Rup™llo,2

IA

+ 1Ipa W) — Rupllo, ) I1Vells.e + Ilyn(w) — yllo.o IRAYE ||o,rz}

= cfn = (Wise + 1y 5.2) + 81y = vi@lo.e fIyells.o-
Then, it follows from Lemmas 4.2 and 4.5 that

(Vpr, VW) —y") — (pp(w) — p* + pr(u) — p, pr)
= (VW) — ¥, V(pr — Rupr)) — (0 (W) — p*, pr — Rupr) — (r (W) — P, pr — Ripr)
= (V(R)Y* —y*), V(pr — Rapr)) — (0 (u) — p*, pr — Rupr) — (pn(u) — p, pr — RupF)

< ch{l1y"lla.e + 193 = *llo.0 + IPa(w) = Pllo.e | IPrll1.c-
Combined with the above two estimations and the equality (4.36), we obtained
(Foyh@ —y') = C{h™ + 81y =y llo.e fIvells.e = C[h™ +8ly* = yi@llo.e | IFI-1.0.

which leads to
(F, yp(w) —y*)

lyp =y e = sup ——=" < Ch'"* +5|ly* — yrW)lo.e
ren-12y  IIFll-1.2
such that
Iyi(w) — y*ll1,e < Ch'™".
This is (4.34).

In the case of k > 2, we have
PrW) = p* + pa(w) = p, pr) = (VRup* = p"), VI — Rye) + (V0 () — Rup®), V(v — RYE))
+ (VRup — p). VF — Ryyp)) + (V(pr(w) — Rep), V(¥F — Riyr))
+ (n(u) — ¥, RRye)
< C{hk(”p”k—l,fz + Ip*llk=1,2) lylls.0 + h%(HPZ(U) — Rip*llo, 2

(4.34)

(4.35)

(4.36)

(4.37)
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+ lpnW) — Rupllo,2) 1YEll3,2 + 1y (W) —Y||0,9||R2)/F||0,9]

< cr+ 81y = vi@lo.c | Ivells.-
Then, it follows from Lemmas 4.2 and 4.5 that
(Vpr, VW) —y*) — (py (W) — p* + pn(u) — p, pr)
= (VW —y), V(pr — Rnpr)) — (p, (W) — p*, pr — Rupr) — (Pn(u) — P, Pr — Rnpr)
= (VRY* =y, V(br — RapF)) — (0} (u) — p*, pr — RapF) — (Pr(u) — p, pr — Rupr)
< bWy lksr.2 + h(IP5@) = Pllo.c + 1pa(@) — Pllo.e) }Ipr .o

Combined with the above two estimations and the equality (4.36), we obtained

(F.yp@ —y7) = C{h 438l = vl fIyells.e = [+ 81y = v @llo.c [IFI-1.0.
which leads to

i@ -y e = sup IO ZYD gy sy

FeEH~1(22) IFll-1.2

such that

Iyi @) — y*ll.e < Ch“.
The proof of Lemma 4.7 is completed. O
Lemma 4.8. Let (y;;, p;) and (y; (u), p; (u)) be the solutions of (3.3) and (4.29), respectively. Then

Pk W) — Phllo,e + Ilyp @) — ¥hlle < Cllu — unllo,e- (4.38)
Proof. It is clear that

(@) 0k @) = i, wn) = (VORW = yi), Vwn) = (on — pr(W), wn), YV wy € W,

" " h (4.39)
(b) (V(p (W) — pp), Vop) = Wp(W) — Y, v), Yup €V
By taking wy, = yj(u) — yj, in (4.39)(a), we have
(Pr (W) = i, Y (W) — yp) — (VW =y, VW — i) = (Pn — pr(u), v, (W) — yp)
such that
IVGh ) = yl.q = C{lpn = IR o + 1P} — PhWIE o }-
By taking v, = y; (u) — y; and wy, = pj;(u) — pj in (4.39), we see that
(py (W) = py» Py (W) — ppy) = (Pr — Pr(W), P (W) — pp) + Y (W) — Yn, Y5 W) — ;)
such that
Ipsw) = pilig.o < C{ Iph = P13 o + Iya @) — yall§ o }
Summing the results above, we get
1P ) = Phl3 2 + i@ = Y3lB. = C{lpn = P@I3 o + Iyn(@) =yl - (4.40)

Applying (4.28) into (4.40) leads to (4.34). O

Lemma 4.9. Let (y};, p;) and (yj(u), pj(u)) be the solutions of (3.3) and (4.29), respectively. Then under the condition (H1) ,
there hold

lu —unllo.e < C{hu + h”} (4.41)
for k = 1, where 0 < ¢ < 1and C depends upon & and C; but not h and hy, and
lu—unllo,e = C{hu + h"} (4.42)

for k > 2, where C depends upon 61 but not h and hy.
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Proof. Noting that

() (P (W) — pjis wn) — (Vi) —¥5), Vwy) = (pp — pr(w), wp), ¥ wy € W, (4.43)
() (V(pjiw) — p}), Vup) = (n(u) — yn, v), Yo € V", '

and

(@) (Pr(u) — ph, wp) — (Vu(@) —yp), Vwp) =0, Y wy € WP,

(b) (V(pr(u) — pn), Vo) = (u — up, vp), Yy € V",
and by taking v, = yy (u) — y} in (4.44), we have

(u —un, yy ) —yp) = (VPa) — pn), VoW —y4)

= (pr(W) — Py, Pr() — pr) + (Pu(W) — Ph, Pr(L) — Pp). (4.45)

Then by taking wy = pj;(u) — p;, in (4.44) and v, = yx(u) — yn in (4.40), we have

(pn(W) — pr, P (W) — py) — (Vn(w) — yn), V(pp(w) —pj)) =0

(4.44)

and

(Vpy W) —pp), VW) —yn) = Gr@) — i, yn(W) — yn)
such that

(Pr(u) = pn, P (W) — pp) = Yn(W) — Yh, yn(W) — Yn). (4.46)
We have

a(u — up, u— up) + (pa(u) — pn, Pa(®) — pn) + Ga @) — Yn, yn(U) — yn)
= (U —up, o(u—up) +y" +y,w) —y*) — (u — up, «(up — up) + )
< (u—up, yp(w) —y*) — (u— Ppu, a(up — up) + ¥}, (4.47)
where we use the fact #,u € K" since u > 0 such that its local averaging also is non-negative. So we derive
=l g + W) =yl + o) = palg = C{IVa@) = ¥ I o + B3 (1l o + ol o + 131 ) -
The proof of Lemma 4.9 is completed. O
Now we can prove Theorem 4.1.

Proof of Theorem 4.1. From Lemmas 4.4, 4.7 and 4.8 and under the condition (H1) , we derive
194 = Yilv.e + 1950 = Yilhe < C{hy + '~}

and
IPa@) = Prllo.e + IP3(@) — Pilv.e < C{hy +hi~]

in the case of k = 1, and
9@ = illn2 + Vi@ = Yilha < C{ho + 1}

and
I1Pa@) = Prlloe + IPh(@) = Pilv.e < Cfhy + <]

in the case of k > 2. Furthermore, under the condition (H2), we have
I1Pa@) = Prllo.a + 4@ — Pille < C{hy+ K3}

for k > 1. By using

ly =yullie + 1y =Yillie < 1y —yn@lle + lyn@) = yullie + 1y = yi@lhe + Iy, @ = yhlhie,
lp —prllo.e + IP* = prllo.e < IIp — Pr@llo.2 + IPr(W) — prllo.e + IP* — prWllo.2 + IIP; (W) — pyllo,2»
we can derive (4.1)-(4.2). The proof of Theorem 4.1 is completed. O
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Table 1
Example 1 with k = 1.

u piecewise constant, y, p, y*, p* piecewise linear

h =0.08 h =0.04 =0.02 h =0.01

# nodes 224 783 3007 11800
Mesh # edges 617 2246 8818 34997

# elements 394 1464 5812 23198
DOFs of control 394 1464 5812 23198

state & co-state 224 783 3007 11800

lu — upllo.e 4876e—2 2.530e—2 1.275e—3 6.373e—3

ly = yullie 1.098e—3 5.711e—4 2.847e—4 1.425e—4
Error Ilp — prllo.e 8.286e—4 2.000e—4 7.343e—5 5.810e—5

ly* —yille 2.197e—3 1.142e—3 5.694e—4 2.849e—4

Ip* — pillo.c 8.201e—4 1.956e—4 7.276e—5 5.799e—5

Table 2
Example 1. Convergent rate with k = 1.

u piecewise constant, y, p, y*, p* piecewise linear

h =0.08 h =0.04 h =0.02 h =0.01
[lu — unllo.e 0.96 0.99 1.00
ly = ynll1,2 0.94 1.00 1.00
[lp = pnllo.2 2.05 1.07 0.69
ly* —yille 0.94 1.00 1.00
llp* — Pillo,2 2.07 1.43 0.69

5. Numerical experiments

In this section, we carry out some numerical experiments to demonstrate the a priori error estimates developed in
Section 4. As the model problem, we investigate the optimal control problem (2.1) in £2 = (0, 1)%:

. 1 1 1
minJ(y, u) = —/ vy + —/ (ap? + —/ (u — o) (5.1)
uek 2 Jg 2 Jo 2 Jo
subject to
Azy :f + u, il‘l Q,
a 52
y= 9 0, onas2, (5.2)
on

We perform two numerical experiments. We compute the state and co-state with piecewise linear approximation in the first
example, and then with piecewise quadratic approximation in the second numerical experiment. For the approximation of
the control variable, we only use piecewise constant elements. In computing the solutions, we used the software package:
AFEpack, see [18] for the details.

Example 1. In the first numerical experiment, the date and the exact solution are as follows:
y=x(-x)’6(1-x)%  y =2
p=-4y, p‘=p
Ug = sin(2mwxq) sin(2wx;)
u = max(up — y*, 0)
f=24%—u
yo=y—f—u
Firstly, we approximate the control u by using piecewise constant elements and both the state and the co-state by using
the piecewise linear elements on the same meshes, i.e., h = hy. The error estimates of the control, the state and the co-state
are in the following Table 1.
The convergent rates are put into the Table 2.

From the results shown in Table 2, we may clearly see that the convergence rate of the control, the state and co-state are
order 1, which coincide with our analysis, i.e.,

(a) ”u - uh”O,.Q + ||y —yh||1._q + ||y* _yZ”l,-Q < C{hu + h]_g},

1
(1) 1P — Pullo.e + IP* — pillo.e < c{hu +h3 }
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Table 3
Example 1 with k = 2.

u piecewise constant, y, p, y*, p* piecewise quadratic

h =0.08 h =0.04 h =0.02 h=0.01

# nodes 224 783 3007 11800
mesh # edges 617 2246 8818 34997

# elements 394 1464 5812 23198
DOFs of control 394 1464 5812 23198

state & co-state 841 3029 11825 46797

llu —upllo.e 4.882e—2 2.539e—2 1.275e—2 6.374e—3

Iy —yull1.e 8.026e—5 2.146e—5 5.307e—6 1.331e—6
Error [lp — prllo.e 6.242e—4 2.215e—4 7.534e—5 2.647e—5

ly* = vill,e 1.603e—4 4.284e—5 1.060e—5 2.660e—6

[lp* = pillo,2 6.216e—4 2.209e—4 7.526e—5 2.646e—5

Table 4
Example 1. Convergent rate with k = 2.

u piecewise constant, y, p, y*, p* piecewise quadratic

h = 0.08 h = 0.04 h =0.02 h=0.01
llu — unllo,e 0.94 0.99 1.00
ly —yulli.e 1.90 2.02 2.00
lp — pnllo.2 1.49 1.56 151
ly* —yille 1.93 2.02 1.99
Ip* — P llo.2 1.49 1.55 151

Secondly, we approximate the control u by piecewise constant elements and both the state and co-state by using the
piecewise quadratic elements on the same meshes. The error estimates of the control, the state and the co-state are in the
following Table 3.

The convergent rates are put into the Table 4.

From the results shown in Tables 3 and 4, we may clearly see that the convergence rate of the control is order 1, which
coincide with our analysis, i.e.,

@ lu=tlo.c + Iy = Yalhe + Iy =¥ilhe < C{ho +12).

* 3k 3
(b) Ip = rlloe + IP* = Pillo.o = Cho +h3}.

here hy = h. However the error of the co-state is order 3/2 and the error of the state is order 2. It seems that ||y — yu|l1.c.
lv* — yilli,2, Ip — Prllo,e and |[p* — pillo,e is not effected by hy. These maybe the super-convergence. Similar super-
convergent results of finite element approximations for other optimal control problems governed by the second order PDEs
have been observed and proved by Meyer and Rosch firstly and then others in [19-24]. We will try to prove the super-
convergence for C-R mixed finite element methods of the control problem governed by the first bi-harmonic equation in
the further work.

Example 2. In this example, the date and the exact solutions are as follows:
y = sin®(wxq) sin®(wxy),  y* =2y
p=-4y, p‘=p
Up = 872 sin(rxy) * sin(rx,)
u = max(ug — y*, 0)
f=2a—u
yo=y—f—-u
Firstly, we approximate the control u by piecewise constant elements and both the state and co-state by using the
piecewise linear elements on the same meshes, i.e., h = hy. The error estimates of the control, the state and the co-state are
in the following Table 5.
The convergent rates are put into the Table 6.
From the results shown in Table 6, we may clearly see that the convergence rate of the control and the state are order 1,
which coincide with our analysis.
Secondly, we approximate the control u by piecewise constant elements, and the state and co-state by using the piecewise

quadratic elements on the different meshes, in which h ~ \/hy. The error estimates of the control, the state and the co-state
are in the following Table 7.
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Table 5
Example 2 with k = 1.

u piecewise constant, y, p, y*, p* piecewise linear

h =0.08 h=0.04 =0.02 h=0.01

# nodes 224 782 3005 11817
Mesh # edges 617 2243 8812 35048

# elements 394 1462 5808 23232
DOFs of control 394 1462 5808 23232

state & co-state 224 782 3005 11817

llu — upllo,e 2.709e—0 1.404e—0 7.006e—1 3.507e—1

Iy — yull1.e 2.724e—1 1.398e—1 6.964e—2 3.484e—2
Error Ilp — prllo.e 3.239e—1 8.625e—2 2.344e—2 1.062e—2

ly* = yill,e 5.447e—1 2.796e—1 1.393e—1 6.968e—2

lp* = pjllo, 3.203e—1 8.525e—2 2.321e-2 1.059e—2

Table 6
Example 2. Convergent rate with k = 1.

u piecewise constant, y, p, y*, p* piecewise linear

h = 0.08 h = 0.04 h =0.02 h =0.01
lu — unllo.e 0.95 1.00 1.00
ly = ynll1,2 0.96 1.01 1.00
[lp = pnllo.2 1.91 1.88 1.14
ly* —yillie 1.31 1.00 1.00
llp* = pllo.2 1.91 1.88 1.13

Table 7
Example 2 with k = 2 on different meshes.

u piecewise constant, y, p, y*, p* piecewise quadratic

Mesh1 Mesh2 Mesh3 Mesh4
hy 0.08 0.04 0.02 0.01
u mesh # nodes 305 985 3257 11897
# DOFs 544 1856 6304 23392
h 0.32 0.16 0.08 0.04
y — p mesh # nodes 26 73 224 782
# DOFs 85 261 841 3025
llu — unllo.e 2.358e—0 1.274e—0 6.781e—1 3511e—1
ly — yullie 2.045e—01 5.943e—2 1.176e—2 4612e—3
Error |[p — prllo,2 1.078e—0 2.024e—1 4.055e—2 6.339e—3
ly* = yillie 4.090e—1 1.189%e—1 3.432e—2 9.225e—3
llp* — pillo.2 1.077e—0 2.023e—1 4.054e—2 6.337e—3

In many practical applications, one cares much more about the control. Comparing Table 5 with Table 7, the accuracy of
the two numerical tests are almost equal. But the number of the global freedom of the first test is almost 10 times of the
number of the global freedom of the second test, so that much computational work is saved in the second test. One may use
a very coarse grid to solve the state and the co-state.
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