
 Procedia Computer Science 56 (2015) 284 – 291

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.07.210

ScienceDirect
Available online at www.sciencedirect.com

The 10th International Conference on Future Networks and Communications
(FNC 2015)

A lightweight data interchange format for Internet of Things in the
PalCom middleware framework.

Mattias Nordahla,*, Boris Magnussona
aLund University, Computer Science, Lund, Sweden

Abstract

We present the PalCom Object Notation, a textual data representation format for communication between internet of things
which support binary and textual data. The format does not require parsing of user data (or the “payload”) and is thus efficient to
use also for large binary values such as digital images, audio and video as well as for short textual values. These can be mixed in
the same messages and thus transported over the same communication link. Its structure is influenced by JSON, making it easy to
translate between the two formats. The evaluation show that its size and processing efficiency is comparable to that of JSON for
small data, but becomes both smaller and more efficient as data grows, and can yield a tenfold performance increase for binary
payloads.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Lightweight protocol; Data interchange format; PON; JSON; Textual format; Efficient binary handling; PalCom; Java

1. Introduction

In this paper we introduce the PalCom Object Notation (PON), a lightweight format for data interchange
developed for use in PalCom. PalCom is a pervasive middleware framework implemented in Java that aims to
simplify the creation of dynamic networks between devices in distributed systems, and to give an easy and intuitive

* Corresponding author. Tel.: +46-46-2220000

E-mail address: Mattias.Nordahl@cs.lth.se

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81931035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.210&domain=pdf

285 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

way for combining services provided by the devices.1 It allows users to combine services from any device on the
network into larger units with more complex functionality. PalCom has automatic device and service discovery, as
described by a discovery protocol, which entails data of various types being sent between devices. Communication
between services themselves are governed by a service-interaction protocol, but what information are sent with it are
up to the service implementer. There is thus a need to be able to send a mixture of types of information (text,
structured information, binary information such as images, audio and video) between devices in a general and
homogeneous way.

This is exemplified well in the itACiH project, which develops, on top of PalCom, a system to support advanced
care in the home with support for visiting nurses, on-line equipment in the patients’ home, and process support at
hospital wards. Previously all PalCom protocols has been represented in XML3, with only limited type support for
service communications, as everything was represented as strings. One part of the itACiH project is a web-server
with PalCom as backend8, in which JSON2 has been used for communication with clients, which gives direct
support for different data types. But as the project progressed a requirement arose for being able to send binary
information as well. However, JSON, just as XML, lack the direct ability to represent such data, and must resort to
special encodings which increase their size and adds extra processing.

This motivated the development of a new compact, textual format, similar to JSON, but which could directly
handle binary information. In order to outline the design space we take examples from early language design which
also illustrate that these problems are nothing new.

1.1. String handling in FORTRAN

Handling of strings in Standard FORTRAN4, Hollerith constants, was an important influence in designing the
PalCom Object Notation. Its format statement was extended to include strings:

 FORMAT(13H HELLO, WORLD)

In this format the programmer was to count the number of characters in the string and give the compiler the
length before the ‘H’ which indicated the string type. Although the manual counting could be a problem, this format
had the advantages that 1) the FORTRAN complier did not need to parse the string itself, but simply copy the length
of characters, and 2) the string could contain any character in the character set, with no exception for a special
ending delimiter. When computers generate the information, the counting of characters ceases to be a problem,
while the two advantages remain.

 In FORTRAN 775 the modern notation for representing strings was introduced:

 FORMAT(‘HELLO, WORLD’)

Here the compiler had to scan the otherwise uninteresting string in order to count the characters, and the string
could not contain single quotes.

In situations where hardware are to interpret data, such as in CPUs and network equipment, it is common to use
fixed format layouts, as illustrated by the header part of IPv4 packets6 in Figure 1. Also, here the length (in this case
of the packet with payload) is given explicitly as in Standard FORTRAN, but note that the “Total Length” attribute
is limited to 16 bit numbers and the address fields are limited to 32 bits. Although practical in situations with
dedicated hardware, such limitations create problems over time when the length of the fields become too short and
new extended protocols such as IPv6 needs to be introduced. It is thus wise to avoid fixed formats and limited
lengths of size fields.

286 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

More recent formats, geared towards human readability and easy construction, such as XML and JSON, have
chosen representations in line with the FORTRAN 77 format, with explicit delimiters around strings. This notation
has the drawback that all user data need to be parsed in order to understand the structure of the information.
Additionally, binary information, e.g. images, which are often large by comparison (several MB) needs to be
converted to readable text (e.g. through base64 encoding) before inclusion in such messages which increase their
size by 1/3, adds more work for the programmer and slows down generation and parsing of messages.

With PON we set out to define a format for structured data that combines the structure and compactness offered
by JSON with more efficient handling for both textual and binary data.

1.2. Previous work

Since JSON was popularized, several new formats have been designed that borrow from or build upon its
structure, but simultaneously try to improve certain aspects where JSON falls short. The perhaps most apparent
shortcoming of JSON, as suggested by the numeral binary JSON-like formats, is its lack of direct support for
handling binary information. BSON11, BJSON12 and Universal Binary JSON13 are all examples of such formats.

These formats share the general structuring of data with JSON, but are fully binary rather than textual, which
enabled them to makes use of byte or bit manipulation to greatly decrease the number of bytes needed to represent
the same data and to speed up processing. Like in Standard FORTRAN, these formats include the length of strings
and other data types before their actual value, meaning that they do not need to parse the data itself, looking for an
ending delimiter.

2. The PalCom Object Notation

The PalCom Object Notation is also a JSON-like format, and can easily be translated to and from it. Like
FORTRAN and the previously mentioned binary JSON-like formats, each value is prepended with its own length.
Unlike those formats, however, PON is a fully textual format, like JSON, and can therefore be seen as mix of the
two variations. Due to knowing the length of values and thus not needing to parse them, PON can directly handle
binary information, while still maintaining a textual and thus readable format.

2.1. PON structure and node syntax

The overall structure of PON is borrowed directly from JSON, and data is thus organized by objects and arrays,
where objects are lists of key-value pairs and arrays are list of values.2 Objects and arrays are themselves also
considered values, which enables nesting. In PON all values are represented as nodes that consists of three fields;
the length of the value, a type identifier and the actual data value itself:

<Length><Type><Data>

Figure 1. IPv4 header.

287 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

Length is an integer stating the length of the data, the type identifier is a one byte ASCII character that
determines the value type and on which the format of the data field depend. The three fields are written in sequence
without spaces or delimiters, as are all nodes themselves. For instance, three consecutive string values are written:

15sMy first string16sMy second string15sMy third string

2.2. Objects, arrays and keys

Since objects and arrays are also values they too follow the node structure. An array is a list of values, and its
data field is thus a list of nodes, written in sequence, and their combined length is that of the array’s length field.
Similarly, objects are lists of key-value pairs. Keys are the only exception to the node structure, instead being more
closely represented as they are in JSON, i.e. as a string ending in a special delimiter (colon).

This is motivated by keys typically being short, and would thus provide little to no speed increase for not needing
to be parsed. Also, not having to include the node length and node type slightly reduces the size of their
representation and generally makes the format more compact since keys are often numeral.

As an example, an object and an array, each containing two strings can be written:

26{key1:6svalue1key2:6svalue2

16[6svalue16svalue2

2.3. Conserving compactness

Though the node structure does provide performance benefits, not having to parse the payload, it does come with
an added overhead (length and type) which increases the representation’s size. Especially for short data values, this
overhead can make up a significant percentage of the entire node. To compensate for this and to keep PON’s
compactness comparable to that of JSON, we have shortened the representation in other areas. For value types of
fixed length, the length field of the nodes is omitted; this applies to single characters and bytes. For value types with
a predetermined set of values, and no actual payload, the data field of the nodes is omitted as well, thus representing
them as a single ASCII character; this applies to boolean and null.

The types that are supported by PON are meant to directly mirror those of modern programming languages - in
particular Java. All the supported types are listed in Table 1, together with their respective type identifiers, their
equivalent type in Java and a short example.

Table 1. Types supported by PON and their type identifiers.

PON type Java type Length Type identifier Data Example

string String yes s yes 16sThis is a string

integer Integer or Long yes i yes 2i49

float Float or Double yes d yes 4d17.3

binary byte[] yes y yes 412y<Data> where <Data>
is binary data of length 412 bytes

char Character no c yes cA for the single character ‘A’

byte Byte no b yes bA for the ASCII character ‘A’

boolean Boolean no t or f no t for true, f for false

null null no u no u for null

object Map<String, Object> yes { yes 26{key1:6svalue1key2:6svValue2

array List<Object> yes [yes 16[6s;value16svalue2

288 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

3. Analysis and performance testing

We evaluate PON through a comparison with JSON, first by analyzing their size for different data types, then
comparing their readability, followed by a performance test in which both formats generate and parse data taken
from real use of the PalCom framework.

3.1. Size analysis

We can examine the size difference of the two formats by looking at their overhead, by which we here will mean
the extra number of characters needed for their format in addition to the payload itself. For objects, arrays and
strings JSON adds two characters ({}, [] and ""), whereas PON adds one ({, [and s) plus the number of digits
needed to represent the length of the data. For short values (length 0–9) the two formats are thus equal in size. For
increasingly long values, PON adds more overhead than JSON. However, the added overhead from the length field
is roughly given by the logarithm of the length, which becomes tiny in comparison as the length increases, and thus
insignificant for large values. For instance, a value in the size range of a few MB (millions of characters), e.g. an
image, the length field will be seven digits. For binary values, PON’s overhead is equal to that of strings, whereas
JSON has no way of representing it. If base64 encoded and represented as a string, the overhead of JSON becomes 2
plus 1/3 of the length, greatly outweighing that of PON. For numeric values PON’s overhead is equals to that of
strings, whereas JSON has none. Data containing a large number of numeric values may thus not be as compact in
PON as in JSON. For all other types (char, byte, true, false, null) PON’s representation is significantly shorter, since
they are all represented by one or two characters, as was shown in Table 1.

For messages with largely string or numeric values, we would thus expect a somewhat comparable size for the
two formats, whereas for messages with a mix of values or few string and numeric values PON should be noticeably
smaller.

With regards to generation and parsing speed, we would expect comparable performance from the two formats
for short to medium data values, whereas for larger values (long strings or binary data) PON should be noticeably
faster due to not having to parse the payloads.

3.2. Readability and human interaction

Being a textual format, PON is also human readable. However, compared to JSON, some of its readability is lost
in favor of compactness and performance. This is largely due to nodes being written without spaces or separators
and having no ending delimiters. The beginning of, e.g. an object, is marked by a length and a { character, but there
is no way to know where the object ends, and thus where the next node begin, apart from counting its length
characters forward. For short values this is easy to do, even for humans, but for long or nested values it is not.

The node lengths also makes it hard to write PON representations by hand, since the length of inner values affect
the length of their containers. One must thus start with the length of the innermost values of nested structures and
recursively sum their lengths to calculate the length of their containers. This makes PON a bad choice for some tasks
where JSON might be used, e.g. configurations files. PON is designed as a data interchange format between devices.

3.3. Performance test

For the performance test we took various example data from real usage of the PalCom framework, and had both
formats generate their representations of it and parse it back into its original form. We measure the size of their
respective representations for the same data as well as their generation and parsing speed. Each measurement was
run separately, with care taken to only include actual generation and parsing time in the measurement, a three
second warmup for letting the virtual machine load necessary classes and with 100000 iterations to get consistent
average values. For the JSON format, we ran the test using two popular JSON libraries that we have seen perform
well in benchmarks14, 15, 16, Gson9 and Jackson10.

The test was run with data from three distinct categories:

289 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

 A PalCom ServiceListRequest message, which is a short message that consists of two string values and one
integer.

 A PalCom ServiceListReply message, which consists of a list of descriptions of, in this case, fifteen services, each
of which has several string, integer, byte and boolean parameters and some null values as well as a few nested
structures with similar value type.

 A PalCom service command from the itACiH project for fetching an image. It consists of a couple of string and
integer values representing information about the image, as well as the image itself (binary data). We include
measurements for two such messages, with image sizes 50 kB and 500 kB (larger image sizes yielded roughly the
same results). For JSON the binary image data was base64 encoded (not included in time measurements).

Test results for these messages are shown in figures 2, 3, 4 and 5 respectively.

PON: 468

PON: 772

PON: 43

Gson: 785

Gson: 978

Gson: 48

Jackson: 380

Jackson: 858

Jackson: 48

Parsing
(nano seconds)

Generation
(nano seconds)

Size (bytes)

PalCom ServiceListRequest message

PON: 32 059

PON: 48 971

PON: 4 460

Gson: 56 082

Gson: 81 980

Gson: 6 632

Jackson: 27 026

Jackson: 67 324

Jackson: 6 632

Parsing
(nano seconds)

Generation
(nano seconds)

Size (bytes)

PalCom ServiceListReply message

Figure 2: Shows size, generation time and parsing time for a ServiceListRequest message. PON is slightly more
compact than JSON and is faster than Gson and roughly equal to Jackson (faster generation but slower parsing).

PON: 33 676

PON: 20 759

PON: 50 300

Gson: 202 615

Gson: 398 955

JSON: 68 740

Jackson: 123 032

Jackson: 540 239

Jackson: 68 740

Parsing
(nano seconds)

Generation
(nano seconds)

Size (bytes)

Image request 50 kB

Figure 3: Shows size, generation time and parsing time for a ServiceListReply message. PON is significantly more
compact than JSON and in total faster than both Gson and Jackson.

Figure 4: Shows size, generation time and parsing time for a 50 kB image request. PON is significantly more
compact than JSON and greatly outperforms both Gson and Jackson.

290 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

3.4. Results

From the results of the short PalCom service message we see that the PON representation is just slightly shorter
than JSON. We also see that PON is noticeably faster than Gson and about equal in performance to Jackson; slightly
faster generation and slightly slower parsing (a net difference of 2 nanoseconds). If we divide the difference of their
total times (generation plus parsing) with the total time of PON, we calculate that PON is more or less equal to
Jackson and 42 % faster than Gson.

The longer PalCom service message shows similar results, but starts swinging more in favor of PON. The JSON
representation is roughly 1/3 longer than the PON representation and we calculate that PON is 16 % faster than
Jackson and 70 % faster than Gson.

Finally, for the image command with binary data we see a large size difference due to JSON being base64
encoded and a substantial performance advantage for PON. For the 50 kB image, PON is twelve times as fast as
Jackson (1100 % increase) and eleven times as fast as Gson (1000 % increase). For the 500 kB image the difference
between PON and the two JSON libraries grows slightly larger still.

Note again, that the time for base64 encoding the data was not included in the measurements, but some simple
measuring using the 50 kB image data suggested that it could slow down the JSON libraries with an additional 70 %
(300 000 nanoseconds to encode, 170 000 nanoseconds to decode).

3.5. Comment

Although PON can handle binary information directly, it is of course possible, should it be necessary, to handle it
like JSON; i.e. by base64 encoding the data and representing it as a string. In this case, PON still provides faster
processing, since the payload does not need to be parsed. Re-running our test for PON with the 50 kB image data,
now base64 encoded, resulted in a total processing time of 120278 nanoseconds, still 450 % faster than Jackson and
400 % faster than Gson.

4. Conclusions

We have presented a new data interchange format PON, which supports combinations of text and binary
information to be included in the same message. Like JSON, it is a textual, compact format and have direct support
for a number of value types. PON supports some additional value types, being closely coupled with the types of the
programming language Java, and in particular supports direct handling of binary information.

The performance when generating or parsing PON representations is at least comparable to popular, efficient
JSON implementations and for large data values and binary information it outperforms them with a factor of ten or
more.

Also the representation is more compact with PON, as observed using test data from IoT systems. For longer
mixed type messages, and in messages with binary information, a difference of 25–30 % has been observed.

PON: 325 636

PON: 223 921

PON: 500 303

Gson: 2 193 983

Gson: 4 085 149

Gson: 684 529

Jackson: 1 570 305

Jackson: 5 914 927

Jackson: 684 529

Parsing
(nano seconds)

Generation
(nano seconds)

Size (bytes)

Image request 500 kB

Figure 5: Shows size, generation time and parsing time for a 500 kB image request. PON is significantly more
compact than JSON and greatly outperforms both Gson and Jackson.

291 Mattias Nordahl and Boris Magnusson / Procedia Computer Science 56 (2015) 284 – 291

PON is designed for IoT situations where communication is between devices, but is still textual and thus human
readable, apart from when used with binary payloads. It borrows its structure from JSON and can easily be
translated to and from it.

References

1. D. Svensson Fors, B. Magnusson, S. Gestegård Robertz, G. Hedin, and E. Nilsson-Nyman. Ad-hoc composition of pervasive services in the
palcom architecture. In Proceedings of the 2009 international conference on Pervasive services, ICPS ’09, pages 83–92, New York, NY,
USA, 2009. ACM.

2. RFC 7159 – The JavaScript Object Notation (JSON) Data Interchange Format.
3. XML Media Types, RFC 7303. Internet Engineering Task Force. July 2014.
4. Ansi x3.9-1966. USA Standard FORTRAN. American National Standards Institute. Informally known as FORTRAN 66..
5. Ansi x3.9-1978. American National Standard – Programming Language FORTRAN. American National Standards Institute. Also known as

ISO 1539-1980, informally known as FORTRAN 77
6. RFC 791 – Internet Protocol (IPv4)
7. Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, Henrik Frystyk; Masinter, Larry; Leach, Paul J.; Berners-Lee (June 1999).

Hypertext Transfer Protocol -- HTTP/1.1. IETF. RFC 2616.
8. Thomas Sandholm, Boris Magnusson, Björn A Johnsson: The Palcom Device Web Bridge, Technical report LU-CS-TR:2012-251, ISSN 1404-

1200, Report 100, 2012.
9. Google Gson library, https://github.com/google/gson
10. Jackson JSON library, http://wiki.fasterxml.com/JacksonHome
11. BSON, http://bsonspec.org/
12. BJSON, http://bjson.org/
13. Universal Binary JSON, http://ubjson.org/
14. The Ultimate JSON Library: JSON.simple vs GSON vs Jackson vs JSONP, http://blog.takipi.com/the-ultimate-json-library-json-simple-vs-

gson-vs-jackson-vs-json/ (accessed 2015-06-05)
15. jvm-serializers, https://github.com/eishay/jvm-serializers/wiki (accessed 2015-06-05)
16. Top 7 Open-Source JSON-Binding Providers Available Today, http://www.developer.com/lang/jscript/top-7-open-source-json-binding-

providers-available-today.html (accessed 2015-06-05)

