Magnesium deficiency in plants: An urgent problem

Wanli Guo a,b,⁎, Hussain Nazim c, Zongsuo Liang a,b, Dongfeng Yang a,b

a College of Life Science, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, China
b Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou, Zhejiang 310018, China
c College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 866 Yu-Hang-Tang Road, Hangzhou 310058, China

Abstract

Although magnesium (Mg) is one of the most important nutrients, involved in many enzyme activities and the structural stabilization of tissues, its importance as a macronutrient ion has been overlooked in recent decades by botanists and agriculturists, who did not regard Mg deficiency (MGD) in plants as a severe health problem. However, recent studies have shown, surprisingly, that Mg contents in historical cereal seeds have markedly declined over time, and two thirds of people surveyed in developed countries received less than their minimum daily Mg requirement. Thus, the mechanisms of response to MGD and ways to increase Mg contents in plants are two urgent practical problems. In this review, we discuss several aspects of MGD in plants, including phenotypic and physiological changes, cell Mg2+ homeostasis control by Mg2+ transporters, MGD signaling, interactions between Mg2+ and other ions, and roles of Mg2+ in plant secondary metabolism. Our aim is to improve understanding of the influence of MGD on plant growth and development and to advance crop breeding for Mg enrichment.

Contents

1. Introduction .. 84
2. Many stress factors limit magnesium availability by plants 84
3. Changes induced by MGD in plants ... 84
4. Magnesium transporters mediate Mg2+ homeostasis in plant cells 85
5. Signaling response to MGD in plants ... 86
6. Interaction between magnesium and other ions 87
7. Secondary metabolism in plants affected by Mg2+ 87
8. Conclusions ... 87
Acknowledgments ... 88
References .. 88

Abbreviations: ABA, abscisic acid; MGD, magnesium deficiency; ROS, reactive oxygen species; Cab2, chlorophyll a/b-binding protein gene 2; MgTRs, magnesium transporters; AtMHX, a Mg2+/H+ exchanger; ART1, Al resistance transcription factor 1.

⁎ Corresponding author. Tel.: +86 13646811282.
E-mail address: gwl1016@aliyun.com (W. Guo).
Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

http://dx.doi.org/10.1016/j.cj.2015.11.003
2214-5141/© 2015 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magnesium (Mg) was recognized as an essential nutrient by 1925 [1]. For example, 60% or 25 g of Mg is located in adult bone, where it plays a central role in skeletal development [2]. Mg is essential for conformational stabilization of macromolecules such as nucleic acids [3], proteins [4], cell membranes, and walls [5]; maintenance of enzyme activities such as of H⁺-ATPase, kinases and polymerases [5-7]; and homeostasis of reactive oxygen species (ROS) under Al stress [8]. Mg also serves as a regulator of cation-anion balance in cells and as an osmotically active ion regulating cell turgor together with K [4,9]. Mg is particularly important to plants, with some 75% of leaf Mg involved in protein synthesis and 15-20% of total Mg associated with chlorophyll pigments [10], acting mainly as a cofactor of a series of enzymes involved in photosynthetic carbon fixation and metabolism [6,11,12].

However, plant Mg nutrition has been consistently overlooked by botanists and agronomists in past decades, unlike other ions such as iron (Fe), zinc (Zn), iodine (I) and selenium (Se) [13-15]. Surprisingly, people in many developed countries were commonly deficient in Mg [14,16], but this deficiency was not serious in developing or poor countries [17], indicating that loss of Mg by refining of food poses severe problems for human Mg uptake. For example, nearly 2/3 of adults surveyed in the USA and England received less than the estimated average daily requirement for Mg, and Mg deficiency leads to severe hypomagnesemia, manifested in such symptoms as sudden cardiac death, arrhythmia, muscle dysfunction, and severe hypomagnesemia, manifested in such symptoms as bone, where it plays a central role in skeletal development [2]. Mg is essential for conformational stabilization of macromolecules such as nucleic acids [3], proteins [4], cell membranes, and walls [5]; maintenance of enzyme activities such as of H⁺-ATPase, kinases and polymerases [5-7]; and homeostasis of reactive oxygen species (ROS) under Al stress [8]. Mg also serves as a regulator of cation-anion balance in cells and as an osmotically active ion regulating cell turgor together with K [4,9]. Mg is particularly important to plants, with some 75% of leaf Mg involved in protein synthesis and 15-20% of total Mg associated with chlorophyll pigments [10], acting mainly as a cofactor of a series of enzymes involved in photosynthetic carbon fixation and metabolism [6,11,12].

However, plant Mg nutrition has been consistently overlooked by botanists and agronomists in past decades, unlike other ions such as iron (Fe), zinc (Zn), iodine (I) and selenium (Se) [13-15]. Surprisingly, people in many developed countries were commonly deficient in Mg [14,16], but this deficiency was not serious in developing or poor countries [17], indicating that loss of Mg by refining of food poses severe problems for human Mg uptake. For example, nearly 2/3 of adults surveyed in the USA and England received less than the estimated average daily requirement for Mg, and Mg deficiency leads to severe hypomagnesemia, manifested in such symptoms as sudden cardiac death, arrhythmia, muscle dysfunction, and attention deficit disorder [14]. The mean intake of Mg was 323 mg per day in men and 228 mg in women, values below the estimated indexes of 420 mg per day for men and 320 mg per day for women [18], and 10% of elderly women consumed less than 136 mg per day [19]. Thus, Mg contents in food crops and daily diets are an important problem in food quality and human nutrition [20], especially in regions where up to 75% of Mg intake daily is from cereals [21].

Pronounced declines of Mg concentration in cereal grains have been reported over the past several decades, likely owing to yield dilution coupled with the Green Revolution [22], and mimicking the changes in concentrations of Zn, Fe, I, and vitamin A [23]. For example, Mg contents in wheat dropped an average of 19.6%, from a mean range of 115–126 mg per 100 g dry weight (DW) before 1968 to 91–101 mg per 100 g DW after 1968 [24], and a similar trend was reported by other authors [25,26]. The declines in Mg, Zn, Fe, and I may also have some correlation with long-term unbalanced crop fertilization with nitrogen, phosphorus, and potassium (NPK) over the last decades. Grass tetany or paresis (milk fever) is a serious disorder in grazing animals, resulting from Mg decreases in grasses due to heavy application of potassium to soil [21]; K⁺ is an antagonist for Mg²⁺ absorption in plants. These results suggest that more attention should be paid to crop MGD and to the problems left to us by the Green Revolution. This review aims to summarize current knowledge about plant response to MGD, Mg²⁺ transporters, signal transduction, interactions between Mg²⁺ and other ions, and the role of Mg²⁺ in plant secondary metabolism.

2. Many stress factors limit magnesium availability by plants

The Mg requirement for optimal plant growth is 1.5-3.5 g per kg in vegetative parts, and Mg concentrations in soil solutions lie between 125 μmol L⁻¹ and 8.5 mmol L⁻¹, values sufficient to support plant growth [4,16]. Although lower Mg appears under some conditions, such as in acidic soils with low cation exchange capacity, about 70% of the potentially arable land on earth is acidic. High rainfall in tropical regions leads to Mg leaching [27,28], aluminum toxicity [29], heat stress [30], droughty soil [27], and high levels of competing elements, such as K, calcium (Ca), ammonium (NH₄), and sodium (Na). In particular, long-term unbalanced crop fertilization (NPK) leads to Mg²⁺ depletion, cation competition, and subsequent Mg²⁺ leaching [31]. These changes result in the decrease of Mg²⁺ availability to plants, lower accumulation of Mg in seeds, marked inhibition of plant growth, acceleration of aging, and reduced productivity and quality in agriculture, horticulture, and forestry [32]. These consequences suggest that the chemical and physical characteristics of soils are among the most important factors in Mg²⁺ availability by plants.

3. Changes induced by MGD in plants

Generally, MGD results in shorter roots, smaller shoots, and necrotic spots on leaves [7,33,34], owing mainly to abnormal physiological processes reflected in impaired carbon metabolism and decline of chlorophyll and carbon fixation (Fig. 1). In a transcriptomic analysis, a far greater number of early response genes was observed in roots than that in leaves to Mg deprivation [35]. The transcript patterns of one fifth of the genes in leaves and half in roots were restored to the initial patterns after Mg supplementation of the nutrient solution for 24 h. MGD-responsive genes in leaves changed gradually after 8 h and even after one week [34]. Mg in shoots declined quickly within one day after the removal of Mg [7,35-37], suggesting that shoot and leaf are secondary response organs following changes in Mg level.

MGD disrupts the loading of sucrose into phloem (Fig. 1), resulting in carbon accumulation in source leaves. Resupply of Mg rapidly enhanced sucrose export to phloem from source leaves [4,7]. Such rapid recovery of sucrose export was found under both dark and light conditions, indicating that enhancement of sucrose export after Mg resupply is associated not with photosynthesis but only with Mg availability. A decline in Mg-ATP concentration at the phloem-loading sites may be the major reason for inhibition of sucrose transport from Mg-deficient source leaves [11] and is analogous to sucrose accumulation in leaves under K and Zn but not P deficiency [4]. Sucrose loading into phloem is catalyzed by an H⁺/sucrose co-transporter (Fig. 1), whose activity requires a proton gradient maintained by an H⁺-ATPase located in the plasma membranes of sieve tube cells [11]. Growing evidence indicates that Mg-ATP is a major complex of ATP in cells and is essential for the proper functioning of H⁺-ATPase [38], BuSUT1, a phloem-specific proton-sucrose symporter located in companion cells of the vascular system, is induced by MGD in sugar beet leaves [39,40].
Mg$^{2+}$ acts as an enzyme activator or cofactor in carbohydrate metabolism, so that MGD inhibits these enzyme activities and further leads to carbon accumulation in source leaves, such as fructose-1, 6-bisphosphatase (FBPase), glutamate synthetase, UDP-D-, ADP-D-, GDP-D-glucose pyrophosphorylase, and UDP-D-glucuronic acid pyrophosphorylase [7]. Overaccumulation of carbides in leaves leads to feedback inhibition of the photosynthesis rate [41] and reduces chlorophyll concentration by repression of Cab2 (chlorophyll a/b-binding protein gene 2, which encodes Chl a and b proteins) [7].

Impairment of photosynthetic CO$_2$ fixation also leads to an accumulation of unused electrons in the chloroplast, resulting in ROS generation and photo-oxidative damage to chlorophyll and chloroplast membrane lipids (Fig. 1). Thus, MGD symptoms such as leaf chlorosis, are aggravated by high light intensity [13]. This process is due to the inhibition of the transfer of excitation energy (or electrons) from chl-a of PSII to chl-a of PSI in chloroplast [42], or due to low content of PSI [43]. The electrons are transferred to protoporphyrin IX, probably in association with the light-dependent generation of ROS, resulting in leaf chlorosis following the overaccumulation of protoporphyrin IX in tissues (Fig. 1), especially under MGD and high light intensity. In addition, MGD may reduce Mg chelatase (MgCH) activity in the presence of limited ATP and Mg$^{2+}$. MgCH catalyzes the ATP-dependent insertion of Mg$^{2+}$ into protoporphyrin IX to produce Mg-protoporphyrin IX, the first committed step in the chlorophyll biosynthetic pathway [44]. In this manner, protoporphyrin IX is overaccumulated in cells.

MGD also activates antioxidative defense enzymes in some plant species [34,37,45]. The key antioxidant molecules (dehydroxyascorbate and oxidized glutathione) were markedly increased within 1 week in Arabidopsis with MGD treatment [34]. Generally, leaf chlorosis is observed first in older leaves in response to MGD, and is interpreted as the re-translocation of Mg$^{2+}$ from older to younger leaves [4]. A decrease in transpiration occurs prior to sugar accumulation and chlorosis in rice under MGD conditions [46]. These results indicate that plant MGD-response systems are complex and that many signal transduction pathways are unknown.

Besides the impairment by MGD of carbon metabolism in source leaves, nitrogen (N) metabolism is also damaged. For example, lower N was reported in longan leaves [47] under MGD treatment, and some enzymes of N metabolism were inhibited in spinach by MGD, including N reductase, glutamate synthetase, glutamate dehydrogenase, urease, glutamic-pyruvic transaminase, and glutamic-oxaloacetic protease transaminase [48]. More than 10 N transporters were induced by MGD in Arabidopsis in our latest research (unpublished data). However, little is known of the effects of MGD on N metabolism.

4. Magnesium transporters mediate Mg$^{2+}$ homeostasis in plant cells

Understanding of Mg$^{2+}$ homeostasis in plant cells has been advanced by the discovery of Arabidopsis Mg$^{2+}$ transporters (MgTRs) [49,50]. AtMHX (an Mg$^{2+}$/H$^+$ exchanger) is the first cloned MgTR in plants [51], is located in the vascular system (Fig. 2), and adjusts osmotic potentials especially in phloem cells [52]. The results of AtMHX’s cis-regulon analysis [52-54] and overexpression of AtTMHX [55,56] indicate that AtTMHX maintains metal and proton homeostasis in cells or participates in photosynthesis.

Most known MgTRs are CorA transporters and harbor a conserved Gly-Met-Asn (GMN) tripeptide motif at the end of
Mutant systems [49]. They are considered the primary Mg2+ uptake, distribution, and homeostasis in cells [15], deduced transport system in plants and play the major roles in Mg2+ the first transmembrane domains [49]. Ten

Fig. 2 – Subcellular localization of magnesium transporters in Arabidopsis and changes in their expression levels caused by magnesium deficiency (MGD), magnesium toxicity (MgT), and aluminum (Al) toxicity. Red arrows indicate transcriptional changes of magnesium transporter genes induced by MgT, blue arrows show transcriptional changes (upward arrow denotes upregulation and downward arrow downregulation) of magnesium transporter genes by MGD, black arrows represent activity of genes, and a blocked line denotes inhibition. ER, endoplasmic reticulum; V, vacuole; G, Golgi apparatus; PM, plasma membrane; CW, cell wall; Nu, nucleus; M, mitochondria; C, chloroplasts; CNGC10, cyclic nucleotide gated channel 10; MHX1, magnesium exchanger 1; MGT, magnesium transporter; ART1, Al resistance transcription factor 1.

the first transmembrane domains [49]. Ten CorA superfamily AtMGT (Mg Transporter) genes, with the exception of the pseudogene AtMGT8 [57,58], are clustered into high-affinity (AtMGT1 and AtMGT10), low-affinity (AtMGT3, AtMGT7, and AtMGT9), and dual-affinity (AtMGT5) members by their affinities for Mg2+ transport, as confirmed using bacteria or yeast mutant systems [49]. They are considered the primary Mg2+ transport system in plants and play the major roles in Mg2+ uptake, distribution, and homeostasis in cells [15], deduced from their subcellular locations: plasma membrane, endoplasmic reticulum, vacuole, mitochondrion, and chloroplast [59,60] (Fig. 2). However, only plants with silencing of AtMGT6 [60], overexpression of AtMGT7 [59] and AtMGT1 [61], and double (AtMRS2-1/10) or triple (AtMRS2-1/5/10) mutations [62] showed phenotypic changes in response to MGD. Surprisingly, the growth retardation of double or triple mutants with MGD treatment could be reduced by reduction in Ca2+ concentration [62], although the exact mechanism is unknown. AtMGT7 showed high expression in roots. Knockout lines of AtMGT7 showed reduced growth retardation under low Mg, suggesting that AtMGT7 is involved in Mg uptake; however, AtMGT7 was localized to the endoplasmic reticulum [59]. Rice OsMGT1 was regulated by an Al-responsive transcription factor ART1 (Al resistance transcription factor 1) [63] (Fig. 2), and Arabidopsis plants with overexpression of AtMGT1 and OsMGT1 were resistant to Al toxicity [29,61]. Although AtMGT1 is localized in the plasma membrane, it is expressed in root hairs, root elongation zones, vascular tissues, and trichomes of adult leaves [59]. These findings indicate that Mg transport by MGT1 is induced by Al3+ and not by MGD, as confirmed by the observation that plants with the increased Mg2+ in the cytosol are resistant to Al3+ toxicity [8]. AtMGT6, another plasma membrane Mg2+ transporter, mediates Mg2+ uptake by roots, especially under a low-Mg2+ environment [60]. AtMGT2 and AtMGT3 are involved in Mg partitioning in Arabidopsis mesophyll vacuoles and are localized to the tonoplast [64], consistently with their expression in both rosette and cauline leaves [59], as is AtMHX [51], which maintains cation balance in the vacuole. Some AtMGTs [65] and AtMHX [66] colocalize with major quantitative trait loci (QTL) thought to affect Mg concentration in Arabidopsis seeds. Mg contents increase in phloem during grain loading in common wheat [67]. The expression levels of these MGTs change little in transcriptomic analysis, but many are activated by Mg toxicity [68]. AtCNGC10, the latest discovered plasma membrane MgTR, mediates Mg2+ uptake and long-distance transport and may be involved in Ca2+, K+, and Na+ (under salinity) transport in Arabidopsis [50]. AtMGTs and AtMGT9 are essential for pollen development and male fertility [69,70]. AtMGT5 is localized in mitochondria [70]. AtMGT10 is localized in the chloroplast envelope membrane system and is expressed in the rosette leaves and vascular tissues of cauline leaves [59,71], indicating a possible function in Mg2+ translocation into chloroplasts [71]. Two members of the class II HKT transporters in rice also transported Mg2+ and Ca2+, but these processes could be impaired by K oversupply [72]. These reports suggest that other transporters also play important roles in plant response to MGD. Our latest research (unpublished) supports this suggestion.

5. Signaling response to MGD in plants

Signal transduction responding to MGD in plants has been little investigated, although there are reports of expression changes of many genes under MGD, including genes governing ethylene biosynthesis, ROS detoxification, photoprotection, ABA response, and circadian rhythm [34,35,37,52]. Niu et al. [37] presented evidence that ROS and cytosolic Ca2+ are signaling factors responding to MGD, in agreement with a previous hypothesis that antioxidation is an early response to MGD induced by ROS [11,34]. In addition, ROS may inactivate
photosynthetic and starch metabolic enzymes under MGD [7], such as ribulose-1,5-bisphosphate-caboxylase (RUBISCO), which is very sensitive to ROS under low temperature and high light conditions [73]. Hermans et al. [35] found no change in ABA content in plants treated with MGD, in contrast to those subjected to Mg toxicity (MGT). ABA levels increased in both roots and shoots [68,74], although Hermans et al. [35] observed that half of the upregulated MGD response genes in leaves were ABA-responsive. These findings suggested that the factors responding to ABA are involved in MGD signaling independent-ly of ABA. MGD-treated plants produced twice as much C3H4 gas as control plants, and the expression levels of several gene encoding enzymes (ASC2; 7; 8; 11) in the C3H4 biosynthetic pathway were enhanced accordingly [34], suggesting that ethylene plays a key role in response to MGD. Our unpublished data also indicate that more than 15 ethylene response transcription factors are induced by Mg. Abscisic acid (ABA) and auxin are also involved in regulation of AtMHX [52] and the cis-regulon is in its first intron [52–54]. However, these findings are too fragmentary to reveal the signaling pathway. The rapid development of genomic, transcriptomic, non-coding RNA, and proteomic technologies may help us to identify MGD signaling pathways in plants.

6. Interaction between magnesium and other ions

There are interactions between Mg2+ and other ions. High K+ and Ca2+ result in lower Mg availability to plant roots [28,75]. Several AtMGT genes have shown higher expression in low-Ca2+ solution, but this expression was not observed in double mutant (cox1/cox3, Ca transporter) plants under MGD conditions [34,35]. These findings suggest that plant cells compensate for low Ca2+ by increasing Mg transporter activity, whereas high Ca2+ inhibits Mg2+ availability to plants. K+, in addition to competing for apoplasmic binding sites [76], possibly competes for transporters. For example, two members of class II of K+ transporters (OsHKT2; 4 and TaHKT2; 1) also transported Mg2+ in Xenopus laevis oocytes [72]. Mg2+ uptake in leaf mesophyll cells of broadbean was facilitated by two systems, a nonselective ion channel and an H+/Mg2+ exchanger (MHX). The latter acts at lower Mg2+ concentrations, and the nonselective channel system is also capable of K+ and Ca2+ transport [77]. These findings may explain why high K+ inhibits Mg2+ uptake. Under MGD conditions, cerium (a rare earth) ion promotes the synthesis of chlorophyll and photosynthetic pigments, increases activities of two key enzymes in CO2 assimilation and the antioxidative defense system, increases the expression of Rubisco large subunit (rbcL), small subunit (rbcS), and actinase subunit (rca), but decreases malondialdehyde and ROS in spinach [44,78–80]. These results suggest that cerium plays a role similar to those of Mg, but the mechanisms are unclear. Lanthanum shows a behavior similar to that of cerium in spinach in response to MGD [81].

Inhibition of plant growth and development by many toxic heavy ions and Al3+ can be reduced by addition of high Mg2+. For example, Cu2+ toxicity is alleviated by Mg2+ treatment in barley [82], wheat [83], cowpea [84], and grapevine [85,86], but not in sugar beet [87] and lettuce [88], suggesting that the influence of Mg2+ on Cu2+ phytotoxicity depends strongly on plant species. Application of high Mg2+ alleviates the growth inhibition of mustard plants subjected to cadmium (Cd) toxicity [89]. Pretreatment of plants with Mg starvation prevents the bleaching of young leaves caused by high Cd in Arabidopsis [90] and rice [75]. Pretreatment of Mg starvation may increase the anti-oxidative capacity and modulate Fe homeostasis, and/or promote cytosolic efflux transport or vacuolar storage of Cd to reduce Cd-induced injury [90]. Plants with overexpression of Mg2+ transporter genes (AtMGT1 and OsMGT1) in tobacco [61] and rice [29] are resistant to Al3+ stress (Fig. 2), and similar results were reported for soybean [93], rice [29], Arabidopsis [90], and rice bean [94] treated with high Mg2+ and Ca2+ under Al3+ toxicity conditions [8,27,91,92]. It is generally considered that Al3+ and Mg2+ ions compete for membrane transporters and metal binding sites of enzymes [92,95]. Al3+ toxic soils inhibit Mg2+ absorption by plants [29], but Al3+ toxicity can be alleviated by high Mg2+ via reduction of Al3+ saturation of apoplasmic binding sites, decreasing Al3+ activity at the root cell plasma membrane surface [95], and/or increasing the exudation of Al-induced organic acids by plant roots, such as in soybean [93], rice bean [94], and broad bean [96]. Interestingly, a 2.3-fold variation in shoot Mg2+ concentrations in various genotypes of Brassica oleracea has been reported, and variation in tissue Mg2+ concentration is highly heritable [97], giving promise of breeding crops with Mg enrichment, and increased tolerance to Al3+ and H+ toxicity. Low pH (pH < 4.5, high H+) inhibits Mg2+ uptake in plants [98,99], and acid soils support higher leaching rates of Mg2+ and higher concentrations of toxic ions such as Al and manganese [27,29]. Increasing NO3− supply increases the uptake of Mg2+ but decreases its translocation [100], while increasing Mg2+ supply can reverse ammonium toxicity [101]. These results indicate the complexity of the interactions between Mg2+ and other ions.

7. Secondary metabolism in plants affected by Mg2+

Mg2+ also affects secondary metabolism in plants. MGD increases cardenolide production in callus cultures of Digitalis dausiana Heywood, D. lamarckii Ivanina, D. trojana Ivanina, and D. cariensis Boiss [102], phenolic compounds [103], and putrescine accumulation [104]. Putrescine accumulation in cells is a universal response to stress in plants. Anthocyanins in red grape cell suspension culture are increased and their catabolism is decreased under Mg2+ treatment [105], as is in several ornamental plants by spraying the foliage or by drenching pot plants with Mg2+ solution [106,107]. Aster plants with Mg2+ treatment increased pigment concentrations without inducing the activity of key enzymes of the anthocyanin biosynthetic pathway in flower buds [107]. A similar effect was observed in Anigazanthos, Limonium, Gypsophila, and Aconitum flowers [106]. However, little is known about Mg’s roles in plant secondary metabolism.

8. Conclusions

Magnesium deficiency in plants is becoming an increasingly severe problem with the development of industry and agriculture
and the increase in human population. However, little is known today about the response mechanism. People have suggested that the discovery of Mg transporters in plants might be ‘the tip of the iceberg’ [15], and will help us to understand plant response profiles to MGD. However, studies in the last decade have shown that most known Mg transporters govern Mg homeostasis only in plant cells, tissues and organs, with only AtMGT8 [60] and AtCNGC10 [50] in roots possibly involved in Mg absorption from the rhizosphere under MGD. Both genotypic analysis of B. oleracea [96] and transcriptomic analysis of Arabidopsis [34,35] suggest that complex systems in plants and other unknown transporters play key roles in MGD response. Interactions between Mg and other ions, including toxic and nutrient ions, also appear complex under MGD conditions [28] such as Mg deprivation and competitive Mg deficiency. The large phenotype changes and signal transduction responses to MGD in plants (Fig. 1) increase the difficulty of explaining the mechanisms. Mg content in seeds declined markedly after 1968 [24–26] in parallel to the Green Revolution and the history of heavy chemical fertilization in agriculture [21,22]. Consequently, most people absorb lower Mg from cereals than the estimated indexes [14,16,18,20,21]. Thus, MGD in plants is an urgent problem. Some questions must be in the coming years: (1) Which transporters are most responsible for Mg transport from the rhizosphere to root cells? The known Mg transporters are not sufficient to respond to Mg deficiency in plants. (2) What signaling is specific to MGD, what are the signal receptors and factors, and what are the interactions between phytohormones and their factors in signal transduction? (3) Can we select cereals with high Mg enrichment on Mg-deficient soils? (4) Are there novel factors involved in the response to Mg deficiency in plants? These could include microRNAs, which participate in many stress responses, including nutrient stresses.

Acknowledgments

This work was supported by the Science Foundation of Zhejiang Sci-Tech University (grant 14042008-Y), the Zhejiang Provincial Natural Science Foundation of China (grant number LY13C130001), the Zhejiang Provincial Top Key Discipline of Biology (grant number 2012A03-C), and the National Natural Science Foundation of China (grant number 81373908). We thank the two anonymous reviewers for their constructive comments and Dr. James C. Nelson (Kansas State University) for English correction of the article.

REFERENCES

[27] A. Gransee, H. Fuhr, Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium
fertilization and root uptake under adverse growth conditions, Plant Soil 368 (2013) 5–21.

[62] H. Lenz, V. Dombrov, J. Dreistein, M.R. Reinhard, M. Gebert, V. Knoop, Magnesium deficiency phenotypes upon multiple
knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply, Plant Cell Physiol. 54 (2013) 1118–1131.

95. T.B. Knaide, J.F. Pedler, D.R. Parker, Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity

