Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Biophysical Journal Volume 79 December 2000 2867-2879 2867
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ABSTRACT This study of lipid-mediated interactions between proteins is based on a theory recently developed by the
authors for describing the structure of the hydrocarbon chains in the neighborhood of a protein inclusion embedded in a lipid
membrane [Lague et al., Farad. Discuss. 111:165-172, 1998]. The theory involves the hypernetted chain integral equation
formalism for liquids. The exact lateral density-density response function of the hydrocarbon core, extracted from molecular
dynamics simulations of a pure dipalmitoylphosphatidylcholine bilayer based on an atomic model, is used as input. For the
sake of simplicity, protein inclusions are modeled as hard repulsive cylinders. Numerical calculations were performed with
three cylinder sizes: a small cylinder of 2.5-A radius, corresponding roughly to an aliphatic chain; a medium cylinder of 5-A
radius, corresponding to a a-helical polyalanine protein; and a large cylinder of 9-A radius, representing a small protein, such
as the gramicidin channel. The calculations show that the average hydrocarbon density is perturbed over a distance of 20-25
A from the edge of the cylinder for every cylinder size. The lipid-mediated protein-protein effective interaction is calculated
and is shown to be nonmonotonic. In the case of the small and the medium cylinders, the lipid-mediated effective interaction
of two identical cylinders is repulsive at an intermediate range but attractive at short range. At contact, there is a free energy
of —2kgT for the 2.5-A-radius cylinder and —9kgT for the 5-A-radius cylinder, indicating that the association of two a-helices
of both sizes is favored by the lipid matrix. In contrast, the effective interaction is repulsive at all distances in the case of the
large cylinder. Results were obtained with two integral equations theories: hypernetted chain and Percus-Yevick. For the two

theories, all results are qualitatively identical.

INTRODUCTION

The association between transmembrane a-helices is a pro-
cess of basic importance for understanding protein structure
and stability as well as protein-protein interactions in bio-
logical membranes. The interactions that drive such an
association are highly specific in some cases, but relatively
nonspecific in others (Lemmon et al., 1992; Lemmon and
Engelman, 1994). In particular, nonspecific protein-lipid
interactions arise from perturbations of lipid structure by the
proteins themselves. The best documented nonspecific pro-
tein-lipid interactions are hydrophobic mismatch interac-
tions between the hydrophobic length of the proteins and the
hydrocarbon thickness of the surrounding lipids (Mouritsen
and Bloom, 1993; Nielsen et al., 1998; Killian, 1998; May
and Ben-Shaul, 1999; Harroun et al., 1999a,b), but there are
also nonspecific lipid-packing effects due to hydrophobic
interactions between proteins and lipids, which will be
discussed below. Experimental investigations of nonspe-
cific interactions of this kind are difficult to perform be-
cause of the length and time scales involved, although some
experimental results have been obtained using spin-label
electron paramagnetic resonance (Marsh and Horvath,
1998) and solid-state nuclear magnetic resonance (Watts,
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1998). However, such interactions are quite amenable to a
theoretical analysis, as discussed by Gil et al. (1998). The
motivation of this paper is therefore to study nonspecific
lipid-mediated protein-protein interactions, using a theoret-
ical analysis involving integral equation formalisms for
liquids.

Theoretical investigations of nonspecific lipid-mediated
protein-protein interactions other than hydrophobic mis-
match were initiated by Marcelja (1976), who proposed a
mean field model of a lipid bilayer based on order param-
eters related to lipid chain conformational states. His theory
described the effects resulting from a nonspecific interac-
tion between integral membrane proteins and the surround-
ing lipids. The model assumed that the most important
change in lipid structure was restricted to the annulus of
those lipid chains that are in direct contact with the protein.
However, at temperatures above the main gel-liquid crystal
phase transition, it was found that the disturbance caused by
the protein inclusion extended to its second or the third
neighboring chains. Marcelja showed that the change in
lipid order gives rise to an indirect lipid-mediated interac-
tion between membrane integral proteins, leading to a
monotonically attractive potential between two proteins em-
bedded in a lipid bilayer in the liquid crystalline phase with
a free energy well of 1-3 k5T at contact. A similar idea was
developed by Sabra et al. (1998), on the basis of a lattice
model where two different lipid species were included:
annular lipids interacting strongly with the proteins, and
neutral lipids interacting weakly with the proteins. The
Monte Carlo simulations performed with this model showed
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that lipid-mediated two-dimensional (2D) arrays of mem-
brane proteins only form when there are annular lipids
present in the bilayer. Such arrays have been observed
experimentally (Kuhlbrandt, 1992).

Different mean-field theories have been proposed by
Schroder (1977), Owicki et al. (1978), Owicki and McCon-
nell (1979), and Pearson et al. (1984). In these theories, the
state of the lipid bilayer is characterized by several spatially
inhomogeneous coarse-grained “order parameters” that are
directly related to fluctuations in the lateral density of the
lipid chains. The equation for the spatial variation of the
order parameter field is derived from a Landau—de Gennes
free energy functional with a limited gradient expansion (de
Gennes, 1974). Interaction strengths and correlation lengths
for the pure membrane are described in terms of phenom-
enological parameters. Similar ideas were used in more
recent theoretical work to incorporate the influence of mem-
brane stretching, bending moduli, and spontaneous curva-
ture (Goulian et al., 1993; Kralchevsky et al., 1995; Aranda-
Espinoza et al., 1996; Kim et al., 1998).

Mean-field theoretical treatments of this type generally
predict an attractive lipid-mediated protein-protein interac-
tion (except for that of Kim et al., 1998) that decays mono-
tonically as a function of the distance between two proteins
embedded in a lipid bilayer in the liquid crystalline phase,
although the strength of the interaction was often found to
depend on the bilayer phase (Goulian et al., 1993; Aranda-
Espinoza et al., 1996). Given that the influence of a protein
inclusion is to perturb the natural liquid crystalline state of
the membrane, the indirect interaction between membrane
proteins was obtained under the assumption that fluctua-
tions are suppressed in the vicinity of the proteins. The
lipid-mediated protein-protein interaction is then caused by
the overlap of the lipid annuli surrounding the proteins, and
its range was found to increase with increasing correlation
length. Typically, the magnitude of this interaction is on the
order of 1-3 kT at protein contact.

Sintes and Baumgértner (1997a,b) examined the problem
of lipid-mediated protein-protein interactions by using
Monte Carlo computer simulations based on a simple model
of the lipid bilayer. The model represented the bilayer with
2 X 500 lipid molecules, where each molecule was modeled
by a flexible chain composed of five monomers. The pro-
teins were modeled by two hard transbilayer cylinders. The
simulations gave a depletion-induced attraction between
proteins lying closer than one lipid diameter and a fluctua-
tion-induced attraction for larger interprotein displacements
that has a correlation length of about three lipid diameters.
However, the main limitation of their approach was again
that the description of the bilayer lipids was necessarily
simplified to decrease the computational cost.

One important limitation of these earlier studies is the
significant number of approximations that has to be intro-
duced to construct tractable analytical theories. The lipid
bilayer, a complex macromolecular assembly of amphiphi-
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lic phospholipid molecules, is thus described in terms of a
necessarily limited phenomenological free energy func-
tional. Such approximations contrast with the microscopic
view of the structure and dynamics of biological membranes
provided by molecular dynamics (MD) simulations based
on detailed atomic models. In the last few years, studies of
pure lipid bilayers (Egberts and Berendsen, 1988; Feller et
al., 1997) and protein-membrane systems (Woolf and Roux,
1996; Shen et al., 1997; Tieleman and Berendsen, 1998)
have demonstrated the feasibility and success of such de-
tailed simulations (see also Merz and Roux, 1996, and
references therein). In principle, free energy MD simula-
tions and perturbation techniques could be used to calculate
the solvation free energy of inclusions (Postma et al., 1982).
However, such calculations are computationally prohibitive
and cannot be used to address such aspects of membrane
structure at the present time. For example, it is actually not
feasible to examine long-range protein-protein interactions
embedded in a lipid bilayer with MD simulations because
of the very long time scales involved in the relaxation of
the lipids. Progress on general questions concerning pro-
tein-protein interactions therefore requires alternative
approaches.

Recently, an approach based on statistical mechanical
theories involving integral equations was developed for the
study of liquids (Hansen and McDonald, 1986; Chandler et
al., 1986). It was used to examine the influence of lipid
chains on protein-protein interactions (Lagiie et al., 1998).
The theory was derived as a hypernetted chain (HNC)
integral equation projected onto the 2D space of the lipid
bilayer plane. The exact lateral density-density response
function of the hydrocarbon core, calculated from the con-
figurations of an MD simulation of a lipid bilayer (Feller et
al., 1997), is used as an input to this theory. Response
functions of this type are closely related to the bilayer
structure factor, which can be extracted from low-angle
X-ray or neutron scattering measurements (Hansen and Mc-
Donald, 1986). Such a theory, constructed on the basis of a
density susceptibility response function used as an input to
derive environment-mediated potential of mean force be-
tween impurities, is in the spirit of the Pratt-Chandler theory
of the hydrophobic effect (Pratt and Chandler, 1977). To
illustrate the approach, the lateral perturbations on the di-
palmitoylphosphatidylcholine (DPPC) bilayer structure as
well as the lipid-mediated protein-protein interaction were
calculated for a 5-A-radius cylinder corresponding to a
a-helical polyalanine molecule. This theory offers an inter-
mediate approach, combining aspects of both mean-field
theories and fully detailed atomic simulations.

In this paper we extend the HNC equation by exploring
approximations based on the Percus-Yevick (PY) equation
(Hansen and McDonald, 1986) to calculate several quanti-
ties related to lipid-mediated protein-protein interactions.
We used the two approximations for comparison to see if
any essential differences could be uncovered in the lipid
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density around the embedded proteins and in the lipid-
mediated forces acting between two embedded proteins. In
the next section we present the theoretical formulation of
the problem, followed by the results for a DPPC bilayer.
The paper is concluded with a brief summary and a discus-
sion of future work.

THEORETICAL DEVELOPMENTS
Integral equation theories

The method employed here was originally presented by
Lagiie et al. (1998). However, because several extensions
have been added, we briefly review the theory. Isolated
protein inclusions embedded in a uniform lipid bilayer in
the liquid crystalline state are considered. It is assumed that
the dominant perturbation affects only the lateral positions
of the lipids. For the sake of simplicity, it is assumed that
the protein inclusions are hard repulsive cylinders of radius
o that interact only with the hydrocarbon chains, whereas
the polar headgroups are not directly affected by the protein.
The proteins are modeled as hard, vertical, straight cylin-
ders. The carbons belonging to the lipid acyl chains interact
with the protein inclusions via a repulsive potential, U(r) =
U(x, y). For n protein inclusions, the total perturbation po-
tential is

n

E u(’r - ri|)’ (1)

i=1

U(r’ r,... >rn) =

where r; = (x;, y;) is the position of the ith inclusion in the
membrane plane.

For the development of the theoretical analysis, we use
the HNC and the PY approximations. These equations allow
us to calculate the average density of the carbon atoms
projected in the 2D membrane plane {p(r; ry,..., r,),
where r = (x,y). (The explicit dependence of the lipid
density upon the position of the n protein inclusions will be
omitted in the following for the sake of clarity.) We begin
by writing an expression for the free energy density func-
tional for nonuniform liquids in the HNC approximation
(Hansen and McDonald, 1986; Chandler et al., 1986),

ALpEY: vrs .o 1,) = kT f dr{@(r»ln[“?] - Ap<r>}

+ fdr Ulr;ry, ..., r)p(r))

1
- EkBT f drfdr’Ap(r)

Callr = r'DAp(r"), (2)
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where p is the density of the hydrocarbon chains in the
uniform 2D membrane plane and Ap(r) = {p(r)) — p is the
deviation from the uniform density p (in other words, Ap(r)
represents the perturbation of the lipid density by the protein
inclusion). The lipid-lipid direct correlation function
C.(Jr — r'|) is defined in terms of y,,(r), the equilibrium
carbon-carbon density susceptibility of the uniform unper-
turbed membrane,

Cu(®) = (p)'8(r) = X' (1). 3)

Here x,,(r) is a response function related to the density
fluctuations of carbon pairs in the unperturbed membrane
(X, does not depend upon the position of the protein inclu-
sions; see below), and .. '(r) is the functional inverse of the
density response function y,,(r). According to the free en-
ergy variational principle (Chandler et al., 1986), the aver-
age density is obtained by minimization of the functional <
with respect to the function (p(r)). This leads to the 2D-
HNC integral equation

{p(r)) = pexp

—U(r)/ksT + Jdr’Cm(|r - r’|)Ap(r’)1,
4)

which must be solved self-consistently. The integral equa-
tion can be rewritten in a form more suitable for numerical
calculations as a pair of coupled equations,

c(r) = exp[ —U(r)/kgT + h(r) — c(r)] — h(r) + c(r) — 1
(%)

and

ph(r) = J dr'c(lr = 1’ xa(r), (6)

where A(r) = Ap(r)/p is the protein-lipid correlation func-
tion, and ¢(r) is the protein-lipid direct correlation function.
Equation 6 is the well-known Ornstein-Zernike (OZ) equa-
tion (Hansen and McDonald, 1986) for an isolated impurity
in an infinite bulk system. A 2D-PY equation is obtained by
linearizing the exponential on the right-hard side of Eq. 5:

c(r) = exp[ —UM)/ksT] X [1 + h(r) — c(r)]
— h(r) + c(r) — 1. (7)

This equation can also be solved self-consistently when
coupled with Eq. 6.

Lipid-mediated interaction energy between two
protein inclusions

It is possible to obtain the lipid-mediated potential of mean
force (PMF) between two protein inclusions directly from
the OZ equation (Hansen and McDonald, 1986). The PMF
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between two cylindrical protein inclusions is then

W(r) = u(r)

— kgT| fjdr’ dr” e(fr = r'Dxm(lr” = r"Pe(r = ") |,

®)

where c(r) is the protein-lipid direct correlation function for
a single isolated protein inclusion. The double convolution
is calculated by using a Fourier transform. We call Eq. 8 the
OZ route. This method assumes that the concentration of
protein inclusions in the membrane is infinitely small.
Alternatively, it is possible to compute the PMF from the
excess Helmholtz free energy of the system by solving for
the lipid density around the two protein inclusions located
explicitly at r; and r,. The excess Helmholtz free energy <4
due to the two cylinders is obtained by substituting the
self-consistent solution to the 2D-HNC integral equation
(Eq. 4) into the free energy functional of Eq. 2. This
equation, together with the OZ equation of Eq. 6, leads to
the closed-form expression for the excess free energy of an
arbitrary perturbation (see also Morita and Hiroike, 1960),

34(|r1 - l'2|) = kBTF_)jdrB(h(r; r, 1))’

1
— A 1, E)elr 1, 1) = s rz)], ©)

where the notation A(r; ry, r,) and c(r; ry, r,) indicates that
the correlation functions depend parametrically upon r; and
r,. The PMF is the difference in free energy between the
system of two cylinders at r, and r, minus the free energy
when they are infinitely separated, W(r) = A(r) — 24(x).
We call Eq. 9 the A route.

Finally, it is possible to compute the PMF from the
reversible work needed to bring two protein inclusions from
an infinite separation to a distance r (Kirkwood, 1935),

Wr) = — J dr{F(r)), (10)

T

where (F(r)) is the mean radial force directed along the
cylinder-cylinder axis acting on one cylinder. The system
with two cylinders is shown schematically in Fig. 1. The
lipid-mediated mean force acting on cylinder 1 at ry, in the
presence of a second cylinder 2 at r,, is

dw(r) .
dr = —(F)) 1y

oU(r,ry)

= fdr<P(r; r,r)) T Iy, (1)
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{p(r = 0,0))
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FIGURE 1 Diagram showing how the mean forces between two protein
inclusions, modeled as cylinders, were calculated. For distances greater
than the protein diameter, there is a force arising from lipid density
asymmetry around protein inclusions, as stated in the text. The resultant
force is obtained by integrating the average density of hydrocarbon chains

(p(r = o, 0)) at the positive side of the protein radius around the protein
inclusion, as given by Eq. 12.

~
>T

where U(r,, 1) is, as above, the total perturbating potential,
and f,, is a unit vector oriented along the line joining the
centers of the two proteins. The mean force is given by

2m

(F) = —kyTo f do cos(0)(p(r = o, 0)),  (12)

0

where {p(r = o, 0)) is the lipid density at the outer surface
of the protein inclusion for a given angle 6. The angular
integration is taken over the circumference of the protein
inclusion (dr = r df dr). The identity

du(r) d
I u(r)/kgT —u(r)/kgT
dr kaTe ar €
o(r — o)
=~ Te T = (13)

following from the assumption of infinitely repulsive cyl-
inders of radius o, was used. Equation 12 shows that the net
average lipid-mediated force acting on two protein inclu-
sions arises from the asymmetry in hydrocarbon density
around the protein inclusions. By symmetry, there is no net
force acting on a single isolated cylinder. We call Eq. 12 the
F route. The F route can be used with both the 2D-HNC
integral equation (Eq. 4) and the 2D-PY integral equation
(Eq. 7).

The calculated PMF corresponds to the lipid-mediated
interaction between two helices modeled as straight vertical
cylinders. These cylinders have no tilting with respect to the
membrane normal. This is clearly an approximation because
it is well known that transmembrane helices are often asso-
ciated with some angle to optimize the packing of their side
chains; for example, the angle between the helices in the
glycophorin dimer is around 40° (MacKenzie et al., 1997).
Such a phenomenon, which arises from local helix-helix
interactions, cannot be taken into account in the current
theory, which is built upon a two-dimensional projection of
all interaction and correlation onto the membrane plane.
Extensions to a more complex theory to account for the
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three-dimensional spatial organization of the membrane are
in progress to deal with such questions.

Pair correlation function of the
unperturbed membrane

A central quantity in the present theory is the response
function of the uniform unperturbed membrane, x,,(r), de-
fined in Eq. 3. Functions such as y,,(r) play a central role in
the response of the average structure of an equilibrium
system to a small perturbation (Hansen and McDonald,
1986). The response function y,, is related to lipid density-
density fluctuations of carbon pairs in the unperturbed
membrane at equilibrium,

Xn(r = 1) = {(p(r) = (oM (p(r") = {p(r")))
= (p)p(r")) = {p(r))p(r")), (14)

where p(r) is the density of the ensemble of carbon atoms
comprising the lipid chains,

p(r) =2 2 8(ry — r).

i a=1

(15)

Here i is the index of the lipid molecules, and «, which goes
from 1 to n, is the index of the carbon atom along the lipid
chains. In the uniform unperturbed system, the average of
p(r) is the average carbon density per unit area,

(pr) = 2 28 — )

i a=1

(16)

The average density p is equal to 2 X n X the surface
density of lipid molecule per leaflet, where # is the number
of carbon atoms in the hydrophobic moiety of one DPPC
molecule (the factor 2 appears because of the upper and
lower leaflets of the bilayer).

Density-density fluctuations of carbon pairs can also be
expressed in terms of the radial intramolecular and inter-
molecular pair correlation functions of the pure unperturbed
membrane,

=p.

> E > E 8 — r)dd — r') | — pp

i a=1 j vy=1

Xm(r - l',)

pld(r — ") + S(r — r') + Hy(r — r')pl,
)

where the function S_,(r — r’) represents the carbon-carbon
intramolecular pair correlation within a given lipid molecule
(i = j), while the function H_(r — r’) represents the
carbon-carbon intermolecular pair correlation between dis-
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tinct lipids (i # j), as displayed in Fig. 2. By symmetry, the pair
correlation functions depend only on the distance r pro-
jected in the x, y plane, with » = V(x — x")* + (y — y')~

In the present study, the pair correlation functions were
calculated from 500 configurations generated by molecular
dynamics simulations of a detailed atomic model of a pure
DPPC bilayer at 323.15 K performed by Feller et al. (1997).
The function S, (r) was calculated as

2 a(r; r + Ar) (18)

n
a

5. = <1 N<+A>>

where N™(r; r + Ar) is the total number of carbons from
a given lipid found within the 2D annulus going from r to
r + Ar centered around carbon «, and a(r;r + Ar) =

A Loy
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FIGURE 2 (4) Snapshot of the lipid bilayer taken from the trajectory
used to compute the pair correlation functions of the unperturbed mem-
brane (Eq. 14). (B) A single lipid molecule, taken from the snapshot in 4,
with the distance d (with Ar = r + d) used to compute the intramolecular
correlation function S,,(r) (Eq. 18). (C) Two lipid molecules, taken from
the snapshot in 4, with the distance d (again with Ar = r + d) used to
compute the extramolecular correlation function H,,(r) (Eq. 19). In both B
and C, only atoms represented by filled circles were used to calculate the
pair correlation function of the unperturbed membrane.
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a[(r + Ar)> — %] is the area of the annulus. The function
H_(r) was calculated as

1
H,(r) = <n >

NO(p 7+ Ar)
) — 1 (19)

a(r;r + Ar)p

where N™'(r; » + Ar) is the number of carbons from the
other lipids found within the 2D annulus going from » to » +
Ar centered around carbon « of a lipid molecule. At large
values of r, intermolecular correlations vanish and the func-
tion H,,(r) — 0.

All of the heavy atoms from the acyl chains and the
glycerol backbone were counted in the calculation of the
pair correlation function for a total of 39 particles per lipid.
The polar headgroup was not included. Because the average
cross-sectional area is 62.9 A? per DPPC (Feller et al.,
1997), the average carbon density per unit area p is equal to
1.24 A2,

Computational details

The 2D-HNC equations (Egs. 5 and 6) and the 2D-PY
equations (Egs. 7 and 6) were examined for two different
systems. The case of a single isolated protein inclusion
modeled as a hard repulsive cylinder was first studied. For
this case, the PMF was computed using Eq. 8§ when the
2D-HNC closure was used. Second, two identical cylindri-
cal protein inclusions were examined at various separations.
For this case, the lipid-mediated protein-protein free energy
was calculated using Eq. 9, and the lipid-mediated mean
force between the two proteins was calculated using Eq. 12
with the 2D-HNC closure, whereas only the lipid-mediated
force between the two proteins was calculated using the
same equation but with the 2D-PY closure. Three radii for
the hard cylinder were chosen: a small radius of 2.5 A, a
medium radius of 5 A, and a larger radius of 9 A. The small
cylinder corresponds closely to an aliphatic chain, the me-
dium cylinder corresponds closely to a polyalanine a-helix,
and the larger cylinder corresponds to a small protein such
as the gramicidin channel (Woolf and Roux, 1996).

The 2D-HNC equations (Egs. 5 and 6) and the 2D-PY
equations (Egs. 7 and 6) were solved numerically by a
method used previously to solve HNC integral equations
(Beglov and Roux, 1995, 1997). It involves a mapping of all
functions onto a 2D discrete grid, e.g., u(x,y) — u(i,)),
hx, y) = h(i, )), c(x,y) = c(i, ), and Xin(X, ¥) = Xon(0s))-
Two grid dimensions were used, depending on the number
of proteins inserted into the system. A discrete grid for N =
1024 X 1024 with a spacing d of 0.12 A was used with
single protein systems, and N = 2048 X 1024 with the same
d spacing was used for two protein systems. The 2D con-
volution in Eq. 6 was calculated using a numerical 2D fast
Fourier transform (FFT) procedure called FFTW (Frigo and
Johnson, 1998). The convolution was calculated directly,
without zero padding. This corresponds to a periodic system
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in the x and y directions. An iterative scheme with simple
mixing was used to solve 2D-HNC and 2D-PY closures
self-consistently. In this scheme, the mth iteration is ob-
tained from

™V = Mexp[— UlkgT + h™ — ¢™] = 1 — A™ + ™}
(1= )™ (20)

for the 2D-HNC closure, and the mth iteration is obtained
from

™V = Mexp[—UlkgTT[1 + h™ — ¢™] = 1 — A'™ + ¢}
+ (1 = A @1

for the 2D-PY closure. Approximately 50 iterations were
necessary for convergence. The average force was calcu-
lated from 1024 points around a protein inclusion, and these
points were obtained by linear interpolation from grid
points. The numerical solution to the integral equation took
less than 5 min to obtain on a 400 MHz Intel Pentium II.

RESULTS AND DISCUSSION
Lipid structure and response function

Fig. 2 4 shows a snapshot of the lipid bilayer taken from the
trajectory of molecular dynamics simulations of Feller et al.
(1997), which was used to compute the pair correlation
function of the unperturbed membrane. The membrane was
in the liquid crystalline phase, in which the average overall
orientation of the lipid chains is perpendicular to the bilayer
plane. Fig. 3 gives the results for the carbon-carbon distri-
bution function, y,,(r), extracted from molecular dynamics
simulations and used as input in the integral equation. The
carbon-carbon intramolecular correlation function, S,(7),
involving carbons from the same lipid molecule as sche-
matically shown in Fig. 2 B, has a large peak up to 3 A and
then exhibits a slow decay over a distance of 10-15 A. The
short-range contribution to the intramolecular correlation
arises mainly from nearest-neighbor carbons along the acyl
chains (i.e., carbon i with carbons i — 1 and i + 1), but there
are also contributions from intermediate range (second
neighbor) and long-range correlations along the lipid chain.
These include correlations between the last carbon atom of
the aliphatic chain and the glycerol oxygen at the beginning
of the aliphatic chain. The dominant peak is thus an indi-
cation of the significant amount of short-range and long-
range order in the lipid chains perpendicular to the plane of
the bilayer. The long-range contribution to the intramolec-
ular correlation function, which extends to 15 A, is due to
carbons located in different acyl chains of a single lipid
molecule.

The carbon-carbon intermolecular correlation function
H_(r), involving carbons from two different lipid mole-
cules, as shown schematically in Fig. 2 C, has a strong
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FIGURE 3 Carbon-carbon density-density response function x,,(r) (sol-
id line) as extracted from molecular dynamics simulations and used as
input in the integral equation. The intramolecular S,,(r) (dashed line) and
intermolecular, H,,(r) (dash-dotted line), pair correlation functions ex-
tracted from the molecular dynamics simulations of Feller et al. (1997) are
shown. (to match the dimensions of A~2 of S (r), the function ¥,,/p and the
function H,,(r) X p are also shown).

negative contribution at short distances due to the lipid-lipid
core repulsion. It is interesting to note that for » = 0 the
intermolecular correlation function has a value higher than
the corresponding value for a real liquid, i.e., a value of
—0.44 as compared to a real liquid value of —1.0. This
comes from the fact that overlap of carbons is possible when
the 3D configuration of aliphatic chains is projected in 2D
onto the membrane plane. The first peak around 5 A is in
good agreement with the carbon-carbon intermolecular pair
correlation function of butane (Tobias et al., 1997), whereas
a characteristic double peak appears in the region between 4
A and 6 A, which includes intramolecular correlations be-
tween terminal methyl groups for molecules in the frans
conformation as well as intermolecular correlations. This
result suggests a 5-A distance between carbon atoms of two
different aliphatic chains, corresponding to a radius of 2.5 A
for a single aliphatic chain. It is of interest to note that the
negative contributions are much less important at distances
greater than the lipid diameter. As a result, the response
function x,,(r) exhibits a strong peak for distances up to 3
A, arising from the intramolecular correlations, and a sec-
ond strong peak at a distance of 4-5 A, arising from the
intermolecular correlations. The response function decays
in an oscillatory manner, with small positive peaks appear-
ing around 9 and 14 A.

Perturbed lipid density around protein inclusion

The observed structure of the correlation functions of a pure
DPPC bilayer shown in Fig. 3 suggests that the lateral
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response to perturbations may be quite complex. To assess
the response of the membrane quantitatively, the average
density around three protein inclusions modeled as hard
cylinders was examined: a small cylinder, corresponding to
an aliphatic chain, has a radius of 2.5 A; a medium cylinder,
with a radius of 5 A, corresponds to an a-helical polyalanine
molecule; and a large cylinder of 9 A radius, representing a
small peptide such as the gramicidin channel (Woolf and
Roux, 1996).

The radial average lipid density around the cylinders as
calculated using the HNC integral of Eq. 5 and the PY
integral of Eq. 7 along with Eq. 6 of Section II, are shown
in Fig. 4. It is observed that, in all cases, the perturbation of
the membrane structure extends 20 A from the edge of the
cylinder, with strong oscillations in the correlation function
separated by ~5 A. Moreover, the 2D-HNC and 2D-PY
theories give similar results, both qualitatively and quanti-
tatively, except for a small deviation around 3 A. We will
therefore only discuss the results in terms of the different
radii without referring to the specific approximation used.

For the 2.5-A cylinder radius, shown in Fig. 4, the aver-
age density is higher than its bulk unperturbed value next to
the cylinder up to 1.75 A. The average lipid density is lower
for the next region, between 1.75 A and 21.5 A, with one
small peak between 5 A and 6 A and a second peak between
9.5 A and 10.5 A. The average lipid density is higher
between 13.5 A and 21 A and finally relaxes to the bulk
value at 21 A from the edge of the cylinder. The region next
to the cylinder can thus be regarded as a crowded layer with
a lipid density higher than the uniform bulk value, and this
region is followed by a depletion layer with a lipid density
lower than the uniform bulk value. This trend is not ob-
served in the case of the 5-A cylinder radius, where the
average lipid density is lower than its bulk value between 0
A and 10 A from the edge of the cylinder. The depletion
layer is followed by a crowded region, spreading from 10 A
to 21 A. The crowded layer of the 5-A cylinder radius is
more extended and has a higher density than for the
crowded layer of the 2.5-A cylinder radius. The oscillations
in density of these two curves are completely in phase, i.e.,
when the 2.5-A cylinder radius curve is at a maximum, the
5-A cylinder radius curve is also at a maximum. Finally, a
trend similar to that of the 5-A cylinder is observed for the
9-A cylinder radius. The depletion layer extends from 0 to
5 A, and the crowded layer extends from 5 to 20 A. The
depletion layer around the 9-A cylinder has a slightly lower
lipid density and is thinner than that for the 5-A cylinder. In
contrast, the crowded layer of the 9-A cylinder has a higher
lipid density and is longer than that for both the 2.5-A and
5-A cylinders. In a general way, the lipid density next to the
edge of a protein with a radius larger than 2.5 A, in a DPPC
bilayer, is lower than its bulk value, and this depletion layer
is followed by a crowded region where the lipid density is
higher than its bulk value. The lateral perturbation of the
lipid density is within ~25 A of the edge of the cylinder.

Biophysical Journal 79(6) 2867-2879



2874

1.40

\/\ N ~ T~
1.20 \/ \/ S
\7

1.00

r=2.5A

1.30 /_\/\_\

1.10 N7

Density

0.90 \u/ r=5.0A

1.30 N /\/\_\

1.10

0.90 v r=9.0A

FIGURE 4 Radially averaged lipid density {p(r)) around the cylinders as
calculated from the HNC integral in Eq. 5 (solid lines) and from the PY
integral in Eq. 7 (dashed lines) for 2.5-A-, 5.0-A-, and 9.0-A-radius
cylinders. The origin of the axis corresponds to the edge of cylinders, and
the mean lipid density of the unperturbed membrane is represented by
horizontal lines.

The depletion layer next to the protein inclusion edge
increases the area available for lipid molecules in this re-
gion. To quantify the increase in area per molecule in this
region, the average area per lipid molecule for lipid mole-
cules within the layer of a given size next to the cylinder
edge was calculated as follows. First, the number of carbon
atoms is retrieved by integration of the density of the carbon
atoms over the layer surface. The density curves are shown
in Fig. 4 and are obtained with the 2D-HNC theory. Next,
the number of lipid molecules is estimated by dividing the
number of carbon atoms in the layer by the number of
carbon atoms in a single lipid, and again dividing by 2 to get
the number of lipids for only one leaflet of the membrane.
In fact, this is an approximation because carbon atoms can
belong to different lipid molecules. Finally, the surface area
of the given layer around the protein inclusion is divided by
the number of lipid molecules to give the area by lipid
molecule. Results for different layer sizes and different
protein inclusion radii are given in Table 1 (recall that the
area per lipid molecule for an unperturbed membrane is 62.9
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TABLE 1 Average area per lipid molecule for different layer
sizes next to a protein inclusion edge, calculated from 2D-
HNC density curves

Protein Layer size Area by
radius (from cylinder side) molecule
(A) (A) (A*/molecule)
2.5 5.0 66.2
10.0 65.5
20.0 62.8
30.0 62.9
5.0 5.0 75.0
10.0 67.3
20.0 63.4
30.0 62.9
9.0 5.0 75.7
10.0 65.3
20.0 62.5
30.0 62.4

A%/molecule). In a general way lipid molecules next to the
cylinder edge have a greater area per molecule than lipid
molecules in the unperturbed membrane. This observation
is in accord with results of Husslein et al. (1998), who
performed a MD simulation of a hydrated diphytanolphos-
phatidylcholine lipid bilayer containing an a-helical bundle
of four transmembrane domains of the influenza virus M2
protein. It was observed that the area per lipid molecule in
the vicinity of the protein increases to 85 A%molecule, as
compared to 74.6 A*/molecule for an unperturbed mem-
brane lipid bilayer under the same conditions. The presence
of a depletion layer of lipids around a protein inclusion and
the corresponding increase in cross-sectional area per lipid
suggest that there is effectively a long-range repulsion be-
tween the lipids and the protein. It seems plausible that the
origin of this repulsion is entropic. It has been observed that
the lipid chains adopt more ordered configurations (higher
carbon-deuterium order parameter) near transmembrane
proteins (Woolf and Roux, 1996; Chui et al., 1999). A lipid
molecule must reduce its disorder significantly to come
close to a protein inclusion, which is entropically unfavor-
able. The reduced disorder is converted into an effective
lipid-protein repulsion. As indicated by Table 1, the effect
increases with the size of the protein.

Lipid-mediated forces between protein inclusions

In the context of integral equations, different routes can be
taken to calculate the lipid-mediated interaction free energy.
If the theories were exact, all of these different methods
would yield the same result. However, because the theories
are only approximations, there may be some differences. A
comparison of the interaction free energy obtained by dif-
ferent routes thus provides a valuable assessment of the
internal consistency of the theory. Three different methods
were used to compute lipid-mediated interaction free energy
(see above): the OZ route based on Eq. 8, the o route based
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on Eq. 9, and the F route based on Eq. 12. The o route and
the F route require explicit consideration of the perturbation
of the hydrocarbon density around two protein inclusions.
For this reason, they are computationally more expensive
than the OZ route, which requires only the correlation
functions around a single isolated inclusion. However, the '
route offers the possibility of analyzing in detail the origin
of the PMF from the nonuniform hydrocarbon density
around the protein inclusions.

The results for the lipid-mediated interaction free energy,
as a function of the separation distance between two cylin-
ders, are given in Fig. 5. The different approximations for
the PMF yield similar results, indicating that the theories are
internally consistent. The numerical noise observed in the
PMF curves calculated with the s route (Eq. 9) arises from
the finite grid combined with the harsh repulsive potential
between lipid and cylinders. This is a well-known problem
that is also observed in finite-difference Poisson-Boltzmann
calculations. For the case of two 2.5-A cylinders, there is a
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FIGURE 5 Lipid-mediated free interaction energy, in k57 units, between
two hard repulsive cylinders of 2.5-A radius (top), 5-A radius (middle), and
9-A radius (bottom) as a function of their separation distance between
cylinder edges. Results obtained from the 2D-HNC closure: free energy
difference (Eq. 9, solid line), integration of force (Eq. 12, dashed line), and
the PMF (Eq. 8, long dashed line). Results obtained from the 2D-PY
closure: integration of force (Eq. 12, dot-dashed line).
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free energy barrier at a separation distance of 15 A between
the cylinder edges, followed by an attractive free energy
well for distances less than 10 A. The repulsive barrier is
~0.6kgT and extends from 10 to 20 A. At separations
greater than 20 A, the protein-protein potential is very small
and oscillatory. Finally, at protein-protein contact, the mag-
nitude of the lipid-mediated potential is approximately
—2kgT. For the case of two 5.0-A cylinders a similar trend
is observed, i.e., that there is a free energy barrier at a
distance of 10 A followed by an attractive free energy well
for distances less than 5 A. The repulsive barrier is ~4ksT
and extends from 5 to 20 A. Again, at separations greater
than 20 A, the protein-protein potential is very small and
oscillatory, and at protein-protein contact, the magnitude of
the lipid-mediated potential is approximately —8kg7. This
value is in good agreement with, though somewhat more
negative than, previous estimates in the literature (Marcelja,
1976; Schroder, 1977; Owicki et al., 1978; Owicki and
McConnell, 1979; Pearson et al., 1984; Sintes and Baum-
girtner, 1997b). For the case of two 9-A cylinders there is
a free energy barrier at a distance of 5 A between the
cylinder edges, and, in contrast to the case of two 2.5-A and
the two 5-A cylinders, there is no attractive free energy
well. In this case, the repulsive barrier is ~9k5 T and extends
from protein-protein contact to 20 A.

The lipid-mediated forces calculated on the basis of Eq.
12 as a function of the separation distance between two
cylinders are shown in Fig. 6. Again, as for the PMF curves,
the noise arises from the finite-grid effect in combination
with the harsh repulsive potential between lipid and cylin-
ders. In all cases there is a lipid-mediated force present up
to as much as 22 A between cylinder edges. Then, when two
2.5-A protein inclusions at a great distance apart are brought
closer, a small repulsive force arises when the separation
distance is on the order of 20 A. This force oscillates
slightly around zero with a separation of 5 A. This separa-
tion between oscillations corresponds approximately to half
of a lipid diameter and is exactly the value of the distance
between carbon atoms of two different aliphatic chains
suggested by the extramolecular correlation function. The
force becomes attractive at 5 A and then repulsive at protein
contact. For the case of two 5-A cylinders, the effective
interaction is again repulsive from ~20 A to 10 A and is
then attractive from 10 A up to contact between the cylin-
ders, again with oscillations separated by 5 A. For the case
of two 9-A cylinders the repulsion acts at a larger distance,
from ~20 A to 5 A, and the range of attraction is from 5 A
up to cylinder contact. As for the 2.5-A and 5-A protein
curves, the oscillations are again separated by 5 A. The
greatest difference between 2D-HNC and 2D-PY approxi-
mations occurs for the 9-A cylinder curves. However, these
two curves are qualitatively similar in shape.

As shown by Egs. 11 and 12, the lipid-mediated forces
between two protein inclusions arise from the asymmetry in
the lipid density around the cylinders. To understand the
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FIGURE 6 Lipid-mediated forces between two cylinders as a function of
their separation between cylinder edges. See the Fig. 4 legend for details.

origin of these forces as well as the asymmetry in lipid
density, a series of contour plots of lipid aliphatic chain
density around the protein cylinders was made. For each
system of two protein cylinders of the same size three
separation distance were chosen, giving a total of nine
contour plots. The first separation distance corresponds to
the distance where the interaction energy begins to increase
in Fig. 5, i.e., a separation distance of 20 A for every protein
size. The second separation distance was chosen to see what
happens when the interaction energy is at the maximum in
Fig. 5, i.e., a separation of 15 A for 2.5-A-radius protein
cylinders, 10 A for 5-A-radius protein cylinders, and 5 A for
9-A-radius protein cylinders. The last separation distance is
2 A for each protein cylinder size, corresponding to the case
where the two protein cylinders are very close to each other.
The series of contour plots is given in Fig. 7. In this figure,
we see that the depletion layer of the two 9-A-radius protein
cylinders is thinner than for the two 5-A-radius protein
cylinders, but it is the depletion layer of the two 2.5-A-
radius protein cylinders that is the thinnest. Furthermore, for
the 5-A-radius and the 9-A-radius protein cylinders, the
maximum of interaction energy corresponds with the begin-
ning of an overlap of the depletion layers of each protein
cylinder.
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FIGURE 7 Contour plots of lipid aliphatic chain density around two
protein inclusions at different distances. The cylinder radius (, in A) and
the distance between protein edges (d, in A) are shown at the top of each
plot. Dark blue represents protein inclusions, light blue corresponds to a
lower density than the bulk, red corresponds to a higher density than the
bulk, and cyan corresponds to the bulk density.

The differences between the results for the two protein
inclusions of different sizes shown in Fig. 5 for the lipid-
mediated free interaction energy and in Fig. 6 for the
lipid-mediated forces provide some insight into the origin of
protein inclusion size effect in lipid-mediated effective in-
teraction. This effect arises from a difference of lipid pack-
ing around the cylinders of different sizes. It is important to
note that, for a given protein inclusion size, the point where
the attraction between two inclusions begins in Fig. 6 cor-
responds to a free energy maximum in Fig. 5. As stated
above, for the two 2.5-A inclusions, the lipid-mediated free
energy maximum is at 15 A, at 10 A for the two 5-A
inclusions, and at 5 A for the two 9-A inclusions. These
distances correspond to the diameter of three aliphatic
chains for the case of two 2.5-A inclusions, two aliphatic
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chains for the case of two 5-A inclusions, and only one
aliphatic chain for the case of two 9-A inclusions. Further-
more, for the two 5-A inclusions and the two 9-A inclu-
sions, these distances correspond exactly to the complete
overlap of the depleted regions of each inclusion (see Figs.
4 and 7, middle column). This suggests that the lipid mol-
ecule between the two 5-A inclusions is bound to both
proteins, and that this lipid would have to be entirely re-
moved to bring these two cylinders closer. In contrast, for
the two 9-A inclusions, there is only a single aliphatic chain
between these two inclusions before the attraction occurs.
The curvature of the 5-A protein inclusion is perhaps too
pronounced for a single lipid to be able to place both its
aliphatic chains along the edge of one cylinder of this size.
However, the curvature of the 9-A cylinder does not seem to
be too pronounced, and a single lipid can then place its two
aliphatic chains along the edge of one cylinder of this size.
The suggested configurations of lipid packing around a 5-A
cylinder and a 9-A cylinder are shown schematically in Fig.
8. For the two 2.5-A inclusions, the free energy maximum
being at 15 A, the interpretation of the result is not obvious.

The lipid-mediated forces obtained with the two 5-A
cylinders are comparable to those obtained by Sintes and
Baumgirtner (1997b) with different protein radii. They used
Monte Carlo computer simulations based on a simple model
of the lipid bilayer, where the bilayer is represented with
2 X 500 lipid molecules and where each lipid molecule was
modeled by a flexible chain composed of five monomers.
The proteins were modeled by two hard transbilayer cylin-
ders. They observed that the lipid-mediated forces were
almost independent of the protein radius. In contrast, we
observe a size effect in the effective interactions between
two cylinders. However, the presence of both an attractive
and a repulsive part in the lipid-mediated protein-protein
effective interaction is in qualitative agreement with their
results.

CONCLUSION

The dependence of lipid-mediated interactions between pro-
tein inclusions on protein size was investigated using a

N

A B

FIGURE 8 Two-dimensional top view of the lipid packing around a
5-A-radius cylinder (4) and a 9-A-radius cylinder (B). Proteins are repre-
sented by circles and lipid molecules are represented by ellipses. See text
for discussion.
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theory for examining the structure of the hydrocarbon
chains around protein inclusions embedded in a lipid bi-
layer. This theory, based on the HNC integral equation
theory for liquids, was recently developed (Lagiie et al.,
1998) and uses the exact lateral density-density response
function of the hydrocarbon core as an input to the calcu-
lations. This response function was computed from config-
urations taken from the MD simulation of a pure DPPC lipid
bilayer of Feller et al. (1997). In addition to the original
theory, where the lipid density around protein inclusions
and lipid-mediated forces acting between two protein inclu-
sions were computed, a new physical quantity was calcu-
lated: the lipid-mediated free energy acting between two
protein inclusions. The theory was also extended to the PY
integral equation (Hansen and McDonald, 1986) for com-
parison with the results obtained using the HNC closure.

We first examined the structure of the DPPC bilayer in
the neighborhood of a single protein modeled as a hard
cylinder for three different sizes: a small cylinder of 2.5-A
radius, corresponding an aliphatic chain; a medium cylinder
of 5-A radius, corresponding an a-helical polyalanine pro-
tein; and a large cylinder of 9-A radius, representing a small
protein such as the gramicidin channel (Woolf and Roux,
1996). The results showed that the average lipid order is
perturbed over a distance of 20 A from the edge of the
protein. For the 5-A and 9-A cylinders, a depletion region
with respect to the lipid molecules is present next to the
protein edge, followed by a crowded region. The opposite
trend was observed for the 2.5-A cylinder, where a crowded
region with respect to the lipid molecules is present next to
the protein edge, followed by a depletion region. The dis-
tance of each region varies with the protein radius.

We then calculated the lipid-mediated protein-protein
effective interactions for two proteins of the same size. The
lipid-mediated force between two protein inclusions of the
same size show that there is a repulsive part followed by an
attractive part for the 5-A- and 9-A-radius proteins when the
two proteins are brought closer, but this trend was not
observed for the 2.5-A-radius proteins. The results obtained
with the two 5-A-radius proteins can be compared with the
results of Sintes and Baumgértner (1997b), but, in contrast
to their results, a size effect was observed in the interactions
between two protein inclusions. The lipid-mediated protein-
protein free energy was computed in three different ways:
the integration of the mean force (F route) from both HNC
and PY closures, with the OZ route, and with the Helmholtz
free energy ol route. These different approximations yield
similar results, indicating an internal consistency of the
theory. A free energy barrier is observed at a 15-A separa-
tion for the two 2.5-A-radius proteins, at a 10-A separation
for the two 5-A-radius proteins, and at a 5-A separation for
the two 9-A-radius proteins. These free energy barriers
inhibit protein-protein association. A free energy well of
—2kgT was found for the two 2.5-A-radius proteins, and a
second one of —8kgT was found for the two 5-A-radius
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proteins. No stable association was found for the case of two
9-A-radius proteins. The present model accounts only for
steric excluded volume interactions between the protein and
the lipid chains. In particular, electrostatic interactions were
ignored. Ben-Tal and Honig (1996) calculated the electro-
static contribution to helix-helix interactions, using a con-
tinuum electrostatic model. Their results indicate that there
is a nonspecific attractive interaction on the order of 2—4k5T
between transmembrane helices in an antiparallel configu-
ration. According to the present results, the magnitude of
the lipid-mediated interaction is thus on the order of the
electrostatic interaction between a-helices embedded in a
lipid bilayer.

In contrast to previous studies, the present results suggest
that the lipid-mediated protein-protein effective interaction
can be both attractive at short distances and repulsive at
large distances. It is only repulsive for two large inclusions.
The attractive part of the effective interaction is clearly due
to the presence of a depletion layer of lipid molecules close
to the embedded protein. The analysis of the hydrocarbon
density in relation to the mean force suggests a scheme for
the lipid packing around the 5-A-radius and the 9-A-radius
proteins. For the 5-A-radius protein, the lipid molecule next
to the protein is bounded by only one aliphatic chain. In
contrast, for the 9-A-radius protein, the lipid molecule next
to the protein is bounded by both of these two aliphatic
chains. The existence of repulsive and attractive forces
could have important consequences for protein association
and protein stability in biological membranes (Popot and
Engelman, 1990).

Finally, sensitivity of the results to the lipid density-
autocorrelation function is an important question that de-
serves a full investigation. Preliminary results from the
density susceptibility extracted from membrane simulations
with different phospholipid molecules indicate that the es-
sential features are conserved, although quantitative varia-
tions are observed, i.e., the lipid-mediated helix-helix PMF
is nonmonotomic and can be attractive or repulsive at dif-
ferent distances.

In the near future, the dependence of the lipid-mediated
interaction on membrane composition will be investigated,
as will the dependence of the protein size on the free energy
well on protein-protein association. Finally, further devel-
opments of the integral equation theory to include the cou-
pling between lateral and transversal responses of the mem-
brane are in progress.
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