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Abstract 

Gallai and Edmonds independently obtained a canonical decomposition of graphs in terms of their 

maximum matchings. Unfortunately, one of the degenerate cases for their theory occurs when the 

graph in question has a perfect matching (also known as a l-factor). Kotzig, Lovasz and others 

subsequently developed a further decomposition of such graphs. Among the ‘atoms’ of this de- 

composition is the family of hicritical graphs. (A graph G is bicritical if G-u-c has a perfect 

matching for every choice of two points u, u in C.) So far such graphs have resisted further 

decomposition procedures. 

Motivated by these mysterious graphs, we introduced the following definition. Let p and n be 

positive integers with n <(p - 2)/2. Graph G is n-exrendable if G has a matching of size n and every 

such matching extends to (i.e. is a subset of) a perfect matching in G. It is clear that if a graph is 

bicritical, it is I-extendable. A more interesting result is that if a graph is 2-extendable, it is either 

bipartite or bicriticai. It is also true that if a graph is n-extendable, it is also (n - I)-extendable. Hence, 

for nonbipartite graphs we have a nested sequence of families of &critical graphs to study. 

In this paper, we survey a variety of results obtained over the past few years concerning 

n-extendable graphs. In particular, we describe how the property of n-extendability interacts with 

such other graph parameters as genus, toughness, claw-freedom and degree sums and generalized 

neighborhood conditions. We will also investigate the behavior of matching extendability under the 

operation of Cartesian product. The study of n-extendability for planar graphs has been, and 

continues to be, of particular interest. 

1. Introduction, terminology and some motivation 

For any terminology not defined in this paper, the reader is directed to either [23] 

or [3]. Let G be any connected graph. A set of lines M L E(G) is called a matching if 

they are independent, i.e. no two of them share a common endpoint. A matching is 

said to be perfect if it covers all points of G. (Hereafter in this paper, ‘perfect matching’ 
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will often be abbreviated as ‘pm’.) Let Q(G) denote the number of perfect matchings in 

graph G. There are other areas of science (see [23]) in which it is of interest to 

determine Q(G). However, it seems very unlikely that an efficient algorithm for 

computing @(G) will ever be found. In particular, Valiant [48] proved the following 

result concerning the complexity of this task. 

Theorem 1.1. The problem of determining Q(G) is #P-complete - and hence NP-hard 

- even when G is bipartite. 

So, as is so often the case in mathematics, when a function cannot be computed 

exactly, we turn instead to a search for bounds. In particular, the material to follow in 

this paper can be said to be motivated by the search for a nontrivial lower bound for 

the parameter Q(G). 

It was noted first by Lo&z [20] that a class of graphs called bicritical play an 

important role in bounding the number of perfect matchings. (A graph G is said to be 

bicritical if G-U-V has a perfect matching for every choice of a pair of points, u 

and v.) 

Theorem 1.2. If G is k-connected and contains a perfect matching, but is not bicritical, 
then Q(G) 2 k!. 

In the author’s opinion, the role of the property of bicriticality in the above theorem 

is somewhat counterintuitive, and therefore intriguing. After all, it is trivial to see that 

a bicritical graph has the property that each of its lines lies in a perfect matching. So 

why should not bicritical graphs have an ‘enormous’ number of perfect matchings, 

when in a sense, the opposite is true? It is no surprise, then, to note that bicritical 

graphs have played (and continue to play) an important role in studies involving 

a lower bound for Q(G). 

In the past 20 years or so, considerable effort has been devoted to developing 

a canonical decomposition theory for graphs with perfect matchings. We shall now 

present the barest of outlines of this effort and refer the interested reader to [23] 

- and to the list of references to be found therein - for a much more detailed 

treatment. 

Let G be a graph containing a perfect matching and suppose n is a positive integer 

such that n< 1 V(G)1/2. Graph G will be called n-extendable if every set of n indepen- 

dent lines extends to (i.e. is a subset of) a pm. 

We begin our discussion of the decomposition theory by assuming that each line of 

the graph G under consideration lies in at least one pm for G. (In other words, assume 

that G is 1-extendable. Such graphs are also sometimes called matching-covered. See 
[21].) Clearly, lines lying in no pm can be ignored when attempting to count the total 

number of pm’s in the graph. Moreover, the determination of all such ‘forbidden’ lines 

can be carried out in polynomial time by applying the Edmonds matching algorithm 

at most [E(G)1 times. 
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We now encode each perfect matching in G as a binary vector of length IE(G)I, 

where thejth entry is a 1 if line j of G belongs to the pm and is a 0, if it does not. Take 

the linear span of all such binary vectors over the reals, ‘R The dimension of this space 

is called the real rank ofG and is denoted by r%(G). Clearly, r%(G)< D(G) and hence we 

have a lower bound of the type sought. 

However, can the quantity r%(G) is efficiently computed? The answer to this 

question is ‘yes’, fortunately, but we need to lay a bit more groundwork first. We call 

a bicritical graph which, in addition, is 3-connected, a brick. It is a fact - although 

a highly non-trivial one - that a decomposition theory exists for graphs with perfect 

matchings which terminates in a list of bricks associated with the parent graph. 

Moreover, this list of bricks is an invariant of the graph and the list can be determined 

in polynomial time. (See [22].) Denote the number of such bricks of G by b(G). 

We then can exactly compute r%(G) via the following beautiful result due to Edmonds 

ca 

Theorem 1.3. If G is any 1-extendable graph, then 

The careful reader may have noted by now that it follows immediately from the 

definition of a bicritical graph that no bipartite graph can be bicritical, let alone 

a brick. On the other hand, it is easy to find 1-extendable bipartite graphs. Such graphs 

will yield no bricks in the decomposition procedure, but it is worthwhile to note that 

the equation of Theorem 1.3 still holds, although in this case, B(G)=O. This result, 

for the special case of bipartite graphs, actually predates the general formula of 

Theorem 1.3 and is due to Naddef [26]. 

Corollary 1.4. If G is any 1-extendable bipartite graph, then 

r,(G)=IE(G)(-IV(G)I+2. 

In the most recent version of the decomposition procedure referred to above (and 

called the tight cut decomposition procedure by Lovasz [22]), in addition to the 

invariant list of bricks obtained, there is a second list of building blocks called braces. 

Although these graphs do not figure in the rank formula stated above, as do the 

bricks, they are deserving of mention in a paper on matching extension. In particular, 

a bipartite graph is a brace if it is 2-extendable. 

At this point, we stop to ask the question: are there any well-known classes of 

graphs for which @(G) can always be exactly determined in polynomial time? The best 

known such class is the class of planar graphs. This was proved long before the 

development of the decomposition theory discussed above by Kasteleyn [14, 151 who 

also gave an algorithm for counting the pms of a planar graph. Although this 

procedure was presented before complexity of algorithms attracted much attention, 
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fortunately Kasteleyn’s algorithm is easily seen to be polynomial. Kasteleyn showed 

that if one could direct the lines of an undirected graph G so as to obtain a Pfufian 

orientation of G, then @P(G) was just the value of the determinant of a certain matrix 

associated with the oriented graph, and hence obtainable in polynomial time. He then 

showed that one could always find such an orientation when graph G was planar. (For 

the definition of a Pfaffian orientation, as well as a more detailed discussion of the 

so-called ‘Kasteleyn method, see [23, Chap. 81.) 

In a much more recent result, Vazirani and Yannakakis [49] have demonstrated 

the following important relationship between the bricks and braces of a graph and 

Pfaffian orientations. 

Theorem 1.5. An arbitrary graph G has a Pfajian orientation if and only if all of its 

bricks and braces have such an orientation. 

There are several interesting and closely related complexity questions about Pfaf- 

fian orientations of graphs which remain unresolved. (1) Does a given graph have 

a Pfaffian orientation? (2) Is a given orientation of a graph a Pfaffian orientation? 

Recently, Vazirani and Yannakakis [49] have demonstrated that (1) and (2) are 

polynomially equivalent. In fact, in the case of bipartite graphs, questions (1) and (2) 

are polynomially equivalent to yet a third unsettled question: (3) Given a directed 

graph, does it contain a directed cycle of even length? 

The tight set decomposition procedure yielding the canonical lists of bricks and 

braces is, to be sure, a deep and beautiful theory. However, note that when the graph 

with which one starts is itself a brick or a brace, the theory provides no further 

‘decomposition’. Indeed, at this point we come up against something of a ‘brick wall’! 

(Of course the pun is intentional!) At present, no theory for further decomposing 

bricks and braces exists. On the other hand, the following result is known. (See [33].) 

Theorem 1.6. If G is 2-extendable then G is either a brick or a brace. 

So what can we say about the structure of 2-extendable graphs? 

Before we cease posing such questions and start pursuing answers, we note the next 

two results (the proofs of which can also be found in [33].). 

Theorem 1.7. If n> 1 and G is n-extendable, then G is (n+ 1)-connected. 

Theorem 1.8. If n>2 and G is n-extendable, then G is (n- 1)-extendable. 

For each n > 1, we denote by gE the class of all n-extendable graphs. Then Theorem 

1.8 implies that these classes are ‘nested’ as follows: 



Extending matchings in graphs: A survey 281 

Moreover, if we let B denote the class of all bicritical graphs, then Theorems 1.6 and 

1.8 imply that if G is not bipartite, the class of bicritical graphs can be included in the 

nesting: 

(It is easily seen that all subset containments indicated above are proper.) 

This leads to our final motivational question. What can one say about the structure 

of n-extendable graphs? 

With this question in mind, we now proceed to survey a number of results relating 

the concept of n-extendability to other well-known graph parameters. 

2. Extendability and genus 

Our interest in matching extendability versus surface embedding began with the 

following result [35]. 

Theorem 2.1. No planar graph is 3-extendable. 

To proceed to the study of extendability on surfaces of higher genus, some notation 

and a definition are needed. 

Let C denote a surface, either orientable or nonorientable. Then let p(C) denote the 

smallest integer such that no graph G embeddable in surface C is ,u(C)-extendable. For 

example, the dodecahedron is easily seen to be 2-extendable, while by Theorem 2.1 no 

planar graph is 3-extendable, so it follows that p(sphere) = 3. 

Recall that the Euler Characteristic of surface C is defined by x(C)=2-2y, when 

C is orientable and 2-y, when C is not orientable. (Here y denotes the genus of the 

surface.) 

The next two results generalize Theorem 2.1 to surfaces of genus > 0. 

Theorem 2.2. (Plummer [36]). (a) Zf C . 1s an orientable surface with genus y>O, then 

and if(b) in addition, graph G is triangle-free, G is not (2 +L2& I)-extendable. 

In a result yet to appear at the time of this writing, Dean [4] has extended the above 

result in several ways. 

Theorem 2.3. (a) If C is an orientable surface of genus y > 0, then 

m=2+L2& 
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while (b) if C is nonorientable of genus y > 0, then 

llW=2+Lfi1. 

It should be noted that Dean’s results are sharp, i.e. he has proved equality in both 

cases (a) and (b). In particular, this implies that Dean’s upper bound on n-extendabil- 

ity of a graph with genus ~J>O is independent of whether or not G is triangle-free. 

Although Theorem 2.3 significantly extends and improves Theorem 2.2, the proof 

techniques used for both are very similar. In particular, both proofs make heavy use of 

what has come to be called the theory of Euler contributions. (For that matter, so did 

the proof of Theorem 2.1.) Since this approach has proved useful to the author, not 

only in the area of matching extension, but elsewhere as well [40], we sketch the main 

ideas. Perhaps some of the readers of this paper will find new ways to exploit it in their 

own work. 

The theory of Euler contributions was first studied by Lebesgue [17] and later by 

Ore [29], as well as by Ore and the author [30]. A well-known result due to Youngs 

[SO] states that every embedding of a graph G in its surface of minimum orientable 

genus is 2-cell. It is much less widely known, and to the best of author’s knowledge, 

was proved for the first time only in 1987 by Parsons et al. [31], that at least one 

embedding of a graph G in its surface of minimum nonorientable genus is 2-cell. For 

our purposes, the important fact to be gleaned from this discussion about minimum 

embeddings is that when a graph is so embedded (orientably or nonorientably), 

Euler’s formula (i.e. p-q+r =x(Z)) holds. (See [24].) 

Let v be any point in graph G. The Euler contribution of point v, Q(v), is defined as 

deg,u deg ” 1 
@(u)=l-2+ x_’ 

c 1 
i=l 

where xi denotes the ‘size’ of the ith face at point v. (i.e. the number of lines in the cycle 

which forms the boundary of the ith face). 

The following lemma is clear. 

Lemma 2.4. If graph G is minimally embedded surface C, then 

c @(v)=x(C). 
vet’(G) 

So it follows immediately that for some point VE V(G), we have Q(v) ax(C)/ j l’(G)I. 

We call such a point a control point. 

It may be shown that there are limitations to the types of face configurations which 

may surround a control point. (Again, for details we refer the reader to [30].) The idea 

then is to find a partial matching which covers all the neighbors of point v - but not 

v itself ~ and is of minimum size subject to this covering demand. Obviously, then, 

such a partial matching cannot extend to a pm, for there is no way to cover the control 

point v with such an extension. 



3. Extendability and claw-free graphs 

Our next results are of a ‘forbidden’ subgraph nature. In particular, we consider the 

so-called claw-free graphs. A graph G is said to be claw-free if it contains no induced 

subgraph isomorphic to the complete bipartite graph K 1, 3 - the so-called ‘claw’. 

Perhaps, the first deep theorem concerning claw-free graphs was due independently to 

Minty [25] and Sbihi [42] who showed that in any claw-free graph the independence 

number (also known as the stability number and the vertex-packing number) can be 

computed in polynomial time. Since the appearance of this result, studies involving 

claw-free graphs have appeared in abundance. 

Part (a) of the following theorem was proved independently by Summer [44] and 

Las Vergnas [16]; parts (b) and (c) are due to the author [38]. 

Theorem 3.1. Suppose 1~20 and G is a (2n+ 1)-connected claw-free graph with 1 V(G)1 

even. Then: 

(a) If n = 0, then graph G has a perfect matching; 

(b) If n= 1, then graph G is a brick (and hence also I-extendable); 

(c) If n>2, then graph G is n-extendable. 

This theorem is sharp in the sense that, for all n> 1, we can construct a claw-free 

graph which is 2n-connected, has an even number of points, but is not n-extendable. 

Now what about some kind of ‘converse’ to the above theorem? To this end, we 

have the following result. Let 6(G) denote the minimum degree in G. 

Theorem 3.2. Suppose n > 1 and that G is a claw-fuee n-extendable graph with 1 V(G)1 

even. Then S(G)>2n. 

The lower bound on 6(G) in Theorem 3.2 is sharp. That is, for each n3 1, we can 

construct a graph HL which is n-extendable, claw-free and has 6(Hb)=2n. 

For proofs, constructions and further discussion about extending matchings in 

claw-free graphs (see [38]). 

4. Extendability in products of graphs 

It was noted sometime in the mists of the past by the author that the 3-cube Q3 is 

nice example of a small graph which is 2-extendable and bipartite, and hence a brace. 

In collaboration with Gyiiri [9], we have been able to obtain a rather substantial 

generalization of this observation. Let G1 and G2 be any two graphs. The Cartesian 

product of G1 and GZ is denoted by G, x G2 and defined as follows. The point set 

V(GI x Gz)= {(XI, x2) 1 x1 E V(G,), x2e V(G,)} and two points of the product (x1, x2) 

and (yl, yZ) are adjacent in the product graph if either x1 =y, and x,y, is a line in G2 

or x2=y2 and x,y, is a line in G1. 
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Theorem 4.1. Suppose kI and k2 are two nonnegative integers and that the two graphs Gi 

are ki-extendable, for i= 1,2. Then G1 x G2 is (k, + k2 + I)-extendable. 

This result is sharp in the following sense. Suppose Gi is ki-extendable for i= 1,2 

and suppose deg,, v = kI + 1 and degGl v = k2 + 1. Then deg,, x G2 v = k, + k2 + 2 and 

hence IC(G~ x G2)6 k, + k2 +2. On the other hand, the product graph G1 x G2 is 

(k, + k2 + 1)-extendable by the above theorem, and hence by Theorem 1.7, we have 

K(G~ x GJ3 kI + k2+2. Putting these two inequalities together, we have 

K(G~ x G2)= k, + kz+2 and hence again by Theorem 1.7, graph G1 x G2 is not 
(k, + kz + 2)-extendable. 

5. Degree sums and neighborhood unions 

It seems the first so-called degree sum theorems are due to Ore [27,28]. We 

combine three of his results in the next theorem. 

Theorem 5.1. If G is a graph with p points such thatfor each pair of nonadjacent points 

u and V, deg u + deg v > p (respectively, 3 p - 1, 2 p + l), then G has a Hamiltonian cycle 
(respectively, has a Hamilton path, is Hamiltonian connected). 

During recent years, there has been a flurry of activity in the area of degree sum 

studies. (For a sampler of these, see [18].) Note that Ore’s results involve degree sums 

of sets of two independent points. One of the directions of generalizations which has 

occurred involves considering the degree sums of sets of i independent points, for t B 3. 

The next result is a theorem of this type. (See [39] for the proof.) 

Theorem 5.2. Suppose G is a k-connected graph with p points where p is even and n is 

any integer satisfying 1 <n <p/2. Suppose further that there exists a t, 1~ t <k - 2n + 2 
such that for all independent sets I = (wl, . . . , wt) having [I[= t, it follows that 

Xi=, degwiat((p_2)/2+n)+l. Then if 
(a) n= 1, G is bicritical (and hence 1-extendable) and f 
(b) n>2, G is n-extendable. 

Theorem 5.2 is sharp in the following sense. Choose n 2 1 and k > 2n. Define a graph 

H(n, k) consisting of a complete graph on k points each of which is also adjacent to 

each member of an independent set {wl, . . . , wk_ 2n+ 1, wk_ 2n+ *} of cardinality 

k-2n+2.Lett=k-2n+landletZ={w,,..., wr}. Then If= 1 Wi = t ((p - 2)/2 + n), but 

graph H(n, k) is not n-extendable. 

Perhaps it is instructive to present the following corollary of Theorem 5.2 (namely, 

the case when c = 2) in order to exhibit a result which more closely resembles those of 

Ore stated above. 
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Corollary 5.3. Let G be a graph with p points, p even, and let n be an integer, 1 <n < p/2. 
Suppose that for all pairs of nonadjacent points u and v in G, deg u + deg v >, p + 2n - 1. 

Then if 
(a) n= 1, G is bicritical (and hence 1-extendable) and if 
(b) n>2, G is n-extendable. 

Let us mention one more case. Bondy [2] has proved the following result which 

involves degree sums of sets of three independent points. 

Theorem 5.4. If G is a 2-connected graph with p points such that for every set of three 

independent points w 1, w2 and wg in G, deg w1 + deg w2 + deg w3 > 3~12, then G has 
a Hamilton cycle. 

We compare this to the following corollary of Theorem 5.2. 

Corollary 5.5. If G has p points, p even, is 3-connected and iffor all independent triples of 

points wl, w2 and w3, deg w1 + deg w2 + deg w3 3 3~12 + 1, then G is bicritical. 

It is of some interest to ask if one really needs the assumption that G is 3-connected 

in Corollary 5.5. Bondy needed only to assume that the graphs in question be 2- 

connected. Also note that a bicritical graph is necessarily 2-connected. 

The answer is ‘yes’, we do need 3-connectivity. At least if pb 10, we can exhibit 

a (precisely) 2-connected graph which satisfies the degree sum bound for every triple of 

independent points, but which is not bicritical. (For details, see [39].) 

We now turn our attention to the concept of neighborhood union. The following 

result is a neighborhood union analogue of Theorem 5.2. 

Theorem 5.6. Let G be k-connected graph on p points, p even, and 1 d n <p/2. Suppose 
there is a t, 1~ t < k - 2n + 2, such that for all independent sets I = {wl, . . , wr} with 
II(=t,itfollows that) uizl N(w;)I>,p--++a-1. Then 

(a) if n= 1, G is bicritical (and hence 1-extendable), and 

(b) if nB2, G is n-extendable. 

We now consider a neighborhood union result recently obtained by Faudree 

et al. [7]. 

Theorem 5.7. If G is a 2-connected (respectively, 3-connected) graph with p points, p z 3, 
and iffor all pairs of nonadjacent points u and v, IN(u)u N (v)l k(2p- 1)/3 (respectively 
2p/3), then G is Hamiltonian (respectively, Hamiltonian-connected). 

Note that the following corollary follows immediately from Theorem 5.7. 
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Corollary 5.8. If G is a 3-connected graph on p points and iffor all pairs of nonadjacent 

points u and v, IN(u)u N(v)1 22~13, then G is bicritical. 

Note that if k<p/3 + 1 and n= 1, Corollary 5.8 ‘beats’ the result of Theorem 5.6, 

part (a), when t = 2. 

This observation suggests the following question. Suppose n32 is fixed. Is there 

a constant c, 0 < c < 1, such that if IN(u) u N(v) 13 cp, for all pairs of nonadjacent points 

u and v, then G is n-extendable? The answer is ‘no’ and again the reader is referred to 

[39] for details. 

6. Extendability and toughness 

Let S be a point cutset in a graph G and let c(G -S) denote the number of 

components of G-S. Then, if G is not complete, the toughness of G is defined to be 

min 1 S I/c(G - S) where the minimum is taken over all such point cutsets S of G. (The 

toughness of any complete graph is defined to be +a.) We denote the toughness of 

graph G by tough (G). 

Theorem 6.1. Suppose G has p points, p even, and n is an integer such that 1 <n <p/2. 

Then if tough (G)> n, graph G is n-extendable. 

This lower bound on toughness in the above theorem is sharp for all n. In fact, an 

infinite family of extremal graphs is very simple to describe in this case. For each n, 

join each of the 2n points of the complete graph Kz” to each point of two disjoint 

copies of the complete graph Kzn+ 1. The resulting graph has 6n + 2 points and easily 

seen to have toughness = n. However, it is not n-extendable. (In fact, no set of n lines in 

the graph extends to a pm.) 

If one now seeks some kind of converse to Theorem 6.1, one soon discovers that 

there is no lower bound on the toughness of the class of n-extendable graphs. 

A construction illustrating this fact is described in [34]. However, the number of 

points in a typical member of this extremal class is large, so one might amend the 

question to ask if p = I V(G)I, is there a ‘reasonable’ functionf(p) such that if graph G is 

f(p)-extendable, then G has, say, toughness 3 1. In this case, one can answer in the 

affirmative. 

Theorem 6.2. If graph G is (L(p-2)/6 J)+ 1-extendable, then tough (C)a 1. 

It is interesting to compare Theorem 6.1 with a result due to Enomoto et al. 

[6]. Recall that a kTfactor in a graph G is a spanning subgraph regular of degree k. 

Thus, a perfect matching is just a l-factor and a Hamiltonian cycle is a connected 

2-factor. 
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Theorem 6.3. Let G be a graph with at least n+ 1 points and suppose tough (C)an. 

Then, if n1 V(G)1 is even, G has an n-factor. 

In order to compare Theorems 6.1 and 6.3, it is helpful to try to state them in as 

parallel a fashion as possible. With that in mind, consider the following two state- 

ments. 

(A) tough (G)>n * G has an n-factor, 

(B) tough (G) 3 n * G is (n - 1)-extendable. 

Note that if we enlarge our definition of n-extendability to say that a graph is 

0-extendable if it has a perfect matching, then when n= 1, both (A) and (B) say the 

same thing, namely, that G has a pm. (This, of course, is an immediate corollary of 

Tutte’s l-factor theorem [46] .) For all n 2 2, on the other hand, we claim that the two 

results are independent, in that neither implies the other. Graph families to establish 

this claim are constructed in [34]. 

7. Extendability in planar graphs 

For this, the penultimate section of this paper, we return to Theorem 2.1 already 

presented in Section 2. This result represents the branch point for a second direction of 

research, the first being matching extension on surfaces of higher genus already 

discussed. 

There are many 1-extendable planar graphs, for example, any cubic graph with no 

cutlines. (One does not even have to assume planarity for this result, essentially due to 

Petersen [32] .) On the other hand, we know via Theorem 2.1 that no planar graph is 

3-extendable. A second family of planar graphs which must be 1-extendable are those 

which are both 4-connected and even. (A graph is even if it has an even number of 

points.) This follows immediately from Tutte’s deep theorem [47] which states that 

every 4-connected planar graph has a Hamilton cycle through any given line. 

There remains the task of investigating the family of 2-extendable planar graphs. 

An organized attack on this problem was first launched by Holton and the author 

[ 121. First several constructions were presented which, when applied to two bicritical 

(respectiely, 2-extendable) graphs having points of degree 3, resulted in a larger 

bicritical (respectively, 2-extendable) graph having points of degree 3. It was at this 

point that a new graph parameter not previously studied in conjunction with bi- 

criticality or n-extendability entered the picture - cyclic connectivity. 

A graph G is cyclically k-connected if no set of k- 1 or fewer lines, when 

deleted, disconnects the graph into 2 components each of which contains a cycle. In 

[12], the authors proved the following result about cubic 3-polytopes. (For more 

information on polytopes, the reader is directed to the classical book of Griinbaum 

[S]. Suffice it to say for our purposes that the 3-connected planar graphs are called 

polytopal because they are precisely the skeleta of 3-polytopes by a celebrated theorem 

of Steinitz [43].) 
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Theorem 7.1. If G is a cubic 3-connected planar graph which is cyclically+connected 
and has no faces of size 4, then G is 2-extendable. 

It should be mentioned that this result is sharp in the sense that there are cubic 

3-polytopes which have no triangles or quadrilaterals, but which are only cyclically 

3-connected and are not 2-extendable. On the other hand as well, there are cubic 

3-polytopes which are cyclically 4-connected, but which are not 2-extendable. Of 

course, by the preceding theorem, such graphs must contain a quadrilateral face. (For 

details, see [12].) 

We also point out the fact that if a cubic cyclically 4-connected 3-polytopes is also 

bipartite, then G can be shown to be 2-extendable. In other words, we can drop the 

restriction of no 4-cycles, if graph G is bipartite . This is a corollary of a stronger result 

on matching extension in (not necessarily planar) bipartite graphs due to Holton and 

the author [13]. 

The following is an immediate corollary of Theorem 7.1. 

Corollary 7.2. Zf G is cubic, 3-connected, cyclically Sconnected planar graph, then G is 
2-extendable. 

We look next at graphs which are Sconnected and planar. The following result was 

proved independently by Lou [lo] and by the author [37]. 

Theorem 7.3. Jf G is Sconnected planar and even, then G is 2-extendable. 

This result generalized an earlier result of Holton et al. [l l] dealing with the 

Sregular case. We state it as the following corollary. 

Corollary 7.4. Zf G is 5-regular, 5-connected, even and planar, G is 2-extendable. 

In view of Theorem 7.3, we now turn to the case when our planar (even) graph is 

4-connected. The next result is an immediate corollary of Thomassen’s generalization 

of the already mentioned Tutte theorem on 4-connected planar graphs. Thomassen 

[45] showed that every 4-connected planar graph is, in fact, Hamiltonian-connected. 

Our next result is an immediate corollary of Thomassen’s theorem. 

Theorem 7.5. If G is 4-connected, planar and even, then G is bicritical. 

So we narrow down our question: Which 4-connected planar even graphs are 

2-extendable? 

We refer to the 5-point graph obtained by identifying exactly one point in each of 

two triangles as a butterfly. Let the point of identification (and hence of degree 4) be 

called the body point. It is trivial to see that if a graph G is 2-extendable (planar or not) 
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then G can contain no point of degree 4 which serves as the body point of a 

butterfly subgraph of G. More generally, let e, =ulul and e2 =u2u2 be two disjoint 

lines in a graph G such that S= {u1,u1,u2,v2} is a point cutset of G. Suppose 

one of the components of G-S, call it Ci , is odd. Then let us call the subgraph of 

G induced by Su V(C,) a generalized butterjly (or gbutterjly in short). Clearly, 

a butterfly is just a gbutterfly in which the component C1 contains precisely one point. 

Now it is also immediate that no 2-extendable graph can contain a gbutterfly. 

However, it is not true that every 4-connected, planar, even graph G which contains 

no gbutterflies must be 2-extendable. A counterexample on 170 points is given in [37]. 

(It is not claimed that this counterexample is necessarily a smallest such. The 

170-point graph described there was constructed so as to satisfy also the property of 

being 5regular.) 

So we now return to the special case when the graphs in question are regular. We 

now once again include cyclic connectivity in our subsequent discussion. 

Sachs [41] proved the following theorem about cyclic connectivity in 3-polytopal 

graphs. 

Theorem 7.6. If G is 3-connected, planar and 
(a) regular of degree 3, then c%(G) < 5, while if 

(b) G is regular of degree 4 or of degree 5, then cA(G)<6. 

On the other hand, Holton et al. [l l] present a graph on 18 points which is 

4-connected, 4-regular, even, gbutterfly-free and having cyclic connectivity = 6, but 

which is not 2-extendable. In other words, in view of Sachs’ theorem, this counter- 

example has the highest possible cyclic connectivity. 

We now try a different tack and consider maximal planar graphs (i.e. the so-called 

triangulations of the plane). 
First note that there are 3-connected maximal planar even graphs which do not 

even contain a perfect matching! One such is the Kleetope over the octahedron. 

(Given a plane graph G, one constructs the Kleetope over G by inserting a 

new point into the interior of each of the faces of G and then joining each 

new point to all points of said face of G.) On the other hand, from earlier in this 

section we know that 4-connected planar even graphs are 1-extendable and hence 

must have pms. It turns out that in the 4-connected maximal planar even case, 

one need only forbid gbutterflies. In particular, we have the following theorem 

c371. 

Theorem 7.7. If G is a 4-connected maximal planar even graph containing no gbutterjy, 
then G is 2-extendable. 

It should be noted that there are examples of 4-connected maximal planar even 

graphs which contain gbutterflies and hence are not 2-extendable. 
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8. One more result and some open problems 

We mention as our last result of this survey a very recent theorem due to Aldred 

et al. [l]. We want to include it as it may be a first theorem in a new direction of 

studying how symmetries of graphs interact with matching extension. 

Theorem 8.1. Let G be a cubic, cyclically k-connected for some k > 3 and line-transitive. 
Then either G is 2-extendable or it is the Petersen graph. 

We close with several interesting, but as yet unsolved, problems involving matching 

extension. The first of these may prove to be related to Theorem 8.1. To the best of 

author’s knowledge, it first appeared in print in the very recent Ph.D. Thesis of Yu 

[Sl]. It is proved in [23] that every point-transitive graph of even order is l- 

extendable. This class of graphs includes the Cayley graphs. A characterization of 

those Cayley graphs which are 2-extendable, on the other hand, is presently unknown. 

Problem 8.2. Characterize all 2-extendable Cayley graphs. 

Our second problem involves complexity. We define the extendability of a graph 

G to be the maximum n for which G is n-extendable. 

Problem 8.3. Can the extendability of a graph be computed in polynomial time? 

Our third problem deals with maximal n-extendable graphs. Although known to 

several authors, it’s first appearance in print is due to Saito [52]. 

Problem 8.4. Characterize those graphs G for which G is n-extendable, but G u {e> is 

not, for all lines eeE(G). 

We agree to call the graphs defined in Problem 3 maximal n-extendable graphs. In 

his thesis Yu [Sl] proves that there are no maximal n-extendable bipartite graphs. On 

the other hand, Gyiiri has pointed out that although the Cartesian product of two 

even complete graphs Kzr x KZs is (r + s - 1)-extendable, if one adds any additional 

line to this graph, the resulting graph is not (r + s - 1)-extendable. That is, the graph 

KZr x KZs is maximal (r+s- l)-extendable. (For more on this, see [9].) 
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