Preprocedural neutrophil count predicts outcome in patients with advanced peripheral vascular disease undergoing percutaneous transluminal angioplasty

Iqbal S. Toor, MBChB, BSc, Rumi J. Jaumdally, MRCP, MD, Mark S. Moss, MRCP, FRCR, and Suresh B. Babu, FRCP, FRCR, Birmingham, United Kingdom

Background: The neutrophil count has been associated with adverse cardiovascular events after percutaneous coronary intervention. There are limited data on risk stratification of patients with advanced peripheral vascular disease (PVD) using white blood cell (WBC) subtypes. This study assessed the association of total and differential WBC counts with adverse outcome in patients with advanced PVD undergoing percutaneous transluminal angioplasty (PTA).

Methods: In a retrospective cohort study, consecutive de novo procedures were analyzed for patients with Rutherford category 4 or 5 PVD who underwent successful nonemergency PTA. Cardiovascular risk factors, baseline total and differential WBC counts, and angiographic data were recorded. Primary outcome was a composite of events of target vessel revascularization (repeat PTA or vascular bypass operation) or lower limb amputation.

Results: A total of 101 patients were studied. Their mean age was 76 ± 10 years, 54% had diabetes mellitus, 68% were hypertensive, and 12% had had previous myocardial infarction. We observed 29 events during a median period of 14 months (interquartile range, 4-26). Cox regression analysis found diabetes mellitus (odds ratio [OR], 4.67; 95% confidence interval [CI], 1.35-16.14; P = .02), Rutherford category 5 (OR, 4.18; 95% CI, 1.06-16.51; P = .04), poor tibial runoff (OR, 4.42; 95% CI, 1.16-16.82; P = .03), and preprocedural neutrophil count in the third tertile (OR, 10.77; 95% CI, 2.19-52.91; P = .003) were independent predictors of outcome.

Conclusions: The results suggest that the preprocedural neutrophil count could be used in global risk factor assessment of patients with advanced PVD who are being considered for PTA. The neutrophil count may reflect the burden of atherosclerosis and tissue damage, and so could identify patients who need more aggressive intervention for advanced PVD. (J Vasc Surg 2008;48:1504-8.)

Several inflammatory markers have been shown to predict the development of symptomatic atherosclerosis.1-3 Prospective studies have identified the risk of developing symptomatic peripheral vascular disease (PVD) is associated with plasma levels of C-reactive protein (CRP).4,5 Risk stratification of patients with advanced PVD remains difficult when only traditional cardiovascular risk factors are used.6 However, inflammatory markers such as CRP, D-dimer, and fibrinogen have been found to predict the risk of disease progression in patients with symptomatic PVD.7,8

White blood cell (WBC) count is a simple marker of inflammation associated with adverse outcomes in patients with symptomatic coronary artery disease.9 There are limited data in the literature addressing the prognostic role of WBC count in the context of advanced PVD. The WBC count includes several subtypes of cells that are implicated in the development and progression of atherosclerotic plaques. The role of monocytes, macrophages, and T-cell lymphocytes in the formation of atherosclerotic lesions has been well described, but that of neutrophils is less well known.10,11 Haumer et al12 found that PVD patients with neutrophil counts in the upper tertile had a higher risk of adverse outcome relative to those in the lower tertile. We set out to identify whether the preprocedural neutrophil count is associated with an increased risk of an adverse peripheral vascular outcome in patients with advanced PVD undergoing percutaneous transluminal angioplasty (PTA).

METHODS

This retrospective cohort study included consecutive patients with PVD of Rutherford category 4 or 5 who underwent successful nonemergency PTA within a large district general hospital from 2002 to 2004. The diagnosis of PVD was assigned by means of clinical evaluation or duplex ultrasonography and confirmed by lower limb angiography. Patients with a history of surgical lower limb amputation as a consequence of PVD, or previous surgical or endovascular lower limb revascularization were excluded from the study. Patients with a history of autoimmune disease or on antibiotic therapy were also excluded.

Demographic, cardiovascular risk factors, comorbidities, and interventional data were recorded by systematic review of patient hospital records. WBC counts were measured using flow cytometry by an automated system (Advia 120, Bayer Diagnostics, Tarrytown, NJ). These indices
were obtained from histograms of two-dimensional light scatter signals that were converted into the WBC count and subtypes. The intra- and inter-assay coefficients of variation were <3% and <7%. Reference ranges (all expressed as count per 10⁹ cells/L) were as follows: WBCs, 4.0 to 11; neutrophils, 1.7 to 7.5; lymphocytes, 1.0 to 4.5; monocytes, 0.2 to 0.8; eosinophils, 0.0 to 0.5, and basophils, 0.0 to 0.1.

A standardized protocol was used for peripheral angiography and PTA. Before PTA, patients received 3000 IU of intra-arterial heparin. All interventions were performed by experienced operators, and the PTA technique used was at the discretion of the treating interventional radiologists. Primary technical success was defined as a residual stenosis of <50% at the dilated segment.

Lesions were categorized as involving the superficial femoral artery, femoral artery, or popliteal artery, according to the TransAtlantic InterSociety Consensus (TASC) categorization of arterial lesions. Angiographic documentation of preprocedural tibial runoff vessels was also available for all patients. Each of the three tibial vessels was assigned a score of 0 to 2 according to the extent of luminal disease: 0, <50% stenosis; 1, 50% to 99% stenosis; 2, occluded. The sum of the scores formed the total runoff score of 0 to 6. Patients were stratified into two groups of tibial runoff score 0 to 2 vs 3 to 6.

Patients were routinely followed up in outpatient clinic at 6 months for clinical re-evaluation. The primary study end point was the occurrence of a composite of adverse peripheral vascular events, including target vessel revascularization (repeat PTA or vascular bypass operation) or surgical limb amputation.

Statistical analysis. Categoric variables are expressed as frequencies and percentages, and continuous variables are expressed as mean ± standard deviation, unless otherwise stated. Odds ratios (ORs) are reported with 95% confidence intervals (CIs). For categoric variables, differences between groups were assessed using the Pearson chi-squared test or the two-tailed Fisher exact test. Continuous variables with a normal distribution were analyzed using the student \(t \) test, and variables with a non-normal distribution were analyzed using the Wilcoxon rank test.

Cox regression analysis was used to identify independent predictors of adverse peripheral vascular outcome. Variables were entered into the Cox regression model based on univariate association (\(P < 0.1 \)) with the dependent variable. Kaplan-Meier survival analysis was used to compare event rate differences between tertiles of neutrophil count with the log-rank test. Statistical analysis was completed using SPSS 14.0 software (SPSS Inc, Chicago, Ill). For analyses, a value of \(P \leq 0.05 \) was considered statistically significant.

RESULTS

We studied 101 consecutive patients who were admitted with advanced PVD (Rutherford category 4 in 32, category 5 in 69), undergoing nonemergency PTA (Table I). Patients included in the study had balloon angioplasty to the superficial femoral (n = 12), femoral (n = 16), popliteal (n = 26), or tibial (n = 47) artery. The mean age of the patients was 76 ± 10 years, 53% were men, 54% had diabetes mellitus, 68% had hypertension, and 27% were smokers. Their preprocedural femoral popliteal lesion morphology according to TASC criteria included type A in 33, type B in 35, type C in 22, and type D in 11. The preprocedural tibial vessels runoff scores were 0 in 10, 1 in 15, 2 in 16, 3 in 11, 4 in 29, 5 in 9, and 6 in 11.

Table III summarizes the adverse outcomes for the cohort per tertile of total and differential WBC subtypes. There was a significant association between adverse peripheral vascular outcome and both preprocedural total WBC and neutrophil counts. The unadjusted hazard ratio for

Table I. Baseline clinical characteristics according to clinical outcome

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (N = 101) No. (%)</th>
<th>No event (n = 59), No. (%)</th>
<th>Adverse event (n = 42), No. (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>76 ± 10</td>
<td>77 ± 10</td>
<td>75 ± 11</td>
<td>.41</td>
</tr>
<tr>
<td>Male gender</td>
<td>54 (53)</td>
<td>25 (42)</td>
<td>29 (69)</td>
<td>.01</td>
</tr>
<tr>
<td>Diabetes</td>
<td>55 (54)</td>
<td>25 (42)</td>
<td>30 (71)</td>
<td>.01</td>
</tr>
<tr>
<td>Hypertension</td>
<td>69 (68)</td>
<td>40 (68)</td>
<td>29 (69)</td>
<td>>.99</td>
</tr>
<tr>
<td>Smoker</td>
<td>27 (27)</td>
<td>14 (24)</td>
<td>13 (31)</td>
<td>.50</td>
</tr>
<tr>
<td>Angina</td>
<td>27 (27)</td>
<td>13 (22)</td>
<td>14 (33)</td>
<td>.26</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>12 (12)</td>
<td>2 (3)</td>
<td>10 (24)</td>
<td>.003</td>
</tr>
<tr>
<td>Stroke</td>
<td>15 (15)</td>
<td>19 (17)</td>
<td>5 (12)</td>
<td>.58</td>
</tr>
<tr>
<td>Heart failure</td>
<td>17 (17)</td>
<td>8 (8)</td>
<td>12 (29)</td>
<td>.01</td>
</tr>
<tr>
<td>Renal impairment</td>
<td>15 (15)</td>
<td>4 (7)</td>
<td>11 (26)</td>
<td>.01</td>
</tr>
<tr>
<td>Rutherford category 5</td>
<td>69 (68)</td>
<td>35 (59)</td>
<td>34 (81)</td>
<td>.03</td>
</tr>
<tr>
<td>Tibial run-off score >2</td>
<td>60 (59)</td>
<td>26 (44)</td>
<td>34 (81)</td>
<td><.001</td>
</tr>
</tbody>
</table>

*Data for age are expressed as mean ± standard deviation.
adverse peripheral vascular outcome, relative to the first tertile preprocedural total WBC count, was OR = 3.50 (95% CI, 0.85-14.42; P = .08) for the second tertile and OR = 9.33 (95% CI, 2.34-37.01; P = .001) for the third tertile. The unadjusted hazard ratio for adverse peripheral vascular outcome, relative to the first tertile preprocedural neutrophil count, was OR = 1.82 (95% CI, 0.48-6.95; P = .79) for the second tertile and OR = 7.65 (95% CI, 2.17-26.94; P = .002) for the third tertile. Figure 1 demonstrates the marked increase in adverse peripheral vascular outcome for patients with preprocedural neutrophil counts in the third tertile (log-rank test; P < .001).

Cox regression analysis found diabetes mellitus (OR, 4.67; 95% CI, 1.35-16.14; P = .02), Rutherford category 5 (OR, 4.18; 95% CI, 1.06-16.51; P = .04), poor tibial run-off (OR, 4.42; 95% CI, 1.16-16.82; P = .03), and a preprocedural neutrophil count in the third tertile (OR, 10.77; 95% CI, 2.19-52.91; P = .003) were independently associated with an adverse peripheral vascular outcome (Table IV).

DISCUSSION

Preprocedural neutrophil count is an independent predictor of adverse outcome in the patients with Rutherford category 4 or 5 PVD undergoing PTA. Univariate analysis showed the preprocedural WBC count was associated with adverse outcome. Indeed, studies of patients undergoing coronary angioplasty have shown that the preprocedural WBC count is independently associated with both short-term and long-term adverse outcome. In our study, the neutrophil count in the third tertile appeared to have a greater predictive power of adverse outcome than a history of diabetes mellitus. Given that traditional risk factors do not provide a comprehensive prediction model for outcome in patients with PVD, the preprocedural WBC and neutrophil count could be helpful in assessing whether advanced PVD can be successfully treated with PTA.

Belch et al. reported that the baseline WBC count was associated with a significantly increased risk of lower limb amputation in patients with critical limb ischemia. Nearly one-fifth of our patients needed definitive surgical treatment in the form of a vascular bypass operation or surgical amputation during the follow-up period. It appears that in addition to established traditional cardiovascular risk, the preprocedural WBC and neutrophil count could be helpful in assessing whether advanced PVD can be successfully treated with PTA. Inflammation has a central role in the pathophysiology of atherosclerosis. Multiple epidemiologic studies have shown associations between inflam-
reactive species and proteolytic enzymes, which are in-
stratification of patients with advanced PVD.

suring ABPI, but is an independent marker for the risk
clinical information that can already be gained from mea-
events. Thus, neutrophil count does not simply reflect
independent predictor of major adverse cardiovascular
show that a neutrophil count in the upper tertile was an
tent claudication or critical ischemia. However, they did
show that a neutrophil count in the upper tertile was an
dependent predictor of major adverse cardiovascular
Thus, neutrophil count does not simply reflect
clinical information that can already be gained from mea-
sing ABPI, but is an independent marker for the risk
stratification of patients with advanced PVD.

Circulating neutrophils have been shown to release
reactive species and proteolytic enzymes, which are in-
volved in atherosclerotic plaque disruption. Myloper-
oxidase released by activated neutrophils weakens the fi-
brous cap of atherosclerotic plaques through activating
metalloproteinases and leads to plaque rupture with conse-
quent vessel occlusion. Activated neutrophils can also
aggregate with platelets and adhere to endothelial cells,
which causes plugging of microvessels. It is through
plaque disruption and microvessel plugging that neutro-
phils could play an active role in the initiation and progres-
sion of tissue ischemia.

This was an observational study, and as a result we were
unable to adjust for all potentially confounding variables.
Although a single baseline measurement of total and dif-
ferential WBC count was used, it is plausible that serial mea-
surement with assays of cellular activation or other inflam-
matory marker such as CRP and interleukin-6 may yield a
different picture. Nevertheless, the simplicity and ready
availability of the WBC and neutrophil count remains an
attractive test for clinicians in a risk assessment model.
Smoking affects WBC count with a positive dose–response
relationship; however, our study was not powered to quan-
tify the effect of smoking.

With regards to medical therapy, statins have a proven
benefit in patients with PVD, in addition to their anti-
inflammatory effect. The use of statins in our patient pop-
ulation was not recorded. We were also not able to report
the ABPI for patients at follow-up because this was not
routinely documented in patient notes. The decision for
further intervention after the index procedure was deter-
mined by clinical symptoms.

CONCLUSIONS

The preprocedural neutrophil count was an indepen-
dent predictor of adverse outcome in patients with ad-
vanced PVD undergoing nonemergency PTA. This simple
and widely available test could be routinely used in clinical
practice to risk stratify patients with advanced PVD being
considered for PTA. Neutrophil count may reflect the
burden of atherosclerosis and tissue damage, and so could
identify patients who need more aggressive intervention for
advanced PVD.

AUTHOR CONTRIBUTIONS

Conception and design: IT, MM, SB
Analysis and interpretation: IT, RJ, SB
Data collection: IT, RJ, MM, SB
Writing the article: IT, RJ, MM, SB
Critical revision of the article: IT, RJ, MM, SB
Final approval of the article: IT, RJ, MM, SB
Statistical analysis: IT, RJ
Obtained funding: Not applicable
Overall responsibility: IT

REFERENCES

1. Wildman RP, Muntner P, Chen J, Sutton-Tyrrell K, He J. Relation of
inflammation to peripheral arterial disease in the national health and
1579-83.
3. Rosenberg RD, Aird WC. Vascular-bed–specific hemostasis and hyper-
4. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH.
Plasma concentration of C-reactive protein and risk of developing
5. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic
atherosclerosis: a comparison of C-reactive protein, fibrinogen, homo-
cysteine, lipoprotein(a), and standard cholesterol screening as predic-
tors of peripheral arterial disease. JAMA 2001;285:2481-5.
6. Haugen S, Cassely IP, Regensteiner JG, Hiatt WR. Risk assessment
in the patient with established peripheral arterial disease. Vasc Med 2007;
12:343-50.
C-reactive protein, interleukin-6, and soluble adhesion molecules as
predictors of progressive peripheral atherosclerosis in the general pop-
Hemostatic factors, inflammatory markers, and progressive peripheral
atherosclerosis: the Edinburgh Artery Study. Am J Epidemiol 2006;
163:334-41.
Usefulness of an elevated neutrophil to lymphocyte ratio in predicting
long-term mortality after percutaneous coronary intervention. Am J
Cardiol 2006;97:993-6.
10. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal
rupture or erosion of thrombosed coronary atherosclerotic plaques is
characterized by an inflammatory process irrespective of the dominant
plaque morphology. Circulation 94;89:36-44.
discussion 224-205.
al. Association of neutrophils and future cardiovascular events in pa-
A, et al. Comparison of effects of high-dose and low-dose aspirin on
restenosis after femoropopliteal percutaneous transluminal angioplasty.
14. Dormandy JA, Rutherford RB. Management of peripheral arterial
disease (PAD). TASC Working Group. TransAtlantic Inter-Society

Submitted May 12, 2008; accepted Jul 22, 2008.