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We describe here a method of constructing Carmichael numbers which are strong pseu-
doprimes to some sets of prime bases, We apply it to find composite numbers which are
found to be prime by the Rabin-Miller test of packages as Axiom or Maple. We also
use a variation of this method to construct strong Lucas pseudoprimes with respect to
several pairs of parameters.

1. Introduction

1.1. THE RABIN—MILLER TEST

The Rabin-Miller test is based on the following strengthened version of Fermat’s little
theorem:

THEOREM 1.1. Ifn is a prime number such that ged{n, 2b) = 1, then one of the following
conditions is satisfied, where n — 1 = 2k g with q odd,

b9=1 modulon, or
there exists an integer i such that 0 <4 < k and 629 = —1 modulo n.

If n is composite but satisfies this property, it is called a strong pseudoprime to the
base b and, for short, we write “n is a spsp(b)”. By the Rabin-Monier theorem {Monier,
1980), if n is odd and composite, the number of bases b such that 0 < b < n and n is
spsp(b) is less than n/4. So, for odd composite n and random b, the probability that n
is a spsp(b} is less than 1/4. The Rabin-Miller test proceeds as follows: it checks if the
number n satisfies the relations of Theorem 1.1 for several bases b. If, for some b these
relations do not hold, then n is certainly composite. Conversely, if n is composite, then
we are likely to find some b for which these relations do not hold and n is very unlikely
to be declared prime.
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In Arnault {1995) we have constructed numbers which are the product of two primes
but are strong pseudoprimes to some sets of several bases, chosen in advance. We con-
struct here such numbers which are the product of three or more primes. We apply the
method to the bases used by the software Axiom 1.1 and Maple V.2 and so, the numbers
we find pass the Rabin-Miller test of these packages.

1.2. THE LUCAS TEST
Let P and Q be integers such that D = P? — 4Q is not a perfect square. The Lucas

sequences associated with the parameters P, @ are defined by
Up=0 h=1 Ueya = PUpy1 — QU
Ww=2 WV=P V=PV -QV.

Consider the two roots e and 3 of the trinomial X? — PX + Q in the ring of integers of
Q(vD). It is easy to see that, for all k € N*,

ak—ﬁk
Uh=Ts

For n integer, we note &(n) the Jacobi symbol (D/n). The strong Lucas test is based
on the following result.

Vi = o + 8% (1)

THEOREM 1.2. If n is a prime number such that ged(n,2QD) = 1. Then one of the
following conditions is satisfied, where we put n — e(n) = 2%q with q odd,

n|U,, or
there exists i such that 0 < i < k and n | Vai,.

If n is composite but satisfies this property, it is called a strong Lucas pseudoprime
with respect to the parameters P and Q. Shortly, we write “n is a slpsp(P,@)”. From a
result in Arnault (submitted), for random P, Q such that P? — 4@Q is congruent modulo
n to a given D relatively prime to n, the probability that n is a slpsp(P, @) is less than
4/15, provided n is a composite distinct from 9 and is not the product of twin primes.

The strong Lucas test is similar to the Rabin—Miller test but uses the Theorem 1.2
instead of Theorem 1.1. We will also construct, in Sections 6 and 7, strong Lucas pseu-
doprimes to some sets of pairs (P, Q).

2. Preliminaries

Throughout this paper, the number 7 is a product p1ps - - - p, of odd primes with = 3
odd fexcept in Section 5) and such that p; < pz < -+ < pp. Also, we put € = &1 and

e oD — 1 ]
k= p-c , m; = .H:r#t T for1 <i<h.

Py —€ pi—€

We need two basic lemmas. For s € N*, we note v2{s) the greatest integer ¢ such that
2t | s

LEMMA 2.1. If the k; are infegers, they all are odd if and only if

va(pr — &) = v2(p2 — &) = - = valpn — £) = v2(n — €).
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PROOF. Put v = vwa{p; — ). We have vz(p; — ) = v if and only if k; is odd. If all the
ki are odd, we have p; = 2" + € modulo 2°*!. So, as hisodd, n = (2° + )" = 2? 4+ ¢
modulo 2¥*!. Hence vo(n — ) = v. O

LEMMA 2.2. We have the following assertions:

p; — £ divides n — £ & m; is an integer,
k; is an integer for alli > 2 = m is an integer.

ProoF. The first claim can be reformulated in the following way

n =¢ modulo (p; —¢) & Hpj = 1 modulo (p; — ¢).
j#i
Hence, it follows from the trivial relations p; = £ modulo (p; —¢). Also, the last implication
is clear if we write its left-hand side p; = £ modulo {p, —¢) for alli > 2. O

REMARK 2.3. The formulae p; = k;j(py — €) + € show that the coefficients k; and m;
satisfy the relation kym,; = fi(pi) where f; is the polynomial

Tl (kX -1)+1) -1
[X) == : )

(For example, with h = 3, we have f2(X) = kaX +¢ and f3(X)} = k2 X +¢.) The condition
“m; is an integer” can be written like “p; is e root of f; modulo k;”.

3. carmichael numbers which are strong pseudoprimes

3.1. CARMICHAEL NUMBERS

Recall that a positive composite interger m is a Carmichael number if it satisfies

b™=! = 1 modulo m for all b relatively prime to m.

We use the notations of Section 2 in the case ¢ = 1. It is well known that Carmichael
numbers are the square free integers m such that p — 1| m — 1 for all prime p dividing
m. In particular, from Lemma 2.2, we have

LEMMA 3.1. Let n = pype - pr be a product of distinct odd primes and define

K pi—1 [lzips—1

P = ; my; = ———7—
-1 pi—1

If the coefficients k; and my; are integers for all i such that 2 < 1 < h, thenn is a
Carmichael number.

, forl <i<Ah.

3.2. STRONG PSEUDOPRIMES

We describe here some additional sufficient conditions for n to be a strong pseudoprime
to base b.

LEMMA 3.2. Suppose that n = p1ps - -pn 18 6 product of distinct odd primes and that
the coefficients k; and m; defined in Lemma 5.1 are integers (hence n is a Carmichael
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number). Suppose moreover that the k; are odd. If n is relatively prime to b and the
relations

b

(IT) =-1 foralli such that 1 <i<h {(3)
i

are satisfied, then n is a strong psevdoprime to the base b.

PRrOOF. From Lemma 2.1, the ratio (n —1)/(p; — 1) is odd for all i. So, as b(P:=1)/2 = +1
modulo p;, we have

pn—1/2 = plpi-1)/2 = (5) modulo p; forl<i<h.
i

Hence, the assumptions imply that 5*~1/2 = —1 modulo n. This is sufficient for n to
be a strong pseudoprime to the base b.

If b is prime, the quadratic reciprocity law can be used to find a set S, € Z/4bZ such
that, for p prime, we have

(?—) =-1&pmod 4b € S;.
P
Asp; = ki(p1 — 1) + 1 for all 4 such that 1 <i < h, the condition (3) can be written

ki(pr — 1)+ 1 mod 4b e S, for all ¢ such that 1 < < A.

If the coefficients k; are relatively prime to b, this condition becomes

h
prmoddb € [V k7 (Se + ki — 1), (4)
i=1
where k! denotes an inverse of k; modulo 4b and k] '(Sy + k; — 1) is the set {k]'(s +
k; —1)|se S}

4. Application to the Primality Tests of Maple and Axiom

The primality test of Maple V.2 consists of three stages. The first is a. search for factors
less than 1000. The second is an actual Rabin—Miller test. The bases used are 2, 3, 5, 7,
11 (however more bases can be used, on request). The last stage consists in checking if
n is not of the form

(u+1)(kg+1) with3< k<9 or (u+1){ku+1) with5 <k <20.

This last stage is relevant to Pomerance ef al. {1980), in which can be found three
examples of such numbers which are strong pseudoprimes to four from these five bases. In
the code of Maple, there is also the following comment: Presently there are no composite
numbers known to us that will make isprime() return true.

4.1. EXAMPLE WITH h =3
Nevertheless, it is easy to check that, if h = 3, k2 = 13 and k3 = 41, the right hand side

of (4) is not empty, for each of the five bases used by Maple. For example, the condition (4)
is satisfied for each of these bases as soon as we have the following relations:
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Table 1.

for b=2: P = {mod 8)

for b=3: =7 {mod 12)
for b =5: n=3 {mod 20)
forb="T": p1 =15 (mod 28)
forb=11: p1 =23 (mod 44)

Moreover, the equalities pyp; — 1 = py(pi — 1) + (p1 — 1) (for ¢ = 2,3} show that the
coefficients m; can be written (see Remark 2.3):

k
mp = BPLYL g 2 Bt
k‘z k3
These are integers as soon as
pp = —k;l = 6§ modulo 13 and M= —kz,'l =22 modulo 41.

Using the extended Euclidean algorithm, we can compute that these two congruences
and those from Table 1 are together equivalent to

p1 = 827443 modulo 4924920, (5)

So, we have:

LEMMA 4.1. Let p1 be a prime satisfying the relation (5} and such that p; = 13(p1—1)+1
and ps = 41(p; — 1) + 1 are prime. Then, the product pipap3 is a Carmichael number
and a strong pseudoprime to the bases 2, 3, 5, 7 and 11.

Because the prime p; = 286 472 803 satisfies these conditions, the following number

12530759607 784 496 010584 573 923 = 286472803 - 3724146 427 - 11745384883  (6)
passes the Maple test.

4.2. EXAMPLE WITH h =5

We give another example, this time with A = 5. We first choose coefficients k; such
that the right hand of (4) is not empty and such that the polynomials f;(X) € Z[X]
defined by (2) have a root modulo k;. The values {kg, k3, k4, ks) = (13,41,53,101) are
suitable and the conditions of Table 1 will again imply the relations (4). Also, if

p1 =4 modulo 13, p; = 21 modulo 41, p1 = 41 modulo 53 and p; = 54 module 101,

then p;, will be a root of each f; modulo k;.
These four relations and those of Table 1 can be mixed together

p1 = 14354973 403 modulo 26 363 096 760. (7)

So, we obtain

LEMMA 4.2. Let p1 be a prime satisfying (7) and such that po — 13(p1 — 1) + 1, p3s =
41(p1 — 1) + 1, pg = 53(p1 — 1) + 1 and ps = 101(p; — 1) + 1 are prime. The product
n = p1papapaps 5 a Carmichael number and is a strong pseudoprime to the bases 2, 5,
5, Tand 11.
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For example, take
P = 343367327 175643,

The product p1pepapaps is

n = 13618186 946 913 248902 029 336 585 225 618 237 728 639 469119 284 611 739 065
110030838492 720 163

and passes the Maple test.
4.3. THE AXIOM TEST

The primality test of Axiom release 1.1 is a Rabin—Miller test whers the set of bases
used depends on the size of the number tested. For numbers less than 341550071 728 321,
the Axiom test is always correct due to the results of Jaeschke (1993}, For numbers greater
than this bound, the Axiom test uses the first ten odd prime bases 3, 5, 7, 11, 13, 17,
19, 23, 29 and 31. Release 1.1 benefits from several improvements, outlined below and
added by Davenport (1992), which catch the numbers produced in Jaeschke (1993) and
Arnault {1995).

When n = 2%q is checked for strong pseudoprimality, one first compute b modulo n
and then use repeating squaring to see if there exists an i such that 2'? = —1 modulo
1. Whenever we find such an ¢ > 0, we get a square root of —1 modulo n, namely $2 7,
One idea of Davenport is to collect and count the distinct square roots of —1 we get in
this process. If more than two square roots are found, then n is surely composite, even
if it is a strong pseudoprime to all used bases.

The Axiom test searches also for numbers of specific forms, as the numbers produced
in Arnault (1995) which are of the form n = (u+1)(2u+1). Indeed these numbers satisfy
8n + 1 = (4u + 3)? and they are easily spotted by this release of Axiom, which checks if
8n + 1 is a perfect square.

The Axiom test reserves a special treatment to numbers n which satisfy

p(r=142 =1 modulo n

for the 10 bases above. These numbers are considered as suspicious and are submitted to
additional strong pseudoprimality tests with other bases until one base b is found such

that 5»~1/2 = —1 modulo n or some strong pseudoprimality test fails. Fortunately for
the success of the method described here, the numbers which satisfy
p(™=1/2 = _1 modulo n

for the first 10 odd prime bases are not considered as suspicious.

In spite of these improvements, we are able to find composite numbers which pass the
Axiom 1.1 test. For example, let h = 3, k2 = 37, and k3 = 43. The right hand of (4)
is not empty, for each of the ten bases used by Axiom, in which we choose values from
Table 2.

Also, the coefficients ms and m3 will be integers as soon as

p1 = 9 module 37 and P = 31 modulo 41.
These two congruences and those of Table 2 can be together written

p1 = 356794315112 467 modulo 608 500 527 054 420.
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Table 2.

forb=3 p1 =7 (mod 12)
for b =5: n=ET (mod 20)
forb=1": p1 =15 (mod 28)
forb=11: p; =23 (mod 44)
forb=13 p1 =11 (mod 52)
forb=17. p3 =11 (mod 68)
forb=19 p; =39 (mod 76)
for 5=23: p; =39 (mod 92)
for b=2% p; =43 (mod 116)
forb=31: p; =63 (mod 124)

Take p; = 356794315112 467, we find the following number, which passes the Axiom
test:

n = 16293065 699588 634810831 933763 781 141 498 750 450660 078 823 067.
4.4. LARGE EXAMPLE

The same method has been used with a large set of bases in order to construct the
397-digit Carmichael number
n=pi[313(p1 — 1) + 1][353(p1 — 1) + 1],

where

P1 = 29674495668 685510550154 174 642 905 332 730771 991 799 853 043 350 995 075 531
276838753171 770199594 238 596 428 121 188033 664 754 218 345 562 493 168 782 883

which is a strong pseudoprime to all prime bases up to 300.

5. Extensions
The following Chernick extension theorem {Chernick, 1939) allows, from one Carmichael
number, to build others.
THEOREM 5.1. Let ¢ = p1p2 - - - ps be a Carmichael number and put
A= XMc) = ll_gggs(pf -1).
If psy1 is a prime notl dividing ¢ and such that
Alpsy1 — e —1, (8)

then ¢’ = cp,41 15 also a Carmichael number.
5.1. EXTENSIONS OF STRONG PSEUDOPRIMES

We have constructed lures for the Rabin test, with an odd number of prime factors.

The following theorem will allow us to build from them, lures with an even number of
prime factors.
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THEOREM 5.2. Suppose that n = p1ps -- - pp 15 o product of distinct odd primes and that
the coefficients k; and m; defined in Lemma 3.1 are integers {(hence n is a Carmichael
number). Suppose also that the hypotheses of Lemma 8.2 are valid, thai is the k; are odd
and

(5‘) = -1 for all i such that 1 <1 < h.

Put

A=Xr)= lom (5= 1).

If pr+1 15 a prime not dividing n such that
Alpptr —1n -1, (9)

and (b/pry1) = —1, then the product n' = nppy1 5 alse a Carmichael number, and a
strong pseudoprime to the base b.

ProoF. The fact that n’ is a Carmichael number follows from Theorem 5.1; we must
show that it is a spsp(b). From Fheorem 5.1, we have p; —1 | n— 1. So, there is a positive
integer ¢ such that

(n' - 1)/2t

(m—-1)/2
is an odd integer, for all i. We will show that (' ~1/2" = _1 modulo n’ and this will
imply that n’ will be a strong pseudoprime to the base b. As we have bPi-11/2 = _1

modulo p; for 1 €4 < h+ 1, it is sufficient to show that the integer (:his is an integer,
by Theorem 5.1}

(n —1)/2¢
(pi —1)/2

is odd. By Lemma 2.1, we must show that vo{p; — 1) = ve{p1 — 1). The coeflicients k; are
odd, so this equality holds for ¢ < h. From Lemma 2.1, we have va(A) = vs(n — 1). So,
by {9), it holds also for ¢ = h + 1. This completes the proof. O

5.2. EXAMPLE

As an example, take n from (6). There are exactly two primes satisfying the conditions
of the Theorem 5.2:

152 690003 467 and 5576 391 616 581 787.

So, here are two numbers which are the product of four prime factors but pass the Maple
test:

1913321 727 956 758 256 045 006 260 999 587 791 041 =
286472803 -3724146427 11745384883 - 152690003 4€7,

69 876 422 826 251 144 928 143 383 863 659 397 076 340 401 =
286472803 -3724146427- 11745384883 - 5576 391616 581 T87.
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6. Building Strong Lucas Pseudoprimes

Here, our aim is to build true {i.e. such that £(n) = --1) strong Lucas pseudoprimes,
for several chosen pairs (P, Q).

6.1. CLASSICAL RESULTS

We recall here two basic results, which can be found in Williams (1977}, Baillie and
Wagstaff (1980) or Ribenboim (1988). The first one is analogous to Fermat’s little theo-
rem.

THEOREM 6.1. Let p be an odd prime not dividing D and denoting €(p) as the Legendre
symbol (D [p). If e(p) = 1, assume moreover that p does not divide Q. We then have

Pl Upe(py-

THEOREM 6.2. Let p be a prime not dividing 2QD. Then we have the following equiva-
lences, where e(p) denotes the Legendre symbol (D/p),

PlUG—consz < (%) =1,

Pl Vip-etmpsz <= (%) =-L
6.2. STRONG LUCAS PSEUDOPRIMES

We now use the notations of the Section 2 with ¢ = —1. Here, the analogue of
Lemma 3.1 takes the following form.

LEMMA 6.1. Let D = P? — 4Q and n = p1p2 - - - pn. be a product of distinct odd primes.
Assume that ged(n, QD) = 1 and that the coefficients
[zipi -1

miIT_;l—, fOTlS'A‘,Sh

k= Bitl
m+1

are integers. Assume also that

D
(;) =-1  foralli such that1 <i<h,
Then, we have the relation p 1 Up4y.

PROOF. From Theorem 6.1 we know that p; | Uy, 41 for each p;. So, by (1}, aPit! = gpri+!

modulo p;. By Lemma 2.2, the ratios (n+1}/(p; + 1) are integers. From this, we see that
a™*! = 2% modulo each p;, which means that n divides U, ;. O

LEmMA 6.2. With the assumptions of Lemma 6.5, suppose moreover that the k; are odd
and that

(g) = -1 for all i such that 1 <i < h.
i

Then n is a strong Lucas pseudoprime with respect to the parameters P and Q.
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PROOF. As the k; are odd, the Lemma 2.1 shows that the ratios (231)/( ‘%) are odd.
From Theorem 6.2, and because @ = a3, we find

alPt1V/2 = _geit1)/2 madulo p;.

Hence, a(®+1¥/2 = gln+1)/2 modulo each p;, which means, again by Theorem 6.2, that n
divides Vi 11y/2. U

7. Example
We apply this method to the following set of parameters (P, @, D):

(1,-1,5), (1,2, -7}, (1,-3,13), (1, —4,17), (3,—1,13), (3,5,-11), (5,2,17), (5,8, —7).
(10)
In order to satisfy the Legendre symbols conditions of Lemmas 6.3 and 6.4 we can choose

3)-G)-G)-G)-G)-5)-G)-G)--

for all i = 1,2, 3. Choosing ks = 23 and k3 = 31, these relations are satisfied as soon as
the congruences shown in Table 3 hold.

Table 3.

=3 {mod 8)

p1 =11 (mod 12)
=7 (mod 20)
p1 =27 (mod 28)
p1 =43 (mod 44)
p1 =11  (mod 52)
p1 =23 (mod 68)

To make the coefficients ma, mg integers, we choose
p1 = 3 modulo 23 and 7 = 27 modulo 31.
Collecting all these congruences, we find
p1 = 375566267 modulo 8-3-5-7-11-13-17-23-31.

Let p; = 7655 438867. The integers py, p2 = 23(p; + 1) — 1 and ps = 31(p1 + 1} — 1 are
all prime, so their product

n = 319 889369 713 946 602 502 766 595 032 347

is a strong Lucas pseudoprime to the parameters listed in (10). In fact, it is also a strong
Lucas pseudoprime with respect to other parameters (P, (), D) such as

(1,1,-3), (1,-11,45), (3,1,5), (3,4,-7), (5,9,11), (5,13, —27).

8. Conclusion

The Rabin-Miller primality test provides a quite high security which is sufficient for
most purposes, but it appears that it is somewhat vulnerable for deliberated attacks. The
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theoretical results of Alford et al. (1994) give strength to this observation. They imply
that, for any given set of bases, there exist infinitely many Carmichael numbers which
are strong pseudoprimes to all the bases of this set. However, further improvements of
the Rabin—Miller test can make it even more secure. As an example, the new release 2.0
of Axiom uses more bases for large numbers: it uses about k bases for 2k-decimal digits
numbers and would be more difficult to break.

The situation is similar for the strong Lucas test. However, these two kinds of test can
be combined, for example, as proposed in Pomerance et al. {(1980) and then in Baillie
and Wagstaff (1980). The resulting test seems much more difficult to break. Numerous
packages now provide such a test, including Maple release V.3.
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