
Procedia Computer Science 00 (2010) 1–9

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

A Family of BDF Algorithms for Solving Differential Matrix Riccati Equations
Using Adaptive Techniques

Jesús Peinado1a, Javier Ibañeza, Vicente Hernándeza, Enrique Ariasb

aITACA, Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022-Valencia
(Spain)

bDepartamento Sistemas Informáticos, Universidad de Castilla-La Mancha, Avenida España, s/n, 02071-Albacete (Spain)

Abstract

Differential Matrix Riccati Equations play a fundamental role in control theory, for example, in optimal control,
filtering and estimation, decoupling and order reduction, etc. One of the most popular codes to solve stiff Differential
Matrix Riccati Equations (DMREs) is based on Backward Differentiation Formula (BDF). In previous papers the
authors of this paper showed two algorithms for solving DMREs based on an iterative Generalized Minimum RESidual
(GMRES) approach and on a Fixed-Point approach.

In this paper we present two contributions to improve the above algorithms. Firstly six variants of previous
algorithms are carried out by using one of above algorithms in the first step and another algorithm to carry out the
other steps until reaching convergence. Numerous tests on four case studies have been done comparing both precision
and computational costs of MATLAB implementations of the above algorithms. Experimental results show that in
some cases these algorithms improve on the speed and convergence of the original algorithms. Secondly, using the
previous experimental results and since all algorithms have a similar structure and there is no best algorithm to solve all
problems, two general-purpose adaptive algorithms have been designed for selecting the most appropriate algorithm,
which can be chosen using a parameter that indicates the stiffness of the DMRE to be solved.

Keywords: Differential Matrix Riccati Equation (DMRE), BDF methods, GMRES methods, Algebraic Matrix
Riccati Equation (AMRE), Algebraic Matrix Sylvester Equation (AMSE), Fixed-Point method.

1. Introduction

In this paper we consider DMREs of the form

Ẋ(t) = A21(t) + A22(t)X(t) − X(t)A11(t) − X(t)A12(t)X(t), (1)

t0 ≤ t ≤ t f ,

X(t0) = X0 ∈ Rm×n,

Email addresses: jpeinado@dsic.upv.es (Jesús Peinado), jjibanez@dsic.upv.es (Javier Ibañez), vhernand@dsic.upv.es (Vicente
Hernández), earias@dsi.uclm.es (Enrique Arias)

1Corresponding author

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 2569–2577

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.290

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.290
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 2

Table 1: Parameters of BDF method (order r=1, 2, 3, 4 and 5)

r β α1 α2 α3 α4 α5

1 1 1
2 2/3 4/3 -1/3
3 6/11 18/11 -9/11 2/11
4 12/25 48/25 -36/25 16/25 -3/25
5 60/137 300/137 -300/137 200/137 -75/137 12/137

where A11(t) ∈ Rn×n, A12(t) ∈ Rn×m, A21(t) ∈ Rm×n, A22(t) ∈ Rm×m.
DMREs arises in several applications, in particular in Control Theory, for example the Time-Invariant Linear

Quadratic Optimal Control Problem. Another application of (1) consists of solving a two point boundary value prob-
lem by decoupling this problem in two initial value problems [1]. Since the mid seventies, many different methods
have been proposed, being the BFD methods the most popular codes to solve stiff Differential Matrix Riccati equa-
tions.

This paper is organized as follows. First, Section 2 describes a family of BDF methods for solving DMREs based
on three approaches: matrix Sylvester equations [1, 2], GMRES method [3] and Fixed-Point iteration [4]. Section
3 explains all developed algorithms. In Section 4, four case studies and the results obtained are presented. From
experimental results, an adaptive algorithm is explained in Section 4. Finally, the conclusions and future work are
outlined in Section 5.

2. A family of BDF methods

In this section we will describe a family of BDF methods for solving DMREs. In a BDF scheme, the integration
interval [t0, t f ] is divided so that the approximate solution at tk, Xk, is obtained by solving an AMRE. Several methods
have been implemented for solving AMREs, however, in the context of stiff DMREs, one of the better choices for
solving the associated AMRE is to apply implicit schemes based on Newton’s or quasi-Newton methods. Let F(t, X)
be the right hand side of (1),

F(t, X) = A21(t) + A22(t)X(t) − X(t)A11(t) − X(t)A12(t)X(t).

If we consider a mesh t0 ≤ t1 ≤ t2 . . . ≤ t f of interval [t0, t f ] and we apply a BDF scheme, then the approximate
solution Xk at tk is obtained by means of solving the following matrix equation

−Xk +

r∑

j=1

α jXk− j + Δtk−1βF(tk, Xk) = 0, (2)

where Δtk−1 = tk − tk−1, and α j ( j = 1, 2, . . . , r) and β are values that appear in Table 1, being r the order of BDF
method. Equation (2) can be expressed as the AMRE

Ā21 + Ā22Xk + XkĀ11 + XkĀ12Xk = 0, (3)

where

Ā21 = −βΔtk−1A21(tk) −
r∑

j=1

α jXk− j,

Ā22 = −βΔtk−1A22(tk) + Im,

Ā11 = βΔtk−1A11(tk),

Ā12 = βΔtk−1A12(tk).

2570 J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 3

2.1. A Sylvester method

This approach was used by Dieci in [1] and by Choi and Laub in [2]. Equation (3) can be solved by the Newton’s
iteration

Ĝ
′
(l)(X

l
k − Xl−1

k ) = −G(Xl−1
k ), l ≥ 1, (4)

X0
k = Xk−1,

where Ĝ
′
(l) is the Fréchet derivative [5, p. 310] of

G(X) = Ā21 + Ā22X + XĀ11 + XĀ12X.

For a fixed l the following AMSE is obtained:

Cl−1
22 ΔXl−1

k + ΔXl−1
k Cl−1

11 = Cl−1
21 , (5)

where

Cl−1
22 = Ā22 + Xl−1

k Ā12,

Cl−1
11 = Ā11 + Ā12Xl−1

k ,

Cl−1
21 = −Ā21 − Ā22Xl−1

k − Xl−1
k Cl−1

11

and ΔXl−1
k = Xl

k − Xl−1
k .

Therefore Xl
k can be obtained by solving (5) for ΔXl−1

k and computing

Xl
k = ΔXl−1

k + Xl−1
k .

The standard solution process for (5) is the Bartels-Stewart method [6].

2.2. A Fixed-Point method

This method has been developed in [4]. From (3) we obtain

Ā21 + XkĀ11 + (Ā22 + XkĀ12)Xk = 0,

(Ā22 + XkĀ12)Xk = −(Ā21 + XkĀ11),

which allows to define the following Fixed-Point iteration

(Ā22 + Xl−1
k Ā12)Xl

k = −(Ā21 + Xl−1
k Ā11), l � 1, (6)

X0
k = Xk−1.

Similarly, from (3) we obtain the Fixed-Point iteration

Xl
k(Ā11 + Ā12Xl−1

k ) = −(Ā21 + Ā22Xl−1
k ), l � 1, (7)

X0
k = Xk−1.

2.3. A GMRES method

This method was developed in [3] by the authors of this article. If we apply the vec operator [7, pp. 20] to (5),
then [

In ⊗Cl−1
22 + (Cl−1

11 )T ⊗ Im

]
Δxl−1

k = vec(Cl−1
21 ).

This linear system can be solved efficiently without explicitly building the matrix In ⊗ Cl−1
22 + (Cl−1

11 )T ⊗ Im by the
GMRES method, and then

Xl
k = Xl−1

k +mat(Δxl−1
k ,m, n).

J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577 2571



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 4

3. A family of BDF algorithms for solving DMREs

The authors of this paper developed three basic algorithms for solving AMREs: algorithm dgearesyl based on
a Sylvester method (Algorithm 1 of [4]), algorithm dgearefpo based on a Fixed-Point method (Algorithm 2 of [4])
and algorithm dgearegmr based on a GMRES method (Algorithm 3 of [3]). In this paper we have modified these
algorithms to improve speed and convergence. The idea consists of combining two BDF algorithms applying a first
step using a method, and then, applying several steps using a second method making the necessary iterations (steps)
to reach convergence. The six algorithm developed are (see Figure 1):

1. Apply a Sylvester iteration and the Fixed-Point method (dgearesfp).
2. Apply a GMRES iteration and the Fixed-Point method (dgearegfp).
3. Apply a Fixed-Point iteration and the Sylvester method (dgearefsy).
4. Apply a Fixed-Point iteration and the GMRES method (dgearefgm).
5. Apply a GMRES iteration and the Sylvester method (dgearegsy).
6. Apply a Sylvester iteration and the GMRES method (dgearesgm).

Another contribution of this paper is the development of a general algorithm which allows to choose ”the best
algorithm” for each DMRE problem depending on the stiffness of problem. With this scheme up to nine different
BDF algorithms can be applied.

Therefore there is a driver algorithm for the time-invariant case dgeidrbdf (not shown) and another for the time-
varying case (Algorithm 1) dgevdrbdf. This algorithm solves a time-varying DMRE by calling other algorithms to
solve AMREs. The computational algorithms solve AMREs by the nine algorithms developed.

Algorithm 1 Solves DMREs by means of a BDF algorithm

Function {Xk}pk=1 = dgevdrbdf(alg, data, t0, X0, t f ,Δt, tol,maxiter)
Inputs: alg is the algorithm used to solve the AMRE associated to DMRE (Figure 1); data(t) is the function that
computes the coefficient matrices of (1) at instant t; initial time t0 ∈ R; starting guess matrix X0 ∈ Rm×n; final time
t f ∈ R; step size Δt ∈ R; order of BDF method r ∈ {1, 2, 3, 4, 5}; tol ∈ R+ is the tolerance used in BDF method;
maxiter ∈ N is the maximum number of Newton iterations in BDF method
Outputs: Matrices Xk ∈ Rm×n, k = 1, 2, . . .

1: Initialize α and β with the values given in Table 1
2: t = t0
3: while t < t f do
4: if ‖Xk − Xk−1‖∞ < ε1 ‖Xk‖∞ then
5: Δt = δΔt
6: else if ‖Xk − Xk−1‖∞ > ε2 ‖Xk‖∞ then
7: Δt = max(Δt/δ, ε3)
8: end if
9: s = min(r, k)

10: [A11, A12, A21, A22] = data(t)
11: Ā21 = −βsΔtA21 −∑s

j=1 αs jXk− j

12: Ā22 = −βsΔtA22 + Im

13: Ā11 = βsΔtA11

14: Ā12 = βsΔtA12

15: [Xk, e]= alg(Ā11, Ā12, Ā21, Ā22, Xk−1, tol,maxiter)
16: t = t + Δt
17: end while
18: if e == −1 then
19: error (‘there is no convergence’)
20: end if

It is possible to design an efficient and adaptive algorithm that solves DMREs depending on the stiffness of problem
(Algorithm 1). The selection of step size is based on variable-coefficient strategies [8] by using an interpolating

2572 J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 5

Figure 1: Implemented algorithms and their inter-dependencies

J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577 2573



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 6

polynomial Pk which interpolates the points (tk, Xk−r), (tk+1, Xk−r+1), . . . , (tk, Xk) and then the implicit equation

Ṗk(tk) = A21(t) + A22(tk)Xk − XkA11(tk) − XkA12(t)Xk

is solved for Xk by using one of the algorithms of Figure 1. For selecting the step size in the k step we consider the
parameters ε1, ε2 and s such as 0 < ε1 � Ek � ε2, where

Ek =
‖Xk − Xk−1‖∞
‖Xk‖∞

.

The step size is selected in steps 4-8 of Algorithm 1, where ε3 (0 < ε3 < ε1) is a necessary parameter to avoid that the
step size becomes very small.

4. Experimental Results

The main objective of this section is to compare the developed algorithms. The implementations have been tested
on an Apple Macintosh iMac 2.16 Ghz Core 2 Duo processor with 2 Gb of RAM, MacOsX(Unix) OS and MATLAB
version 7.7.

As test battery, four stiff problems were used: two time-invariant DMREs and two time-varying DMREs. An
exhaustive study of all tests of this paper can be found in [9].

Case study 1. The first case study [1, 10] consists of the following time-invariant DMRE

Ẋ(t) = A21 + A22X(t) − X(t)A11 − X(t)A12X(t), 0 ≤ t ≤ t f ,

where A11 = 0n, A12 = A21 = αIn, (α > 0 controls the stiffness of the problem), A22 = 0n, and X(0) = X0 ∈ Rn×n.
The exact solution is given by

X(t) = (α(X0 + In)eαt − α(X0 − In)e−αt)−1(α(X0 + In)eαt + α(X0 − In)e−αt),

which allows the approaches presented in this document to be compared in terms of accuracy.
Case study 2. This case study [2] consists of the following time-invariant DMRE

Ẋ(t) = X(t)T2k + T2k X(t) − X(t)T2k X(t) + α2T2k , t ≥ 0,

X(0) = I2k ,

where k ∈ N and X(t),T2k ∈ R2k×2k
. Matrices T2k are generated as follows:

T2 =

[ −1 1
α2 1

]
,

T2k =

[ −T2k−1 T2k−1

α2T2k−1 T2k−1

]
, k ≥ 2,

where α controls the stiffness of the problem. The solution of this DMRE is given by

X(t) = I2k +
α2 + 1
ω

tanhωtT2k ,

where ω = (α2 + 1)
k+1

2 .
Case study 3. This stiff time-varying DMRE is a widely used test problem, known as the ”knee problem” [11, 1]

defined as
εẋ(t) = ε − tx(t) + x2(t), t ≥ −1, x(−1) = −1, 0 < ε << 1,

associated to coefficient matrix

A(t) =
[

a11(t) a12(t)
a21(t) a22(t)

]
=

[
t/ε −1/ε
1/2 0

]
, n = m = 1.

2574 J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 7

The reduced solution x = t is stable before 0 and x � 0 is stable past it. Parameter ε controls the stiffness of the
problem.

Case study 4. This stiff time-varying DMRE ([1, 12]) comes from a stiff two-point boundary value problem. This
DMRE is defined as

A11(t) =
[ −t/2ε 0

0 0

]
, A12(t) =

[
1/ε 0
0 1/ε

]
,

A21(t) =
[

1/2 1
0 1

]
, A22(t) =

[
0 t/2ε
0 0

]
,

where t ≥ −1, 0 < ε << 1. The initial condition is

X(−1) =
[

0 0
0 0

]
.

The solution has an initial layer and then it approaches

X(t) =
[ −ε/t 2(

√
ε + t)/2(1 − t

√
ε)

0
√
ε

]
.

For t away from 0, there is a smooth transition around the origin and then

X(t) �
[

t/2
√
ε

0
√
ε

]
.

All algorithms explained before have been tested, but only the ones with the best results are shown:

1. Sylvester algorithm (dgearesyl).
2. GMRES algorithm (dgearegmr).
3. Fixed-Point algorithm (dgearefpo).
4. Sylvester algorithm with an initial Fixed-Point iteration (dgearesfp).
5. GMRES algorithm with an initial Fixed-Point iteration(dgearegfp).

The driver algorithms developed are:

• dgeidrbdf (not shown) solves time-invariant DMREs by means of a BDF method.

• dgevdrbdf (Algorithm 1) solves time-varying DMREs by means of a BDF method.

For both algorithms the following parameters have been used:
These parameters have been adjusted in each case study to get the best execution time (Te) and the least relative

error (using the analytic solution and the obtained solution). Then, for each test we show results for execution time
and relative error. The relative error is computed as

Er =
‖X − X∗‖∞
‖X‖∞

,

where X∗ is the computed solution and X is the analytic solution.
We used the following values for our tests: ε1 = Δt0 · 10−2, ε2 = Δt0 · 10−1, ε3 = Δt0 · 10−3, δ = 1 + ε3, where Δt0

is a initial step size provided by the user.
The user indicates the stiffness by a parameter s that indicates if the problem is non stiff or low stiff (s = 0) or stiff

(s � 0):

• s=0 (non stiff or low stiff): The DMRE is solved by the Fixed-Point algorithm.

• s=1 (stiff): The DMRE is solved by the combined BDF-Sylvester/Fixed-Point algorithm.

• s=2 (stiff): The DMRE is solved by the combined BDF-GMRES/Fixed-Point algorithm.

J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577 2575



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 8

Table 2: Relative errors for adaptive algorithm r=2, tol= 1e-5, maxiter=100

Er Case Study 1 Case Study 2 Case Study 3 Case Study 4
s = 1 0 3.29e-20 4.999e-7 5.92e-15
s = 2 0 3.81e-16 4.999e-7 6.00e-15
s = 3 0 1.64e-20 4.999e-7 1.56e-15
s = 4 0 3.81e-16 4.999e-7 1.56e-15

Table 3: Execution times for adaptive algorithm r=2, tol = 10−5, maxiter=100

Te Case Study 1 Case Study 2 Case Study 3 Case Study 4
s = 1 1.30 1.06 2.76 4.71
s = 2 0.11 0.13 2.67 3.41
s = 3 1.33 1.11 2.61 6.4
s = 4 0.11 0.13 2.46 5.0

• s=3 (stiff): The DMRE is solved by the Sylvester algorithm.

• s=4 (stiff): The DMRE is solved by the GMRES algorithm.

Tables 2 and 3 contain relative errors and execution times of Case studies when s ∈ {1, 2, 3, 4}. The parameters of
problems and algorithms were:

• Case study 1: n = 16, α = 1000, t f = 3, r = 2, tol = 10−5, Δt0 = 0.1, maxiter = 100.

• Case study 2: n = 16, α = 100, t f = 1, r = 2, tol = 10−5, Δt0 = 0.1, maxiter = 100.

• Case study 3: n = 1, ε = 10−4, t f = 100, r = 2, tol = 10−5, Δt0 = 0.01, maxiter = 100.

• Case study 4: n = 2, ε = 10−4, t f = 50, r = 2, tol = 10−5, Δt0 = 0.01, maxiter = 100.

Table 2 shows that the combined algorithms (s = 1, 2) have the same relative errors as the single algorithms
(s = 3, 4) in two of the four case studies and lower relative errors than the single algorithms in the other case studies.
Table 3 shows that combined algorithms have lower or equal execution times than single algorithms in three of the
four case studies.

5. Conclusions and Future Work

We developed a family of algorithms for solving DMREs using adaptive techniques. Because there is no best
algorithm to solve all problems, two general purpose adaptive algorithms which select the most adequate adaptive
algorithm depending on the DMRE has been designed. The algorithms can be chosen by using a parameter that indi-
cates the stiffness of the problem. MATLAB implementations of these algorithms have been also done. The source
codes can be downloaded from the following http address:

http://www.grycap.upv.es/dmretoolbox/DMRE BDF.htm

There are three items for future work:

• Use other BDF methods for solving AMREs as Adams-Moulton methods [13, pp. 127].

2576 J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577



J. Peinado et al. / Procedia Computer Science 00 (2010) 1–9 9

• Parallel implementation of the algorithms presented in this work will be carried out in a distributed memory
platform, using the message passing paradigm, MPI [14] and BLACS [15] for communications, and PBLAS
[16] and ScaLAPACK [17] for computations.

• Use GPU computing. It is possible to use some kind of GPUS as a way to speed up several computations in a
computer. Using the CUDA (Compute Unified Device Architecture) [18] environment from the NVIDIA maker.
This environment has tools as CUBLAS [19] (a CUDA BLAS), and very recently appeared CUDA/CUBLAS
based implementations of some LAPACK routines: MAGMA [20], CULAPACK [21] and CULATOOLS [22].

6. References

[1] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM Journal on Numerical Analysis. 29 (3)
(1992) 781–815.

[2] C. H. Choi, A. J. Laub, Efficient matrix-valued algorithms for solving stiff Riccati differential equations, IEEE Trans. on Automatic Control
35 (7) (1990) 770–776.

[3] V. Hernández, J. Ibáñez, E. Arias, J. Peinado, A GMRES-based BDF method for solving differential Riccati equations, Applied Mathematics
and Computation 196 (2) (2008) 613–626.

[4] E. Arias, V. Hernández, J. Ibáñez, J. Peinado, A fixed point-based BDF method for solving Riccati equations, Applied Mathematics and
Computation 188 (2) (2007) 1319–1333.

[5] D. H. Griffel, Applied Functional Analysis, Mathematics and its Applications, Ellis Hordwood, New York, 1981.
[6] R. H. Bartels, G. W. Stewart, Solution of the matrix equation AX + XB = C: Algorithm 432, Communications of the ACM 15 (9) (1972)

820–826.
[7] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, London, 1991.
[8] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, 1998.
[9] J. Ibáñez, J. Peinado, V. Hernández, E. Arias, A family of BDF methods for solving differential matrix Riccati equations using adaptative

techniques, Tech. Rep. DSIC-II/08/09, Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (Spain)
(2009).

[10] G. H. Meyer, Initial Value Methods for Boundary Value Problems, Academic Press, New York, 1973.
[11] G. Dahlquist, L. Edsberg, G. Skllermo, G. Sderlind, Are the Numerical Methods and Software Satisfactory for Chemical Kinetics?, in Numer-

ical Integration of DE and Large Linear Systems, Vol. 968/1992 of Lecture Notes in Computer Mathematics, Springer Berlin / Heidelberg,
1982, pp. 149–164.

[12] D. L. Brown, J. Lorenz, A high-order method for stiff boundary value problems with turning points, SIAM Journal on Scientific and Statistical
Computing 8 (1987) 790–805.

[13] U. Ascher, L. Petzold, Computer Methods for Ordinary Differential Equations, SIAM, Philadelphia, 1998.
[14] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press, 1994.
[15] J. Dongarra, R. C. Whaley, A user’s guide to the BLACS v1.1, Tech. Rep. UT-CS-95-281, Department of Computer Science, University of

Tennessee (1995).
[16] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, A proposal for a set of parallel basic linear algebra subprogram, Tech. Rep.

UT-CS-95-292, Department of Computer Science, University of Tennessee (1995).
[17] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, ScaLAPACK Users’ Guide, SIAM, 1997.
[18] NVIDA, Nvidia CUDA compute unified device architecture (2009).
[19] NVIDIA, CUDA. CUBLAS library (2009).
[20] Enhancing the performance of dense linear algebra solvers on GPUs (in MAGMA project), Supercomputing ’08 Poster.
[21] S. Barrachina, M. Castillo, F. Igual, R. Mayo, E. Quintana, G. Quintana, Exploiting the capabilities of modern gpus for dense matrix,

Concurrency and Computation: Practice & Experience 21 (2009) 2457–2477.
[22] Culatools, http://www.culatools.com.

J. Peinado et al. / Procedia Computer Science 1 (2012) 2569–2577 2577


