Simply connected homogeneous continua are not separated by arcs ${ }^{* *}$

Myrto Kallipoliti, Panos Papasoglu*
Mathematics Department, University of Athens, Athens 157 84, Greece

Received 6 December 2006; accepted 26 June 2007

Abstract

We show that locally connected,simply connected homogeneous continua are not separated by arcs. We ask several questions about homogeneous continua which are inspired by analogous questions in geometric group theory. © 2007 Elsevier B.V. All rights reserved.

MSC: 54F15
Keywords: Continuum; Homogeneous; Group; Alexander's lemma

1. Introduction

In this paper we prove a theorem about homogeneous continua inspired by a result about finitely presented groups [13].

Theorem 1. Let X be a locally connected, simply connected, homogeneous continuum. Then no arc separates X.
We recall that an arc in X is the image of a $1-1$ continuous map $\alpha:[0,1] \rightarrow X$. We say that an arc α separates X if $X \backslash \alpha$ has at least two connected components. We say that X is simply connected if it is path connected and every continuous map $f: S^{1}=\partial D^{2} \rightarrow X$ can be extended to a continuous $\bar{f}: D^{2} \rightarrow X$ (where D^{2} is the 2-disc and S^{1} its boundary circle). The proof of Theorem 1 relies on Alexander's lemma for the plane (see [12]) and our generalization of this lemma to simply connected spaces (see Section 2).

There is a family air between continua theory and group theory. This became apparent after Gromov's theory of hyperbolic groups [6]. Gromov defines a boundary for a hyperbolic group which is a continuum on which the group acts by a 'convergence action'. The classic 'cyclic elements' decomposition theory of Whyburn was extended recently by Bowditch [3] in this context and it gave deep results in group theory. 'Asymptotic topology', introduced by Gromov [7] and developed further by Dranishnikov [4], shows that the analogy goes beyond the realm of hyperbolic groups. The 'philosophy' of this is that topological questions that make sense for continua can be translated to 'asymptotic topology' questions which make sense for groups (see [4] for a dictionary between topology and asymptotic topology).

[^0]One wonders whether Theorem 1 holds in fact for all locally connected, homogeneous continua of dimension bigger than 1 :

Question 1. Let X be a locally connected, homogeneous continuum of dimension 2. Is it true that no arc separates X ?
We note that by a result of Krupski [10], homogeneous continua are Cantor manifolds. It follows that no arc separates a homogeneous continuum of dimension bigger than 2 .

Krupski and Patkowska [11] have shown that a similar property (the disjoint arcs property) holds for all locally connected homogeneous continua of dimension bigger than 1 which are not 2 -manifolds.

We remark that by [10] if a Cantor set separates a homogeneous continuum X then $\operatorname{dim} X=1$. So Question 1 is equivalent to the following question: Is it true that if no Cantor set separates a locally connected, homogeneous continuum X, then no arc separates X ? Restated in this way the question makes sense also for boundaries of hyperbolic groups. In fact a similar question can be formulated for finitely generated groups too (see [13]).

Not much is known about locally connected, simply connected homogeneous continua. One motivation to study them is the analogy with finitely presented groups. Another reason is that one could hope for a classification of such continua in dimension 2 :

Question 2. Are the 2-sphere and the universal Menger compactum of dimension 2 the only locally connected, simply connected, homogeneous continua of dimension 2 ?

We recall that S^{1} and the universal Menger curve are the only locally connected homogeneous continua of dimension 1 [1]. Prajs ([15], Question 2) asks whether S^{2} is the only simply connected homogeneous continuum of dimension 2 that embeds in \mathbb{R}^{3}.

A related question about locally connected, simply connected continua that makes sense also for finitely presented groups is the following:

Question 3. Let X be a locally connected, simply connected homogeneous continuum which is not a single point. Does X contain a disc?

We remark that in the group theoretic setting the answer is affirmative for hyperbolic groups [2]. By a result of Prajs [14] a positive answer to this would imply that S^{2} is the only locally connected, simply connected, homogeneous continuum of dimension 2 that embeds in \mathbb{R}^{3}.

We refer to Prajs' list of problems [15] for more questions on homogeneous continua.

2. Preliminaries

Definition 1. Let X be a metric space. A path p is a continuous map $p:[0,1] \rightarrow X$. A simple path or an arc α, is a continuous and $1-1$ map $\alpha:[0,1] \rightarrow X$. We will identify an arc with its image.

For a path p we denote by ∂p the set of its endpoints, i.e., $\partial p=\{p(0), p(1)\}$.
An arc α separates X if $X \backslash \alpha$ has at least two connected components. If $x, y \in X$ we say that an arc α separates x from y if α separates X and x, y belong to distinct components of $X \backslash \alpha$.

Definition 2. Let α be an arc of X. On α we define an order $<_{\alpha}$ as follows: If $x=\alpha\left(x^{\prime}\right), y=\alpha\left(y^{\prime}\right)$ then $x<_{\alpha} y$ if and only if $x^{\prime}<y^{\prime}$.

We denote by $[x, y]_{\alpha}$ the set of all $t \in \alpha$ such that $x \leqslant t \leqslant y$. Similarly we define $(x, y)_{\alpha},[x, y)_{\alpha}$ and $(x, y]_{\alpha}$. When there is no ambiguity we write $[x, y]$ instead of $[x, y]_{\alpha}$ and $x<y$ instead of $x<_{\alpha} y$. Finally, if $t \in[0,1]$ we denote by $x+t$ the point $\alpha\left(x^{\prime}+t\right)$ (where $x=\alpha\left(x^{\prime}\right)$).

We recall Alexander's lemma from plane topology (see Theorem 9.2, p. 112 of [12]).
Alexander's Lemma (for the plane). Let K_{1}, K_{2} be closed sets on the plane such that either $K_{1} \cap K_{2}=\emptyset$ or $K_{1} \cap K_{2}$ is connected and at least one of K_{1}, K_{2} is bounded. Let $x, y \in \mathbb{R}^{2} \backslash\left(K_{1} \cup K_{2}\right)$. If there is a path joining x, y in $\mathbb{R}^{2} \backslash K_{1}$ and a path joining x, y in $\mathbb{R}^{2} \backslash K_{2}$ then there is a path joining x, y in $\mathbb{R}^{2} \backslash\left(K_{1} \cup K_{2}\right)$.

It is easy to see that Alexander's lemma also holds for the closed disc D^{2} in the case that $K_{1} \cap K_{2}=\emptyset$. In fact this implies that this lemma holds in general for every simply connected space. In particular we have the following:

Alexander's Lemma (for simply connected spaces). Let X be a simply connected space, K_{1}, K_{2} disjoint closed subsets of X and let $x, y \in X \backslash\left(K_{1} \cup K_{2}\right)$. If there is a path joining x, y in $X \backslash K_{1}$ and a path joining x, y in $X \backslash K_{2}$ then there is a path joining x, y in $X \backslash\left(K_{1} \cup K_{2}\right)$.

Proof. Let p_{1}, p_{2} be paths joining x, y such that $p_{1} \cap K_{1}=p_{2} \cap K_{2}=\emptyset$. We consider the closed path $p_{1} \cup p_{2}$ and let $f: S^{1}=\partial D^{2} \rightarrow X$ be a parametrization of this path. Since X is simply connected, f can be extended to a map $F: D^{2} \rightarrow X$. Then $F^{-1}\left(K_{1}\right)$ and $F^{-1}\left(K_{2}\right)$ are disjoint, closed subsets of D^{2}. Clearly, neither $F^{-1}\left(K_{1}\right)$ nor $F^{-1}\left(K_{2}\right)$ separates x, y, therefore, using Alexander's lemma for the closed disc, we have that there is a path p that joins x, y without meeting $F^{-1}\left(K_{2}\right) \cup F^{-1}\left(K_{2}\right)$. This implies that $F(p)$ is a path from x to y that does not meet $K_{1} \cup K_{2}$.

For the rest of this paper we assume that X is a simply connected, locally connected continuum.
Lemma 1. Let O be a connected open subset of X, K be a connected component of ∂O and let $x, y \in O$ such that $d(x, K)<\varepsilon$ and $d(y, K)<\varepsilon$. Then there is a path p in O connecting x to y such that p is contained in the ε-neighborhood of ∂O.

Proof. Let U be the union of the open balls $B_{\varepsilon}(t)$ with center $t \in \partial O$ and radius ε. Let V be the connected component of U containing K. Clearly $x, y \in V$ so there is a path in X joining them that does not intersect ∂V. On the other hand, $x, y \in O$ so there is a path in X joining them that does not intersect ∂O.

Since $\partial O \cap \partial V=\emptyset$ and $\partial O, \partial V$ are closed, applying Alexander's lemma for the simply connected space X, we have that p is a path lying in X joining x, y that intersects neither ∂O nor ∂V. Clearly p is contained in O and lies in the ε-neighborhood of ∂O.

Lemma 2. Let α be an arc that separates X and let C be a connected component of $X \backslash \alpha$. Then \bar{C} is simply connected and ∂C is connected.

Proof. Let $f: S^{1}=\partial D^{2} \rightarrow \bar{C}$. We will show that this map can be extended to a map $\hat{f}: D^{2} \rightarrow \bar{C}$.
X is simply connected, so there is a map $F: D^{2} \rightarrow X$ such that $\left.F\right|_{S^{1}}=f$. Furthermore, $X \backslash \bar{C}$ is an open set, therefore $\partial F^{-1}(X \backslash \bar{C}) \cap F^{-1}(X \backslash \bar{C})=\emptyset$ and since F is a continuous extension of f it follows that $F\left(\partial F^{-1}(X \backslash\right.$ $\bar{C})$) $\subset \alpha\left(\right.$ where by $\partial F^{-1}(X \backslash \bar{C})$ we denote the boundary of $F^{-1}(X \backslash \bar{C})$ in $\left.X\right)$.

Let $f^{\prime}: \partial F^{-1}(X \backslash \bar{C}) \rightarrow \alpha$ be the restriction of F in $\partial F^{-1}(X \backslash \bar{C})$. Then, applying Tietze's extension theorem, we obtain an extension for f^{\prime} :

$$
F^{\prime}: \overline{F^{-1}(X \backslash \bar{C})} \rightarrow \alpha
$$

Finally we define $\hat{f}: D^{2} \rightarrow \bar{C}$ as follows:

$$
\hat{f}(x)= \begin{cases}f(x) & \text { if } x \in \partial D^{2} \\ F(x) & \text { if } x \in D^{2} \backslash F^{-1}(X \backslash \bar{C}) \\ F^{\prime}(x) & \text { if } x \in F^{-1}(X \backslash \bar{C})\end{cases}
$$

This shows that \bar{C} is simply connected.
Suppose now that $S=\partial C$ is not connected and let p be a path that joins two different components of S, such that if a, b are the endpoints of p, then $(p \backslash\{a, b\}) \cap S=\emptyset$. Let $x \in p \backslash\{a, b\}$ and $y \in(a, b)_{\alpha} \backslash S$ (Fig. 1).

We set $K_{1}=[\alpha(0), y]_{\alpha} \cap S$ and $K_{2}=S \backslash K_{1}$. It is clear that K_{1}, K_{2} are disjoint closed subsets of X and that neither K_{1} nor K_{2} separates x from y. Then Alexander's lemma (for the simply connected space X) implies that there is a path joining x, y in $X \backslash\left(K_{1} \cup K_{2}\right)=X \backslash S$, a contradiction.

Lemma 3. Let α be an arc that separates $X, x, y \in \alpha$ and $\varepsilon>0$ with $\varepsilon<d(x, y)$. Then for every connected component C of $X \backslash \alpha$ such that $x, y \in \partial C$ there are points $x^{\prime}, y^{\prime} \in C$ with $d\left(x, x^{\prime}\right), d\left(y, y^{\prime}\right)<\varepsilon$ and a path $p \in C$ that joins x^{\prime}, y^{\prime} and is contained in the ε-neighborhood of $[x, y]_{\alpha}$.

Fig. 1.

Fig. 2.
Proof. Let $B_{\varepsilon / 2}(x)$ and $B_{\varepsilon}(x)$ be balls of center x and radius $\varepsilon / 2$ and ε, respectively. We consider the connected components of $\alpha \backslash \stackrel{\circ}{B}_{\varepsilon / 2}(x)$ and we restrict to those that are not contained in $B_{\varepsilon}(x)$ (here we denote by $\stackrel{\circ}{B}_{\varepsilon / 2}(x)$ the open ball). It is clear that there are finitely many such components, so we denote them by $I_{1}, I_{2}, \ldots, I_{n}$. Let $\delta_{1}<\min \left\{d\left(I_{i}, I_{j}\right)\right\}$ for every $i, j=1,2, \ldots, n, i \neq j$. Similarly, let $J_{1}, J_{2}, \ldots, J_{m}$ be the connected components of $\alpha \backslash \stackrel{\circ}{B}_{\varepsilon / 2}(y)$ that are not contained in $B_{\varepsilon}(y)$ and let $\delta_{2}<\min \left\{d\left(J_{i}, J_{j}\right)\right\}$ for every $i, j=1,2, \ldots, m, i \neq j$. Let $\delta^{\prime}<\min \left\{\delta_{1}, \delta_{2}, \varepsilon / 2\right\}$.

From Lemma 2, we have that \bar{C} is simply connected, therefore Lemma 1 , for $\delta=\delta^{\prime} / 4$, implies that there is a path $q \in C$ that joins a point of $B_{\varepsilon}(x)$ with a point of $B_{\varepsilon}(y)$ and lies in the δ-neighborhood of α (Fig. 2). We will show that there is a subpath of q that has the required properties.

We assume that none of the $I_{i}, J_{j}, i=1,2, \ldots, n, j=1,2, \ldots, m$, contain $[x, y]_{\alpha}$, since otherwise we are done. Thus, without loss of generality, let I_{1} be the connected component of $\alpha \backslash \stackrel{\circ}{B}_{\varepsilon / 2}(x)$ that is contained in $[x, y]_{\alpha}$. We denote by $N_{\delta}\left([x, y]_{\alpha}\right)$ the open δ-neighborhood of $[x, y]_{\alpha}$. Suppose that there is a connected component $I=[a, b]_{q}$ of $q \backslash N_{\delta}\left([x, y]_{\alpha}\right)$ with $a \in B_{\delta}(x)$ and $b \notin B_{\delta}(x)$. Then there is an $r>0$ such that $(b-r, b)_{q} \notin N_{\delta}(\alpha)$. Indeed, if not then for every $r>0$ there is an $I_{i} \neq I_{1}$ such that $(b-r, b)_{q} \in N_{\delta}\left(I_{i}\right)$. Thus $d\left(I_{i}, b\right) \leqslant \delta$. But $d\left(I_{1}, I_{i}\right) \leqslant$ $d\left(I_{i}, b\right)+d\left(b, I_{1}\right) \leqslant \delta+\delta=2 \delta=\delta^{\prime} / 2<\delta^{\prime}$, a contradiction. So there is an $r>0$ such that for every $i \neq 1$ we have $(b-r, b)_{q} \notin N_{\delta}\left(I_{i}\right)$, therefore $(b-r, b)_{q} \notin N_{\delta}(\alpha)$, which is not possible. This contradiction proves the lemma.

3. Proof of Theorem 1

We will prove the theorem by contradiction.
Remark. Since X is locally connected and compact, it follows that every open connected subset of X is path connected (see Theorem 3.15, p. 116 of [9]). In particular the closure of every component of $X \backslash \alpha$ is path connected.

Definition 3. Let α_{1}, α_{2} be arcs that separate X. We say that α_{1} crosses α_{2} at $x \in\left(\alpha_{1} \backslash \partial \alpha_{1}\right) \cap\left(\alpha_{2} \backslash \partial \alpha_{2}\right)$ if for any neighborhood of x in $\alpha_{2},(x-\varepsilon, x+\varepsilon)_{\alpha_{2}}$, there are $a, b \in(x-\varepsilon, x+\varepsilon)_{\alpha_{2}}$ separated by α_{1}. More generally, if $\left[x_{1}, x_{2}\right]$ is a connected component of $\alpha_{1} \cap \alpha_{2}$, which is contained in $\left(\alpha_{1} \backslash \partial \alpha_{1}\right) \cap\left(\alpha_{2} \backslash \partial \alpha_{2}\right)$, we say that α_{1} crosses α_{2} at [x_{1}, x_{2}] if for any neighborhood of $\left[x_{1}, x_{2}\right]$ in $\alpha_{2},\left(x_{1}-\varepsilon, x_{2}+\varepsilon\right)_{\alpha_{2}}$, there are $a, b \in\left(x_{1}-\varepsilon, x_{2}+\varepsilon\right)_{\alpha_{2}}$ separated by α_{1}. In this case, the endpoints x_{1}, x_{2} are also called cross points of α_{1}, α_{2}.

Fig. 3.

If $I_{1} \subset \alpha_{1}, I_{2} \subset \alpha_{2}$ are intervals of α_{1}, α_{2} containing x in their interior, we say that I_{1}, I_{2} cross at x. Similarly we define what it means for two intervals to cross at a common subarc. We call x (respectively, $\left[x_{1}, x_{2}\right]$) a crosspoint (respectively, cross-interval) of α_{1}, α_{2}. We say that I_{1}, I_{2} cross if they cross at some point x or at some interval [$\left.x_{1}, x_{2}\right]$.

For example in Fig. 3, x is a cross point of α_{1}, α_{2}, while y is an intersection point of α_{1}, α_{2} which is not a cross point.

Lemma 4. There is an arc that separates X in exactly two components.
Proof. Suppose that this is not the case, so let α be an arc that separates X in more than two components. Since X has no cut points there are two connected components of $X \backslash \alpha$, say C_{1}, C_{2}, such that $\beta=\partial C_{1} \cap \partial C_{2} \neq \emptyset$ is a subarc (which is not a point) of α. Clearly β separates X. To simplify notation we denote by C_{1}, C_{2} the components of $X \backslash \beta$ that satisfy $\partial C_{1}=\partial C_{2}=\beta$. Let C_{3} be another component of $X \backslash \beta$. By Lemma 2 we have that ∂C_{3} is connected, so $\partial C_{3}=\gamma$ is a subarc of β, which separates X.

Lemma 4.1. γ cannot be crossed by any other separating arc of X.

Proof. Suppose that there is an arc γ^{\prime} that separates X and crosses γ at t. Then there are $x, y \in \gamma, x<t<y$ that are separated by γ^{\prime}. Let $Y=\bar{C}_{1} \cup \bar{C}_{2}$. Since \bar{C}_{3} is path connected, it follows that $\gamma^{\prime} \not \subset Y$. We denote by C_{x} the connected component of $Y \backslash \gamma^{\prime}$ that contains x. As in Lemma 2, we may show that Y is simply connected. We show then that Alexander's lemma for Y implies that ∂C_{x} has a connected component that separates x, y in Y.

This can be achieved as follows: Let C_{y} be the connected component of $Y \backslash \bar{C}_{x}$ that contains y. It is clear that $\partial C_{y} \subseteq \partial C_{x}$. Then no proper closed subset of ∂C_{y} separates x from y. Indeed, suppose that there is a closed $K \subset \partial C_{y}$ that separates x from y and let $z \in \partial C_{y} \backslash K$. Let U be an open neighborhood of z such that $U \cap K=\emptyset$. It is obvious that U intersects every component of $Y \backslash \partial C_{y}$, therefore, there are paths $q_{1}, q_{2} \in Y \backslash \partial C_{y}$ that join x, y with points $x^{\prime}, y^{\prime} \in U$, respectively. However, U is path connected and since $U \cap K=\emptyset$, it follows that there is also a path $q \in U$ that joins x^{\prime} with y^{\prime}. Thus $p_{1} \cup q \cup p_{2}$ is a path joining x, y without meeting K, a contradiction. Therefore, $I=\partial C_{y}$ is connected and separates x from y.

We note now that I does not cross γ. Indeed, suppose that there is an $a \in I \backslash \partial I$ in which γ^{\prime} crosses γ. Let $V \subset X$ be sufficiently small neighborhood of a such that $\left(\gamma^{\prime} \backslash I\right) \cap V=\emptyset$. We denote by J the connected component of $\gamma \cap V$ that contains the point a. Then we can pick points $x^{\prime}, y^{\prime} \in J$ with $x^{\prime}<a<y^{\prime}$ in γ that are separated by γ^{\prime}. Let $N_{x^{\prime}}, N_{y^{\prime}}$ be connected neighborhoods of x^{\prime} and y^{\prime}, respectively, such that $N_{x^{\prime}}, N_{y^{\prime}} \subset V$. Applying now Lemma 3 for the component C_{3} and for $\varepsilon<\min \left\{\operatorname{diam}\left(N_{x^{\prime}} \cap C_{3}\right)\right.$, $\left.\operatorname{diam}\left(N_{y^{\prime}} \cap C_{3}\right)\right\}$, we have that every point of $N_{x^{\prime}} \cap C_{3}$ can be joined with every point of $N_{y^{\prime}} \cap C_{3}$ by a path in C_{3} which lies in the ε-neighborhood of [$\left.x^{\prime}, y^{\prime}\right]_{\gamma}$.

Let $t \in C_{3} \cap N_{x^{\prime}}, s \in C_{3} \cap N_{y^{\prime}}$ and let q be a path that joins t and s as above. We note now that $N_{x^{\prime}}$ and $N_{y^{\prime}}$ are path connected, so there are paths $q_{1} \in N_{x^{\prime}}$ and $q_{2} \in N_{y^{\prime}}$ joining the endpoints of q with the points x^{\prime} and y^{\prime}, respectively. Clearly then the path $p=q_{1} \cup q \cup q_{2}$ joins x^{\prime} with y^{\prime} without meeting γ^{\prime}. This is however impossible, since x^{\prime} and y^{\prime} are separated by γ^{\prime}. Therefore, I does not cross γ. Thus $\gamma \backslash I$ is contained in a single component of $X \backslash I$, a contradiction.

$$
\mathrm{a}^{+}
$$

α

α^{-}

Fig. 4.
We return now to the proof of Lemma 4: Let G be the group of homeomorphisms of X. For every $f \in G$ we have that $f(\gamma)$ separates X and from the previous lemma it follows that $f(\gamma)$ does not cross γ. Let $S=G \cdot \gamma$. Clearly S is uncountable. Let Q be a countable dense set of X. We define a map $R: S \rightarrow Q \times Q \times Q$ as follows: Let $p \in S$ and U_{1}, U_{2}, U_{3} be three connected components of $X \backslash p$. For every U_{i} we pick an $r_{i} \in Q$ and we associate $p \in S$ the triple $\left(r_{1}, r_{2}, r_{3}\right)$. We remark that R is $1-1$ map, which is a contradiction. This completes the proof of Lemma 4.

Let γ be an arc that separates X in exactly two components C_{1}, C_{2} with $\partial C_{1}=\partial C_{2}=\gamma$. We denote by G the group of homeomorphisms of X. Let $S=G \cdot \gamma$. It is clear that S is uncountable and that every arc $\alpha \in S$ also separates X in exactly two components U_{1}, U_{2} such that $\partial U_{1}=\partial U_{2}=\alpha$. For an arc $\alpha \in S$ we will denote these two components by α^{+}and α^{-}(Fig. 4).

Henceforth we will consider only arcs in S.
Lemma 5. Let $\alpha_{1}, \alpha_{2} \in S$ such that α_{1} crosses α_{2} at x (or at $\left[x_{1}, x_{2}\right]$). Then α_{2} crosses α_{1} at x (or at $\left[x_{1}, x_{2}\right]$).
Proof. Suppose that there are $\alpha_{1}, \alpha_{2} \in S$ such that α_{1} crosses α_{2} at x but α_{2} does not cross α_{1} at x. Then there is an interval $I \subset \alpha_{1}$ containing x at its interior that lies in the closure of one of the components of $X \backslash \alpha_{2}$, say $\overline{\alpha_{2}^{+}}$. Clearly then we have that $I \cap \alpha_{2}^{-}=\emptyset$.

Let $V \subset X$ be sufficiently small neighborhood of x such that $\left(\alpha_{1} \backslash I\right) \cap V=\emptyset$. We denote by J the connected component of $\alpha_{2} \cap V$ that contains the point x. We pick two points $a, b \in J$ with $a<x<b$ in α_{2} which are separated by α_{1} and let N_{a}, N_{b} be connected neighborhoods of a and b, respectively, such that $N_{a}, N_{b} \subset V$. As in proof of Lemma 4.1, for $\varepsilon<\min \left\{\operatorname{diam}\left(N_{a} \cap \alpha_{2}^{-}\right), \operatorname{diam}\left(N_{b} \cap \alpha_{2}^{-}\right)\right\}$, we can find a path p that joins a with b without meeting α_{1}, a contradiction. We argue similarly if α_{1} crosses α_{2} at an interval $\left[x_{1}, x_{2}\right]$.

We recall now a version of Effros' Theorem ([5], [8], p. 561):
Theorem 2. For every $\varepsilon>0$ and $x \in X$ the set $W(x, \varepsilon)$ of $y \in X$ such that there is a homeomorphism $h: X \rightarrow X$ with $h(x)=y$ and $d(h(t), t)<\varepsilon$ for all $t \in X$, is open.

Lemma 6. There are arcs $\alpha=\left[a_{1}, a_{2}\right]$ and $\beta=\left[b_{1}, b_{2}\right]$ in S, such that $b_{1} \in\left(a_{1}, a_{2}\right)_{\alpha}$ and if A is the connected component of $\alpha \cap \beta$ that contains b_{1}, then $a_{1}, a_{2} \notin A$.

Proof. We will need the following:
Lemma 6.1. Let $\alpha \in S$. Then there is an arc $\beta \in S$ that crosses α.
Proof. Let $\alpha, \gamma \in S, c \in \partial \gamma, a \in \alpha \backslash \partial \alpha$ and $g \in G$ such that $g c=a$. By the definition of S it is not possible that $g \gamma \subset \alpha$, since α separates X in exactly two connected components. Assume now that α does not cross $g \gamma$. We denote by A the connected component of $\alpha \cap g \gamma$ that contains a and let $\partial \alpha=\left\{a_{1}, a_{2}\right\}$.

We distinguish two cases: Suppose that $a_{1}, a_{2} \notin A$. Let $z \in g \gamma$ such that $(z, g c)_{g \gamma}$ lies in the closure of one of the components of $X \backslash \alpha$, say α^{+}. Let $z^{\prime} \in(z, g c)_{g \gamma} \backslash \alpha$ and $\varepsilon>0$ such that $B_{\varepsilon}\left(z^{\prime}\right) \subset \alpha^{+}$. By Theorem 2 there is a $\delta>0$ such that $B_{\delta}(a) \subset W(a, \varepsilon)$. Let $y \in B_{\delta}(a) \cap \alpha^{-}$(Fig. 5).

Then there is a homeomorphism, $h \in G$, with $h(a)=y$ such that $d(t, h(t))<\varepsilon$ for every $t \in X$. We consider the $\operatorname{arc} \beta=h(g \gamma)$. Then clearly β crosses α, since $h\left(z^{\prime}\right) \in \alpha^{+}$and $h(a) \in \alpha^{-}$.

Suppose now that $a_{2} \in A$. We consider the homeomorphism $h \in G$ of the previous case. If $a_{2} \notin h(A)$, then clearly Lemma 6.1 is proved. So let $a_{2} \in h(A)$ and $\varepsilon^{\prime}<\min \left\{\varepsilon, \frac{1}{2} d(\alpha, h(g c))\right\}$. As before, by Theorem 2 , there is a $\delta^{\prime}>0$ such

Fig. 5.

α
Fig. 6.
that $B_{\delta^{\prime}}\left(a_{2}\right) \subset W\left(a_{2}, \varepsilon^{\prime}\right)$. Let $y^{\prime} \in B_{\delta^{\prime}}\left(a_{2}\right) \cap \alpha^{+}$(Fig. 6). Then there is an $h^{\prime} \in G$ with $h^{\prime}\left(a_{2}\right)=y^{\prime}$ and $d\left(t, h^{\prime}(t)\right)<\varepsilon^{\prime}$ for every $t \in X$. It is obvious now that α crosses $h^{\prime}(\beta)$.

Let $\alpha=\left[a_{1}, a_{2}\right] \in S$. By Lemma 6.1 there is an arc $\beta=\left[b_{1}, b_{2}\right]$ that crosses α at $x \in \alpha \cap \beta$. Without loss of generality, suppose that x is the endpoint of a cross interval I of α, β. Let $\gamma \in S, c \in \partial \gamma$ and $g \in G$ such that $g c=x$. We denote by A the connected component of $g \gamma \cap \alpha$ that contains c and similarly by B the component of $g \gamma \cap \beta$ that contains c. Clearly if $a_{1}, a_{2} \notin A$, then Lemma 6 is proved. Otherwise, we note that if A contains one of the endpoints of α, then $b_{1}, b_{2} \notin B$, since I is a cross interval of α, β. So in this case, the required arcs are $g \gamma$ and β.

We return to the proof of Theorem 1 .
Let $\alpha=\left[a_{1}, a_{2}\right], \beta=\left[b_{1}, b_{2}\right] \in S$ be paths as in Lemma 6, that is, $b_{1} \in\left(a_{1}, a_{2}\right)_{\alpha}$ and if A is the connected component of $\alpha \cap \beta$ that contains b_{1}, then $a_{1}, a_{2} \notin A$. Let $t_{1}, t_{2} \in \alpha \backslash \beta$ such that $b_{1} \in\left(t_{1}, t_{2}\right)_{\alpha}$ and let p_{1}, p_{2} be paths joining t_{1}, t_{2} in $\overline{\alpha^{+}}$and $\overline{\alpha^{-}}$, respectively (the points t_{i} exist since $a_{1}, a_{2} \notin A$). We pick p_{i} such that $p_{i} \cap \alpha$ has exactly two connected components neither of which intersects β (this can be achieved using Lemma 3 for $\varepsilon<\frac{1}{2} \min \left\{d\left(t_{1}, \partial A_{1}\right), d\left(t_{2}, \partial A_{2}\right)\right\}$, where A_{i} is the connected component of $\alpha \backslash \beta$ that contains t_{i} and ∂A_{i} is its boundary in α).

Let $\varepsilon>0$ with $\varepsilon<\frac{1}{2} d\left(A, p_{1} \cup p_{2}\right)$. As in proof of Lemma 6.1, using Theorem 2 , we can find a homeomorphism $h \in G$ such that $h(\beta)$ crosses α at $x \in \alpha \cap h(\beta)$, with $d(A, x)<\varepsilon$. Then we remark that $x \in\left(t_{1}, t_{2}\right)_{\alpha}$ and that the subarc of $h \beta$ with endpoints x and $h b_{1}$ does not intersect $p_{1} \cup p_{2}$.

We pick now points $s \in\left(t_{1}, x\right)_{\alpha} \backslash\left(p_{1} \cup p_{2}\right)$ and $t \in\left(x, t_{2}\right)_{\alpha} \backslash\left(p_{1} \cup p_{2}\right)$ which are separated by $h \beta$ so that they satisfy the following: If y is a cross point of α and $h \beta$, lying in $[s, t]_{\alpha}$, then the subarc $\left[y, h b_{1}\right]_{h \beta}$ does not intersect the paths p_{1}, p_{2}. Such points exist by definition of x (Fig. 7).

We consider now the closed paths $p_{1} \cup\left[t_{1}, t_{2}\right]_{\alpha}$ and $p_{2} \cup\left[t_{1}, t_{2}\right]_{\alpha}$. Let D_{1}, D_{2} be discs and let $f_{1}: \underline{D_{1}} \rightarrow \overline{\alpha^{+}}$, $f_{2}: D_{2} \rightarrow \overline{\alpha^{-}}$be maps so that $f_{1}\left(\partial D_{1}\right)=p_{1} \cup\left[t_{1}, t_{2}\right]_{\alpha}, f_{2}\left(\partial D_{2}\right)=p_{2} \cup\left[t_{1}, t_{2}\right]_{\alpha}$ (such maps exist, since $\overline{\alpha^{+}}$and $\overline{\alpha^{-}}$ are simply connected by Lemma 2).

We 'glue' D_{1}, D_{2} along $\left[t_{1}, t_{2}\right]_{\alpha}$ and we obtain a disc D and a map $f: D \rightarrow X$ with $f(\partial D)=p_{1} \cup p_{2}$. More precisely, we consider the disc $D=D_{1} \sqcup D_{2} / \sim$, where \sim is defined as follows: $x_{1} \sim x_{2}$ if and only if $x_{1} \in \partial D_{1}, x_{2} \in$ ∂D_{2} and $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)$. Finally, we define $f: D \rightarrow X$ as:

$$
f(t)= \begin{cases}f_{1}(t), & \text { if } t \in D_{1}, \\ f_{2}(t), & \text { if } t \in D_{2} .\end{cases}
$$

Fig. 7.

Fig. 8.

By abuse of notation we identify points of $\left[t_{1}, t_{2}\right]_{\alpha}$ in D with their image under f. We note that the interior, say U, of D is homeomorphic to \mathbb{R}^{2} and since t, s are separated by $h \beta$ in X, it follows by Alexander's lemma that t, s are separated in U by a connected component of $f^{-1}(h \beta) \cap U$. We call this component K (Fig. 8).

Clearly $f(K)$ is a subarc of $h \beta$ that contains cross points or cross intervals of $h \beta$ with $[s, t]_{\alpha}$. Let c be such a cross point. Then we can write $f(K)$ as $f(K)=I_{1} \cup I_{2}$, where $I_{i}, i=1,2$, are (connected) subarcs of $h \beta$, such that $I_{1} \cap I_{2}=c$. Furthermore, at least one of I_{1}, I_{2} does not intersect $p_{1} \cup p_{2}$ (this is by our choice of h and c). It follows that at least one of $f^{-1}\left(I_{1}\right) \cap U, f^{-1}\left(I_{2}\right) \cap U$ is compact.

We set $I_{1}^{\prime}=I_{1} \backslash c, I_{2}^{\prime}=I_{2} \backslash c$. We will define two sets K_{1}, K_{2} such that the following are satisfied: K_{1}, K_{2} are closed subsets of U that contain $f^{-1}\left(I_{1}^{\prime}\right)$ and $f^{-1}\left(I_{2}^{\prime}\right)$, respectively, $K_{1} \cap K_{2}$ is connected contained in $f^{-1}(c)$ and $K_{1} \cup K_{2}=K$.

We consider the connected components of $f^{-1}(c) \cap K$. We remark that there is exactly one component of $f^{-1}(c) \cap$ K, say C, that intersects both D_{1} and D_{2}.

Let now C_{1} be a connected component of $f^{-1}(c) \cap K$ different from C and suppose that $C_{1} \subset D_{1}$. We consider the closure of K, \bar{K}, in $D_{1} \cup D_{2} . \bar{K}$ is connected thus the closure of the component of $\bar{K} \cap D_{1}$ containing C_{1} intersects ∂D_{1}. Indeed, we consider the set $\bar{K} \cap\left(D_{1}-\left[t_{1}, t_{2}\right]_{\alpha}\right)$ as an open subset of the continuum \bar{K}. Let K^{\prime} be the component of $\bar{K} \cap\left(D_{1}-\left[t_{1}, t_{2}\right]_{\alpha}\right)$ that contains C_{1}. We recall that if U is an open subset of a continuum and C is a component of U then the frontier of U contains a limit point of C (Theorem 2.16, p. 47 of [9]). It follows that the closure of K^{\prime} intersects $\left[t_{1}, t_{2}\right]_{\alpha}$.

Therefore, we have that $f\left(K^{\prime}\right) \subset \overline{\alpha^{+}}$so $f\left(K^{\prime}\right) \subset I_{1}$ or $f\left(K^{\prime}\right) \subset I_{2}$. We remark that if $f\left(K^{\prime}\right) \subset I_{1}$ then a nontrivial interval of I_{1} containing c lies in $\overline{\alpha^{+}}$.

We have a similar conclusion if $f\left(K^{\prime}\right) \subset I_{2}$. Therefore if a connected component of $f^{-1}(c) \cap K$ different from C lying in D_{1} intersects the closure of both $f^{-1}\left(I_{1}^{\prime}\right), f^{-1}\left(I_{2}^{\prime}\right)$ we have that an open interval of I_{1} around c lies in $\overline{\alpha^{+}}$. This is impossible since c is a cross point. We argue similarly for connected components of $f^{-1}(c) \cap K$ contained in D_{2}.

We conclude that the union of the components of $f^{-1}(c) \cap K$ which lie in D_{1}, intersect exactly one of $f^{-1}\left(I_{1}^{\prime}\right), f^{-1}\left(I_{2}^{\prime}\right)$. Clearly the same is true for the union of the components of $f^{-1}(c) \cap K$ contained in D_{2}. In particular, exactly one of the following two holds:
(1) If C_{1} is a connected component of $f^{-1}(c) \cap K$ different from C lying in D_{1} then the component of $D_{1} \cap K$ containing C_{1} intersects $f^{-1}\left(I_{1}^{\prime}\right)$, while if C_{1} lies in D_{2} the component of $D_{2} \cap K$ containing C_{1} intersects $f^{-1}\left(I_{2}^{\prime}\right)$.
(2) If C_{1} is a connected component of $f^{-1}(c) \cap K$ different from C lying in D_{1} then the component of $D_{1} \cap K$ containing C_{1} intersects $f^{-1}\left(I_{2}^{\prime}\right)$, while if C_{1} lies in D_{2} the component of $D_{2} \cap K$ containing C_{1} intersects $f^{-1}\left(I_{1}^{\prime}\right)$.

Assume that we are in the first case. Then we define K_{1} to be the union of the components of $f^{-1}(c) \cap K$ intersecting D_{1} together with $f^{-1}\left(I_{1}^{\prime}\right)$. We define K_{2} to be the union of the components of $f^{-1}(c) \cap K$ intersecting D_{2} together with $f^{-1}\left(I_{2}^{\prime}\right)$. It is clear that K_{1}, K_{2} are closed and that $K_{1} \cap K_{2}=C, K_{1} \cup K_{2}=K$. Since K is connected, K_{1}, K_{2} are connected too. We define K_{1}, K_{2} similarly in the second case.

We note now that at least one of K_{1}, K_{2} is compact subset of U, thus bounded in U. Since K separates s, t and K_{1}, K_{2} are closed subsets of D, applying Alexander's lemma for the plane we have that at least one of K_{1}, K_{2} separates s, t in U.

It follows that either $f^{-1}\left(I_{1}\right)$ or $f^{-1}\left(I_{2}\right)$ separates s, t. We remark that the same argument holds in the case c is replaced by a cross interval J : We have then that $I=I_{1} \cup I_{2}$ with $I_{1} \cap I_{2}=J$ and as before either $f^{-1}\left(I_{1}\right)$ or $f^{-1}\left(I_{2}\right)$ separate s, t in U. Now we can continue subdividing intervals along cross points (cross intervals) that lie in $[s, t]_{\alpha}$ as follows: Let us say that $f^{-1}\left(I_{1}\right)$ separates s, t. We have that there is a connected component of $f^{-1}\left(I_{1}\right)$, say M, that separates them. We note that $f(M)$ is a subinterval of I_{1} and if there is a cross point (or cross interval) of $[t, s]_{\alpha}, h \beta$ contained in its interior, we repeat the previous procedure replacing K by M. If not we have a contradiction. Therefore, either s, t are separated in U by the inverse image of an interval $f(K)$ of $h \beta$ which does not contain in its interior any cross point of $h \beta, \alpha$ lying in $[s, t]_{\alpha}$, or by iterating this procedure we conclude that the inverse images under f of intervals of $h \beta$ of arbitrarily small diameter separate s from t in U. It is clear that both are impossible, so the theorem is proven.

References

[1] R.D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. (2) 68 (1958) 1-16.
[2] M. Bonk, B. Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (9) (2005) 2491-2494.
[3] B.H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (2) (1998) 145-186.
[4] A. Dranishnikov, Asymptotic topology, Russian Math. Surv. 55 (6) (2000) 71-116.
[5] E.G. Effros, Transformation groups and C^{*}-algebras, Ann. of Math. (2) 81 (1965) 38-55.
[6] M. Gromov, Hyperbolic groups, in: S.M. Gersten (Ed.), Essays in Group Theory, in: MSRI Publ., vol. 8, Springer-Verlag, 1987, pp. 75-263.
[7] M. Gromov, Asymptotic invariants of infinite groups, in: G. Niblo, M. Roller (Eds.), Geometric Group Theory, in: LMS Lecture Notes, vol. 182, Cambridge Univ. Press, 1993.
[8] C.L. Hagopian, No homogeneous tree-like continuum contains an arc, Proc. Amer. Math. Soc. 88 (3) (1983) 560-564.
[9] J.G. Hocking, G.S. Young, Topology, Dover, 1961.
[10] P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (4) (1990) 1135-1142.
[11] P. Krupski, H. Patkowska, Menger curves in Peano continua, Colloq. Math. 70 (1) (1996) 79-86.
[12] M.H.A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, 1951.
[13] P. Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005) 759-830.
[14] J.R. Prajs, Homogeneous continua in Euclidean $(n+1)$-space which contain an n-cube are n-manifolds, Trans. Amer. Math. Soc. 318 (1) (1990) 143-148.
[15] J.R. Prajs, Thirty open problems in the theory of homogeneous continua, in: E. Pearl (Ed.), Problems from Topology Proceedings, Topology Atlas, 2003, pp. vi+216.

[^0]: Research co-funded by European Social Fund and National Resources EPEAEK II-Pythagoras.

 * Corresponding author.

 E-mail addresses: mirtok@math.uoa.gr (M. Kallipoliti), panos@math.uoa.gr (P. Papasoglu).

