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Upon infecting a host, viruses are confronted by a coordinated

and multi-faceted immune response. Indeed, evolutionary

combat between virus and host has contributed signally to the

host’s development of a formidable innate and adaptive

immune defense arsenal, and to the virus’ acquisition of

effective means to evade it. Cytotoxic T lymphocytes play a key

role in the elimination of virus-infected cells, which they detect

through recognition of virus-derived peptides displayed at the

cell surface in the context of MHC class I molecules. This highly

sensitive recognition system is a prime target for immune

evasion strategies deployed by many viruses, particularly large

DNA viruses such as herpesviruses and poxviruses. Elucidation

of the mode of action of the immune evasion proteins encoded

by these viruses has not only provided new insights into viral

pathogenesis, but has also led to the discovery of hitherto

unknown cell biological and immunological phenomena.

Moreover, viral immune evasion proteins constitute extremely

useful tools to block defined stages of the MHC class I

presentation pathway, not only for research purposes, but also

for clinical applications.
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Introduction
Cytotoxic T lymphocytes (CTLs) play an important role

in the elimination of virus-infected cells, which they

recognize through the detection of virus-derived peptides

presented at the cell surface by MHC class I (MHC I)

molecules. The viral peptides result from proteasomal

degradation of proteins in the cytosol and are translocated

Open access under the Elsevier OA license. 
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by the Transporter associated with Antigen Processing

(TAP) into the endoplasmic reticulum (ER), where they

are loaded onto newly synthesized MHC I molecules. As

an alternative to presentation of peptides derived from

endogenously synthesized proteins, specialized antigen

presenting cells, such as dendritic cells, may take up viral

proteins from their environment and present peptides

derived from those proteins to CTLs. This process of

presenting exogenous antigens via MHC I molecules is

known as cross-presentation; the routes by which exogen-

ous antigens reach MHC I molecules are poorly under-

stood. As will be discussed, viral inhibitors of antigen

presentation are powerful instruments to decipher the

routing of antigens in both direct and cross-presentation.

DNA viruses with a large genome coding capacity, such as

herpesviruses, have proven particularly adept at prevent-

ing CTL recognition through the actions of dedicated

immune evasion proteins. The family Herpesviridae,
which is divided into the subfamilies Alphaherpesvirinae,
Betaherpesvirinae, and Gammaherpesvirinae (whose mem-

bers are often referred to as alphaherpesviruses, betaher-

pesviruses, and gammaherpesviruses, respectively), is

estimated to have emerged roughly 400 million years

ago [1]. The long co-evolution of these viruses with their

host is believed to have contributed to extensive adap-

tation of these pathogens to their respective hosts.

The vast majority of the human population is infected

with one or more of the eight known human herpes-

viruses, namely herpes simplex viruses types 1 and 2

(HSV-1 and HSV-2), varicella-zoster virus (VZV), human

cytomegalovirus (HCMV), human herpesviruses 6 and 7

(HHV-6 and HHV-7), Epstein-Barr virus (EBV), and

Kaposi’s sarcoma-associated herpesvirus (KSHV) [2].

Herpesvirus infections usually cause only mild symp-

toms, but serious complications can arise, particularly

in immunocompromised individuals. In addition, HCMV

is the most common viral cause of congenital defects, and

EBV and KSHV are associated with the development of

several malignancies [3].

A hallmark of herpesviruses is their ability to establish

lifelong infections despite the presence of a powerful

immune response directed against these viruses. In

addition, re-infections of immune individuals may occur,

even by the same viral strain. These examples indicate

that herpesviruses have acquired powerful immune eva-

sion mechanisms. Evasion indeed occurs at multiple
www.sciencedirect.com
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levels, targeting both innate and adaptive branches of the

immune response. Herpesviruses have been found to

affect antiviral host responses by interfering with cyto-

kine and chemokine signaling [4], by impairing the

complement cascade [5], by preventing natural killer

cell-mediated recognition and elimination of infected

cells [6], and by inhibiting innate immune signaling by

pattern-recognition receptors, such as Toll-like receptors

and RIG-I-like receptors [7]. Furthermore, the past dec-

ades have witnessed the elucidation of diverse strategies

by which herpesviruses manipulate the host adaptive

immune response [8,9]. These include utilizing herpes-

virus-encoded Fc receptors to inhibit antibody-mediated

effector mechanisms [10] and subverting the MHC II [11]

and, particularly, the MHC I antigen processing and

presentation pathways.

Herpesviruses encode a wealth of proteins specifically

interfering with MHC I-restricted antigen presentation.

More recently, also poxviruses have been found to

actively evade MHC I-restricted CTLs through a series

of specialized gene products. The characteristics of these

immune evasion proteins, their deployment during evol-

utionary combat, their remarkably distinct mechanisms of

action, and their application as versatile tools in antigen

presentation studies are discussed in this review.

The MHC I antigen presentation pathway is a
prime target for viral immune evasion
Herpesvirus immune evasion strategies appear to target

each step of the MHC I presentation pathway (Figure 1).

The gammaherpesviruses EBV and KSHV encode the

latency-associated proteins EBNA1 and LANA, respect-

ively, which interfere with their own translation and with

their proteasomal degradation, thereby reducing the

generation of antigenic peptides [12,13,41]. Alphaherpes-

viruses and gammaherpesviruses express shutoff proteins

that block host protein synthesis, with new MHC I

molecules being among the host proteins that are affected

[14–18]. The Viral Inhibitor of Heavy Chain Expression

or VIHCE protein of rhesus CMV (RhCMV) specifically

inhibits the synthesis of MHC I heavy chains in a signal

peptide-dependent fashion through a yet enigmatic

mechanism [19�].

Levels of MHC I molecules are also targeted in a more

selective fashion, for example by the HCMV-encoded

proteins US2, US10, and US11 [20–22], mouse cytome-

galovirus (MCMV) glycoprotein (gp) 48, and murine

gammaherpesvirus 68 (MHV68) mK3, which accelerate

the degradation of MHC I molecules [8,9,23]. An alterna-

tive strategy to reduce display of peptide-presenting

MHC I complexes at the surface of infected cells involves

intracellular retention (by HCMV US3 and MCMV gp40)

or increased endocytosis (by KSHV kK3/kK5 and

EBV BILF1) [8,9,23]. At the cell surface, MCMV gp34

interferes with recognition of peptide-loaded MHC I
www.sciencedirect.com
complexes by cytotoxic T cells [23]. Finally, many her-

pesviruses encode proteins that specifically block ER

import of antigenic peptides by TAP. As will be discussed

below, this class of immune evasion proteins demon-

strates an unexpected diversity, both in structure and

mode of action. Recently, also cowpox virus has been

found to encode molecules specifically eluding MHC I-

restricted CTL recognition. The CPX V203 protein

interferes with intracellular trafficking of MHC I mol-

ecules by sequestering them in the ER [24��]. CPX V012

prevents peptide transport by TAP, thereby representing

the first TAP inhibitor outside the herpesvirus family

[25��,26��,27].

The expanding repertoire of viral evasion molecules not

only creates a valuable toolbox for immunological studies,

but also reveals new insights into normal functions of the

cell and the immune system in particular.

Viral immune evasion: lessons in immunology
and cell biology
Research into the mechanisms underlying viral evasion

strategies has led to the discovery of previously unknown

cellular processes. This is illustrated by the HCMV

proteins US2 and US11, which target MHC I molecules

for proteasomal degradation [20,21]. The MHC I heavy

chains (HC) are properly translocated into the ER, as

inferred from their N-linked glycosylation, but sub-

sequently are redirected to the cytosol, where they are

degraded through the ubiquitin–proteasome pathway.

The retrograde movement of the MHC I HC, termed

‘dislocation’ (as opposed to translocation), appears to

occur via a constitutive pathway in the cell that plays a

role in many important cellular processes, including

protein quality control, the release of proteins from the

ER in the context of the Unfolded Protein Response

(UPR) [28], and also antigen (cross-)presentation (dis-

cussed below). The US2 and US11-mediated dislocation

of MHC I HC serves as a paradigm of ER protein

dislocation and degradation and has facilitated the charac-

terization of many features of this process. These include

the involvement of the translocon or Sec61 complex as a

channel mediating transport of at least certain categories

of dislocation substrates [20], the role of the proteasome–
ubiquitin system, and the discovery of hitherto unknown

constituents of this protein degradation pathway, among

which the AAA ATPase p97, members of the derlin

family, and ER-resident ubiquitin E3 ligases [28,29].

Recent studies indicate that protein dislocation plays a

role in antigen presentation as well, allowing proteins to

migrate from intracellular compartments, such as phago-

somes, and the secretory pathway back to the cytosol,

where they are degraded into peptides by the proteasome

[30,31��,32��,33]. The peptides derived from dislocated

ER proteins are re-imported into the ER by TAP for

MHC I-restricted presentation. Additionally, TAP
Current Opinion in Immunology 2011, 23:96–103
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complexes are present in phagosomal compartments,

facilitating translocation of peptides into those compart-

ments for (cross-)presentation by MHC I molecules

[30,31��,34��]. In a number of studies, dislocation of

proteins was found to involve the Sec61 complex, analo-

gous to HCMV US2 and US11-mediated retrotransloca-

tion of MHC I HC [30,31��,33].

The role of the dislocation pathway in antigen processing

is further illustrated by tyrosinase, a melanocyte differ-

entiation protein that is a target for melanoma-reactive T

cells [35]. Glycoproteins that are dislocated from the ER

back to the cytosol lose their N-linked glycans in a

reaction that is catalyzed by a cytoplasmic N-glycanase.

This deglycosylation involves the deamidation of aspar-

agines, changing these amino acids into aspartic acid. The

presence of an aspartic acid residue within a T cell

epitope of tyrosinase at a position where the native

protein carries an asparagine residue witnesses the invol-

vement of the cytosolic N-glycanase, and thus ER-to-

cytosol dislocation, as an essential step in the processing

of this particular epitope [36]. Deamidation has been

found for several other T cell epitopes, including epitopes

derived from HIV-1 env, hepatitis C virus E1, and lym-

phocytic choriomeningitis virus (LCMV) GP1 [36],

suggesting a wide role for protein dislocation in antigen

presentation.

Another important cellular process that is manipulated by

viruses in many ways is the ubiquitin system. Herpes-

viruses code for E3 ubiquitin ligases, such as HSV ICP0,

KSHV kK3 and kK5, and MHV68 mK3, but also for

numerous de-ubiquitinating enzymes. The intriguing

interplay between viruses and the ubiquitin system has

been reviewed by Isaacson and Ploegh [37]. An example

of an interesting, novel phenomenon discovered in the

context of herpesvirus immune evasion pertains to ubi-

quitin conjugation by the E3 ligases mK3 and kK3/kK5 of

MHV68 and KSHV, respectively. These proteins catalyze

the ubiquitination of cytoplasmic domains of MHC I HC,

resulting in the proteasomal degradation (in case of

MHV68) or endocytosis (in case of KSHV) of MHC I

molecules [8]. When the amino acid residues that are

ubiquitinated were identified within the MHC I HC, it

was found that in addition to the common ubiquitin

acceptor lysine, also cysteine, serine, and threonine resi-

dues were ubiquitinated [38��,39��,40�]. These findings

implicate a novel chemical mechanism of substrate ubi-

quitination via ester linkages. Most probably, cysteine,

serine, and threonine ubiquitination is used more widely

by the cell. The functional implications of this particular

type of conjugation are yet to be determined.

Viral immune evasion proteins: valuable tools
in antigen presentation studies
EBV EBNA1 and KSHV LANA carry large repeats of

glycine-alanine and serine-proline residues, respectively,
www.sciencedirect.com
that hamper proteasomal degradation of these viral gene

products [13,41]. When transferred to other proteins, the

repeats effectively block degradation of these proteins in
cis. Thus, they can be used to inhibit the first stage of the

MHC I presentation pathway, namely the generation of

antigenic peptides by proteasomes [41,42]. EBNA1 has

also been instrumental in uncovering the role of autop-

hagy in antigen presentation. Using EBNA1 as a model

antigen, autophagy was found to allow MHC II-mediated

presentation of peptides derived from a nuclear or cyto-

solic protein [43��,44��].

Herpesvirus-encoded TAP inhibitors have been particu-

larly useful in cross-presentation studies aiming to unra-

vel the routes by which exogenous antigens are loaded

onto MHC I molecules. A 35-residue peptide encom-

passing the TAP-inhibiting domain of HSV ICP47 has

been shown to be endocytosed and to subsequently block

TAP function [31��]. Since ICP47 interferes with the

binding of peptides to cytosolic domains of TAP, this

finding implies that extracellular proteins can reach the

cytosol of cells, possibly via the Sec61 dislocation pathway

(discussed above) [30,45]. The ICP47 peptide inhibits

both direct and cross-presentation, implicating the invol-

vement of TAP in cross-presentation.

HCMV US6 inhibits TAP by interacting with ER-luminal

domains of TAP. Exposure of DCs to a soluble form of

US6 completely abrogates cross-presentation, confirming

the essential role for TAP in cross-presentation [34��,46].

At the same time, these experiments show the existence

of a connection between the extracellular milieu and

TAP-containing compartments and illustrate the contri-

bution of phagosomes and pinosomes to presentation of

exogenous antigens by DCs. Selective deposition of US6

into early endosomes using a US6-transferrin fusion

protein identified these endosomes as loading compart-

ments for cross-presented peptides derived from soluble

antigens [32��].

The herpesvirus-encoded TAP inhibitors each act in a

unique way, targeting different stages of the peptide

translocation cycle (summarized in Table 1). ICP47

and EBV-encoded BNLF2a block binding of substrates

to the cytosolic peptide binding site of TAP; US6,

BNLF2a, and the UL49.5 proteins of equine herpesvirus

1 and 4 affect the association of ATP with the nucleotide

binding domains of TAP; US6 and the UL49.5 proteins of

all TAP-inhibiting varicelloviruses interfere with confor-

mational transitions required for translocation of peptides

over the ER membrane, and UL49.5 of bovine herpes-

virus 1 and related ruminant varicelloviruses target TAP

for proteasomal degradation [47–54,55�]. Recently, the

cowpox protein CPX V012 was identified as a TAP

inhibitor [25��,26��]. The mechanism by which this

protein blocks TAP-mediated peptide transport has not

yet been resolved.
Current Opinion in Immunology 2011, 23:96–103
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Table 1

Comparison of the mechanisms by which virus-encoded proteins specifically interfere with TAP-mediated peptide transport

Virus Inhibitor Structural features Mechanism of TAP inhibition Refs.

HSV-1/2 ICP47 Cytosolic protein Interference with peptide binding [47,48]

BHV-1 UL49.5 Type I membrane protein Conformational alterations and degradation of TAP1/2 [54,55�]

EHV-1/4 UL49.5 Type I membrane protein Conformational alterations and interference with ATP binding [54,55�]

PRV UL49.5 Type I membrane protein Conformational alterations [54,55�]

HCMV US6 Type I membrane protein Conformational alterations and interference with ATP binding [49–51]

EBV BNLF2a Tail-anchored protein Interference with ATP and peptide binding [52,53]

CPX V012 Type II membrane protein Unknown [25��,26��]
The viral TAP inhibitors can be used to block the peptide

translocation cycle at different stages and therefore are

valuable tools to study the molecular biophysics of pep-

tide translocation by TAP. In addition, viral TAP inhibi-

tors may be used to freeze TAP at intermediate stages of

the translocation cycle, which may be informative when

resolving the crystal structure of the peptide transporter

[56,57]. Elucidation of the molecular mechanisms under-

lying viral TAP inhibition will facilitate the use of TAP

inhibitors for selective immune suppression in the con-

text of, for example, auto-immune diseases and tissue and

organ transplantation. In addition, this knowledge may

aid the development of substances blocking other ABC

transporters, for example those responsible for multiple

drug resistance in bacterial and cancer cells.

In vivo implications of viral stealth technology
Recently, several interesting studies have highlighted the

importance of viral immune evasion mechanisms in the

life cycle of viruses in vivo. In addition, animal studies

have been initiated to explore the applications of viral

immune evasion proteins for the rational design of novel

strategies for vaccine development, cancer treatment,

transplant protection, and gene therapy.

Using RhCMV as a model, Hansen et al. have shown that

the evasion molecules encoded by the US region of this

virus (e.g. US2, US3, US6, and US11) are dispensable for

primary infection and persistence of the virus, but are

essential for superinfection of a CMV-immune host

[58��]. The in vivo relevance of viral T cell immune

evasion proteins has been demonstrated for two other

viruses as well, namely cowpox virus and MHV68. An

elegant study by Byun and colleagues demonstrated the

biological function of two cowpox virus-encoded inhibi-

tors of MHC I-restricted antigen presentation, CPX V012

and CPX V203 [25��]. Deletion of the genes encoding

these evasion proteins restored MHC I surface expression

and T cell stimulation in vitro and reduced virulence in

mice, thus demonstrating the significance of these

immune evasion proteins in one of the virus’ natural host

species. For MHV68, deletion of the MHC I inhibitor

mK3 increased CTL responses to lytic viral proteins,

without major effects on viral replication. By contrast,

removal of mK3 resulted in decreased latent viral loads,
Current Opinion in Immunology 2011, 23:96–103
suggesting a role for immune evasion in amplifying the

latent reservoir for this herpesvirus [59].

The capacity of herpesviruses to superinfect immune

hosts, and to induce and maintain strong T cell immunity

makes these viruses promising vaccine vectors. The

potential of this approach has been demonstrated in a

landmark study by Hansen et al., who used RhCMV as a

carrier virus for immunization against simian immunode-

ficiency virus infection [60��].

Alternative applications of viral stealth technology in the

fields of transplant protection and cancer therapy have

been reviewed by Horst et al. [61]. An interesting

example is the use of viral TAP inhibitors to induce T

cells recognizing an alternative peptide repertoire carried

by tumor cells with antigen processing defects [62��].
MHC I molecules of tumor cells with deficiencies in the

MHC I presentation pathway carry a repertoire of sub-

dominant T cell epitopes, named T cell Epitopes associ-

ated with Impaired Peptide Processing (TEIPP). T cells

directed against TEIPP can be selected in vitro using

antigen presenting cells expressing viral TAP inhibitors

such as the bovine herpesvirus 1 UL49.5 protein. These

TEIPP-specific T cells protect mice against the out-

growth of TAP-deficient lymphomas and fibrosarcomas

[63�].

Viral stealth technology also holds promise in gene

therapy, providing tools to improve the survival of cells

expressing a transgene, which often represents a neo-

antigen (reviewed by Horst et al.) [61].

Conclusions
Large DNA viruses, such as herpesviruses and pox-

viruses, dedicate a considerable part of their genome to

immune evasion. The MHC I antigen processing and

presentation pathway appears to be a prime target for viral

evasion, illustrating the evolutionary pressure exerted by

CD8+ CTLs during co-evolution of these viruses with

their hosts. Viral immune evasion proteins target virtually

every step in the MHC I pathway and therefore constitute

powerful tools for antigen processing and presentation

research. The power of this approach has been demon-

strated in studies in which TAP inhibitors have been used
www.sciencedirect.com
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to uncover important, basic features of cross-presentation.

Elucidation of the mechanisms underlying viral immune

evasion strategies reveals essential, hitherto unknown cell

biological and immunological processes that have been

discovered by viruses as effective targets for immune

evasion millions of years ago.
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