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a b s t r a c t

This paper focuses on the study of cyclic job-shop problems with transportation and
blocking. Within this domain, there are many real world problems like large scale
productions, robotic cells, software pipelining or hoist scheduling. The aim in general is to
find, for each machine, a feasible order of all the operations processed on this machine,
so that an objective function is optimised. In this paper, we consider the problem of
minimising the cycle time (maximising the throughput) in a job-shop environment, where
the jobs are transported by a single robot between the machines. Additionally to the
problem description, we will give some explanations and interpretation possibilities of the
problem height, which is often omitted in the literature. As the main contribution, we will
present a new integer programming formulation and show that it outperforms an existing
model from the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and problem definition

The classical job-shop problem is known as a standard problem in scheduling and has been widely investigated over the
last few decades. However, in practice, scheduling problems often cannot be modelled as a classical job-shop problem since
other real world constraints usually have amajor influence. This is especially the case in industrial production environments
where aspects such as material handling, storage space and machine setup times have to be taken into account.

The problem studied in this paper is a cyclic job-shop problemwith one transport robot and blocking (CJSPT) and can be
formulated as follows.We are given a set of N jobs J1, J2, . . . , JN . Each job Jj consists of a set of nj operations which have to be
processed in a prescribed order (precedence constraints). To simplify the notation, we consecutively number all operations
in the form i = 1, 2, . . . , nwith n =

N
j=1 nj. This means, that the operations 1, . . . , n1 belong to job J1, n1 +1, . . . , n1 +n2

belong to J2, and so on. The set of all operations is denoted by Ω . Let J(i) be the job operation i ∈ Ω belongs to and let
pre(i) ∈ Ω (respectively suc(i)) be the preceding (respectively succeeding) operation of i according to the precedence
constraints. Furthermore,we assume that preemption is not allowed. Thepredecessor of the first operation and the successor
of the last operation of every job are always dummy operations with processing times equal to 0.

Every operation has to be processed on one specified machine out of m machines M1, . . . ,Mm. The machine, operation
i ∈ Ω will be processed on, is denoted by M(i). If two succeeding operations of the same job are processed on the same
machine, we simply combine those two operations into one. Also, each machine has no buffer and can only process one
operation at a time. Furthermore, let pmin

i > 0 be the minimum processing time of operation i ∈ Ω and pi the ‘‘actual’’ time
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a job stays on a machine (e.g. because of waiting until the next machine is ready). Moreover, there is an input station M0
that stores the unprocessed jobs and an output stationM⋆ that stores the finished jobs. Both stations have infinite buffers.

In modern fully automated processing lines, a single transport robot is in charge of carrying the jobs between the
machines. If operation pre(i) has finished its processing on a machine, then the robot has to unload the job, transport it
to its next machine M(i) and load the job onto that machine. This transport move is denoted by τi and the time needed to
execute this task by ti. For the last operation of any job Jj, we introduce a transport move τ⋆j that unloads the completed
job off its last machine and transports it to the output station, M⋆. The union of all operations i ∈ Ω and those successor
dummy operations of the last operations {⋆1, . . . , ⋆N

} is denoted by Ω⋆. If the robot, after loading a job onto machineM(i),
is not waiting for this job, but moving empty to another machine M(j) to unload a different job, then this empty moving
time is denoted by eM(i)M(j) or simply eij. We assume that the triangle inequality eij + ejk ≥ eik holds for the empty moving
times between any three machines M(i),M(j) and M(k). The empty moving time between the same machine is eij = 0 for
M(i) = M(j). Note that a transportmove and an emptymove between the same twomachines do not need to have the same
duration. Since a transport time ti also includes the loading and unloading process of the job it usually holds that ti > epre(i),i.

In a cyclic scheduling problem, all jobs are processed indefinitely often. Since the output of the finished jobs should
usually be spread evenly we only plan a minimal part set (MPS) of all jobs and repeat this production schedule all the time.
The time difference between the starting times Si of two succeeding repetitions of the same operation i is called the cycle
time. We call a schedule cyclic, with cycle time α ≥ 0, if for each operation i the following holds. For every α time units,
after a repetition of i has been started, the next repetition of i starts its processing. This means that the time between two
consecutive processings of the same operation is α. To distinguish between the different repetitions of each operation we
denote the starting time of the r-th repetition ⟨i, r⟩ of operation i ∈ Ω⋆ by Si(r) where r ∈ Z is called the repetition number.
A schedule S can be represented by a vector S = (Si(ri)) including the starting times of each operation and their repetition
numbers in an arbitrary time interval of length α (cycle). That means every operation starts and finishes exactly once in each
cycle. The difference between cyclic schedules and non-cyclic ones is that an operation that starts in one cycle can finish in
the next cycle.We call such an operation overlapping since it overlaps into the next cycle. The final schedule usually becomes
more compact compared to the non-cyclic solution (cf. a more detailed exemplification in Example 1.1).

Formalising the previous description, a schedule is called cyclic with cycle time α ≥ 0 if

Si(r) = Si(0) + αr, (1.1)

for all i ∈ Ω⋆, r ∈ Z. Note that there are indefinitely many schedules that have the same cycle time, but different starting
times for the operations. For a given cyclic schedule S, another schedule S ′ can be obtained by setting S ′

i = Si + ε mod α
for all i ∈ Ω⋆ and ε ∈ R. Hence, we assume without loss of generality that a cycle starts with the dummy start operation at
time 0:

S0(0) = 0 (1.2)
S1(0) = t1. (1.3)

Note that this constraint also implies that at the end of the cycle, the last move the robot executes is driving empty to the
input station M0 to be ready for unloading another instance of J1. Additionally, we assume that a job immediately starts its
processing after it has been loaded onto a machine. This convention is called the no-wait constraint and can be formulated
as

Si(r) + pi + tsuc(i) = Ssuc(i)(r), (1.4)

for all i ∈ Ω; r ∈ Z. For the actual processing time pi, which corresponds to the duration a job stays at a machine it holds
that

pmin
i ≤ pi, (1.5)

for all i ∈ Ω . Constraints (1.4) and (1.5) also ensure that an operation has to be processed at least for its minimal processing
time before its succeeding operation can start.

We also postulate that the (r + 1)-th repetition of operation i ∈ Ω cannot start before the r-th repetition of it has
been finished and transported to the next machineM(suc(i)). After that, the robot has to move toM(pre(i)) and repeat the
transport move τi. Therefore, we get the following constraint:

Ssuc(i)(r) + esuc(i),pre(i) + ti ≤ Si(r + 1), (1.6)

for all i ∈ Ω, r ∈ Z. For i ∈ {⋆1, . . . , ⋆N
} constraint (1.6) changes to

Si(r) + ei,pre(i) + ti ≤ Si(r + 1), (1.7)

for all r ∈ Z.
Now consider two operations i, jwithM(i) ≠ M(j). As there exists no storage at the machines, operation j can only start

its processing after J(j) has been loaded onto the machine. If i starts its processing immediately before j, the robot has to
finish the loading of job J(i), drive empty to the machine on which the predecessor pre(j) of operation j is processed, unload
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(a) Constraints (1.8). (b) Constraints (1.9).

Fig. 1. Examples for constraints (1.8) and (1.9).

the job, transport it toM(j) and load it onto that machine. Depending on the order of processing the ri-th repetition of i and
the rj-th repetition of j, we have

Si(ri) + ei,pre(j) + tj ≤ Sj(rj)
or Sj(rj) + ej,pre(i) + ti ≤ Si(ri),

(1.8)

for all i, j ∈ Ω⋆ and ri, rj ∈ Z with M(i) ≠ M(j).
For two operations i, j ∈ Ω that have to be processed on the same machine M(i) = M(j) we have to decide which job

has to be processed first on the machine. Let us assume that i will be processed before j. Because of the blocking situation
it follows, that after the processing of J(i) has been finished the robot first has to transport J(i) to the next machine before
it can drive empty to M(pre(j)) to transport J(j) to M(j). Otherwise, M(i) would be blocked by J(i) and we would have a
deadlock situation. Therefore, one of the following constraints must hold:

Ssuc(i)(ri) + esuc(i),pre(j) + tj ≤ Sj(rj)
or Ssuc(j)(rj) + esuc(j),pre(i) + ti ≤ Si(ri),

(1.9)

for all i, j ∈ Ω and ri, rj ∈ Z with i ≠ j; M(i) = M(j). Fig. 1 shows some examples of how the last two constraints can be
interpreted.

We briefly want to recall, why constraints (1.1)–(1.9) are not just necessary but also sufficient to define our problem.
The question is, if a schedule, that fulfils these constraints is also a feasible one. First of all, the minimal processing and
transportation times have to maintained. The processing times are trivially fulfilled by (1.4) and (1.5). The robot also has
always sufficient time to drive to a machine, pick up a job and transport it to its next machine, and a job does not start
before it has been transported to its machine. This is given by constraints (1.8) and (1.9). The latter one also ensures, that a
machine is always free before another job will be loaded onto it, so no two jobs can overlap. Finally, it is not possible to miss
out a repetition of a job, since (1.6) and (1.7) are satisfied.

In addition to the cycle time α, another important value of a cyclic job-shop problem is the flow time of a job. It is defined
as the time it takes to process a specific instance of a job, from the start of its first operation until the end of its last operation.
In general, the cycle time and the flow time are negatively correlated. That means, a smaller cycle time tends to lead to a
larger flow time and vice versa. In practice, the flow time is a substantial measure. This is especially the case if there are
deadlines on the costumers side where a specific instance of a job has to be finished by a certain due date. The variable
which builds the connection between the flow time and the cycle time is the height hj of job Jj. It is defined as the number
of cycles that a specific instance of a job will stay in the system from start to finish. For a non-cyclic problem, in which
minimising the cycle time is equivalent to minimising the makespan, the height for every job would be 1, since there only
is one instance of each job that has to be processed. If a specific instance of job Ji has started its processing in the r-th cycle
then it will be finished in cycle r + hj − 1. The value hj − 1 is also the number of overlapping operations job Jj has. For every
overlapping operation the job instances enter another cycle. If the height is 1 then the job starts and finishes in the same
cycle, which means it has no overlapping operation. At the same time, the height is the number of different repetitions of
operations belonging to the same job Jj in one cycle. Since an overlapping operation starts in a cycle but finishes in the next
one, the previous repetition of this operation must finish in the current cycle.

The maximum of all those heights h = maxJj∈J{hj} builds the overall height of the problem. Note that the height of a job
is at least 1 and cannot be larger than the number of its operations, so 1 ≤ hj ≤ nj (cf. constraints (1.6), (1.7)).

To keep the production more flexible in practice, the height is limited to a maximum value. This limitation also has a
strong influence on the number of possible cyclic schedules. There are three main types of models in the literature. They
differ in the definition of when a new instance of a job is allowed to start its processing in the current cycle. One, that has
been introduced in [3], is called the cyclic job-shop problem with job repetition. In this model it holds that the (r + h)-th
repetition of a job can only start after the r-th occurrence of the last operation of the job has been finished. The secondmodel
is the called cyclic job-shop problemwithmachine repetition. It was introduced first by Hitz [12]. Here, the height is defined
per machine. It holds that there cannot be more then h different repetitions of operations on each machine in a cycle. The
model and a corresponding MIP formulation that we will present in the next chapter is derived from Hanen [10] and is also
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Fig. 2. Gantt-charts for Example 1.1.

used in [3]. Within this model, the height limits the number of different repetitions of all jobs in the same cycle. That means
the r-th repetition of every job has to be finished before the (r + h)-th repetition of any other job can start. Therefore, it
holds that

S⋆j(r) + e⋆j,0 ≤ S0(r + h), (1.10)

for all j ∈ {1, . . . ,N}. Note that the h value has to be given in advance.
The aim now is to minimise the cycle time α so that all constraints (1.1)–(1.10) are satisfied.
To communicate a better understanding of cyclic schedules and especially the influence of the height we briefly present

a short example.

Example 1.1. Consider a cyclic job-shop problemwithN = 2 jobs andm = 2machines. Both jobs consist of two operations.
The processing times and the machine allocations are given in the following table.

Job J1 J2
Operation 1 2 3 4
Processing
time

13 8 10 8

Machine M1 M2 M1 M2

Additionally, we have one transport robot. The transport time for each operation is equal to 2 and empty moving times
between any two machines is 1. By setting the height h⋆◦ to 1, the minimal cycle time is α = 43. Increasing the height to 2,
the cycle time decreases to α = 33. Possible schedules for these solutions can be found in Fig. 2. In the second Gantt chart
operation 4 is an example for an overlapping operation. The second repetition of it starts at time 32 in the first shown cycle
and finishes at time 40 in the following cycle. As you can see the first repetition of operation 4 also overlaps and finishes in
the first cycle but has started in the previous one that is not shown.

Cyclic scheduling problems have, in addition to mass production in flexible manufacturing systems, other applications,
like compilation of loops for parallel computers, hoist routing in electroplating facilities, the design of embedded
architectures or network scheduling. Different models have been proposed to handle those kinds of problem. Trouillet
et al. [19] and Chrétienne [6] investigated the use of petri netswhereas Baccelli et al. [1] and Cohen et al. [7] appliedMax-plus
algebras to the problem. Probably the most common approach, and also the one we will apply in this paper, is modelling
the problem using graphs (cf. [14,11]). A good overview on cyclic scheduling can be found in [17].

For the general cyclic job-shop problem with blocking Brucker and Kampmeyer [5] developed a tabu search algorithm
and presented computational results. The same problem with an additional no-wait constraint is studied by Hall and
Sriskandarajah [9]. Kamoun and Sriskandarajah [13] review algorithmic and complexity issues for this problem. In [18], an
exact method for the special case with only one single job is presented. McCormick et al. [15] considered the problem with
blocking constraints and limited buffers where blocking occurs when buffers are full. They propose heuristic approaches to
this problem based on an equivalent maximum flow problem and critical path techniques.

This paper is structured as follows. In the next section, wewill adapt a formulation from the literature tomodel the CJSPT
and prove that it is equivalent to the definition provided in this section. After that, in Section 3, we characterise the layout
of cyclic schedules and present a new more tailored integer programming formulation for the CJSPT based on overlapping
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operations in a cycle. Both formulations are compared against each other to solve several different sized instances using
CPLEX. The computational results are shown in Section 4. The aim of the paper is to not just to present a better linear
programming formulation but to give a new idea of modelling cyclic scheduling problems.

2. A mixed integer programming model from the literature

Since integer programming software (such as CPLEX or Gurobi) is becomingmore andmore powerful to solve reasonably
large problem instances it is useful to have integer programming formulations for a problem. The following formulation is
based on the work of Hanen [10] and Brucker and Kampmeyer [4]. We used their ideas to model the cyclic disjunctive cyclic
constraints and reformulated our problem definition from Section 1 with it.

Theorem 2.1. By setting Si := Si(0) problem (1.1)–(1.10) can be reformulated to the following mixed integer linear program.

minα (2.1)

s.t.

S0 = 0 (2.2)

S1 = t1 (2.3)

Si + pi + tsuc(i) = Ssuc(i) i ∈ Ω (2.4)

pmin
i ≤ pi i ∈ Ω (2.5)

Si + ei,pre(j) + tj ≤ Sj + αHXij i, j ∈ Ω⋆
; i ≠ j; M(i) ≠ M(j) (2.6)

HXij + HXji = 1 i, j ∈ Ω⋆
; i ≠ j; M(i) ≠ M(j) (2.7)

Si + pi + tsuc(i) + esuc(i),pre(j) + tj ≤ Sj + αHXsuc(i)j i, j ∈ Ω; i ≠ j; M(i) = M(j) (2.8)

HXsuc(i)j + HXsuc(j)i = 1 i, j ∈ Ω; i ≠ j; M(i) = M(j) (2.9)

HXij ∈ Z i, j ∈ Ω⋆
; i ≠ j (2.10)

ei,pre(i) + ti ≤ α i ∈ Ω⋆
\ Ω (2.11)

pi + tsuc(i) + esuc(i),pre(i) + ti ≤ α i ∈ Ω (2.12)

S⋆j + e⋆j,0 ≤ S0 + αh j ∈ {1, . . . ,N}. (2.13)

Proof. First of all, we substitute Si(r) for all i ∈ Ω⋆ according to constraint (1.1) in (1.4)–(1.10). Therefore, (2.4) and (2.13)
are equivalent to (1.4) and (1.10).

Constraints (2.6)–(2.9) are of the same structure and we are only going to prove that (2.6), (2.7) and (2.10) are equivalent
to constraint (1.1) and (1.8). Applying the substitution described above to constraint (1.8) we get

Si + αri + ei,pre(j) + tj ≤ Sj + αrj
or Sj + αrj + ej,pre(i) + ti ≤ Si + αri,

which is equivalent to

Sj − Si ≥ α(ri − rj) + ei,pre(j) + tj
or Sj − Si ≤ α(ri − rj) − ej,pre(i) − ti,

for i, j ∈ Ω⋆, i ≠ j, M(i) ≠ M(j) and ri, rj ∈ Z. By setting h′
:= ri − rj it follows that Sj − Si cannot be included in any of the

intervals

]αh′
− ej,pre(i) − ti, αh′

+ ei,pre(j) + tj[

for any h′
∈ Z. The following graphic shows this relation.



P. Brucker et al. / Discrete Applied Mathematics 160 (2012) 1924–1935 1929

Hence, there exists a h∗
∈ Z with

Sj − Si ∈ [−αh∗
+ ei,pre(j) + tj, −α(h∗

− 1) − ej,pre(i) − ti],

which means that

Si + ei,pre(j) + tj ≤ Sj + αh∗

and Sj + ej,pre(i) + ti ≤ Si + α(1 − h∗).

By settingHXij = h∗ andHXji = 1−h∗ this is equivalent to (2.6), (2.7) and (2.10). Analogously, one can show that constraints
(1.4) and (1.9) are equivalent to (2.4) and (2.8)–(2.10).

Finally, constraints (1.7) are, after substitution of Si(r) and Si(r + 1), equivalent to (2.11) and (2.12), (2.4) are equivalent
to (1.4)–(1.6). �

In this linear program the integer variablesHXij restrict the job sequence on eachmachine and on the robot. In particular,
Si(r) starts before Sj(r) iffHXij < HXji. Formore details about the interpretation of those values, we refer to Groenemeyer [8].

As a result of the linear program,weget theminimal cycle timeα and feasible starting times Si(0) for every operation ⟨i, 0⟩
with i ∈ Ω⋆. Note, that these values do not necessarily have to be included in the interval [0, α] since not all operations of a
specific job instance have to start in the same cycle. However, constraint (2.13) ensures that all starting times are included
in the interval [0, αh]. Together with constraints (2.6)–(2.10) this also implies that HXij ≤ h for all i, j ∈ Ω⋆. To get the
starting times of each operation in the first considered cycle [0, α] we calculate the remainder of the division Si/α for all
i ∈ Ω⋆ and thus, shift every operation in the first cycle. Note, that the repetition number of such an operation will change
due to such a shift. An obvious question one can ask is, if an operation might clash with another operation on the same
machine by shifting it in an earlier cycle and the same question could be asked for the robot moves. Or, in other words: Is
the cycle length α large enough to process all operations once? (Note that neither (2.11) nor (2.12) are sufficient to bound
theminimal cycle length.) Recalling the equivalence shown in Theorem 2.1 we know that a solution of theMIPmodel is also
fulfilling constraints (1.1)–(1.10). The constraints guaranteeing that such a clash cannot happen are (1.1), (1.8) and (1.9).
(The corresponding constraints in the MIP model are (2.6)–(2.10).) Each operation starts every α time units and therefore in
every cycle at the same position. Constraints (1.9) define the order of any two operations processed on the same machine
and ensure that they will not clash and (1.8) does the same for the robot moves.

After solving the linear program and calculating the starting time of each operation in a specific cycle, the repetition
number for each starting time in the resulting schedule can be obtained as follows. For every job Jj, we start with its last
operation i = ⋆j and assign it an arbitrary repetition number ri = r . If the starting time of the predecessor pre(i) is smaller
than the starting time of i (Spre(i) ≤ Si) then both operationsmust belong to the same instance of Ji and therefore get the same
repetition number. If not, the actual predecessor of i must have started in the previous cycle. Hence, we set rpre(i) = ri + 1.
We continue until the first operation of Jj is assigned a repetition number. The procedure is then repeated for the remaining
jobs.

By nature formulation (2.1)–(2.13) is not linear since constraints (2.6) and (2.8) are quadratic. However, it can be rewritten
by dividing constraints (2.4), (2.6) and (2.8) by α. One can afterwards substitute 1/α = ᾱ, Si/α = S̄i and pi/α = p̄i and
change the objective to maximise ᾱ.

3. A newmixed integer programming model

In this section, we will present a new formulation for the CJSPT that is more tailored to the problem compared to
the model in the previous section. The major difference between cyclic and non-cyclic problems is that the precedence
constraints between the operations are slightly relaxed. So, in a specific cycle operation i, does not have to be scheduled
before its successor suc(i). In this case, the precedence constraints are, of course, not violated since both operations must
belong to different repetitions of J(i), but they provide a more flexible layout of the schedule. This property is due to the
fact that operations are allowed to start in one cycle and finish in the next one. Those operations were called overlapping
operations. Fig. 3 shows parts of two repetitions of a cycle in a cyclic schedule where i is an overlapping operation. To model
overlapping operations, we introduce a set of binary variables γi with i ∈ Ω⋆ which are defined as

γi =


1, if i is overlapping;
0, else.

Remember that the number of overlapping operations of a specific job Jj is equal to hj − 1, and this is limited by the
overall height h. The number of overlapping operations per job has to be less than h − 1, which leads to

i∈Jj

γi ≤ h − 1, (3.1)

for all j = 1, . . . ,N . The main idea behind this model is to specify the relations between operations in the same cycle rather
than looking ahead into the next one. As before, wemake the assumption that we start the cycle at machineM0 with loading
operation i = 0 at time 0. Furthermore, at the end of the cycle, the robot has to drive back to the input machine. Since we
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Fig. 3. Example of an overlapping operation i.

are only concentrating on all operations in one specific cycle, we can ignore the repetition numbers. Hence, the following
constraints must hold:

S0 = 0, (3.2)
S1 = t1, (3.3)
Si + ei0 ≤ α, (3.4)

for all i ∈ Ω⋆. To ensure that the precedence constraints, (1.4) and (1.5) hold, we have to distinguish between overlapping
and non-overlapping operations. For the non-overlapping case, it still holds that Si+pmin

i +tsuc(i) ≤ Ssuc(i). For the overlapping
case, we have Si + pmin

i + tsuc(i) ≤ Ssuc(i) + α. Both cases can be combined in the following constraint:

Si + pmin
i + tsuc(i) ≤ Ssuc(i) + αγi.

If i is not overlapping, then γi = 0 and αγi disappears. Since this is not a linear constraint we can split it up into the following
two constraints:

Si + pmin
i + tsuc(i) ≤ Ssuc(i) + Cγi, (3.5)

Si + pmin
i + tsuc(i) ≤ Ssuc(i) + α, (3.6)

for all i ∈ Ω and where C ∈ N is a sufficiently large constant.
The constraints for the transportation of each job can bemodelled in a very similar way to the ones in the previousmodel.

Therefore, we introduce a set of binary variables θij with i, j ∈ Ω⋆ which are defined as

θij =


1, if i is transported after j;
0, else.

The robot constraints (1.8) can then be formulated as

Si + ei,pre(j) + tj ≤ Sj + Cθij, (3.7)

θij + θji = 1, (3.8)

for all i, j ∈ Ω⋆ and where C ∈ N again is a sufficiently large constant. Note that these constraints are logically identical to
constraints (2.6) and (2.7). Another fact is that a transport move itself will never overlap. This is because we assume that the
cycle starts with unloading a job from the input machine and that the cycle finishes with the robot arriving empty at the
input machine.

Finally, we will formulate the blocking constraints for operations that have to go on the same machine. We again
introduce a set of binary variables βij with i, j ∈ Ω⋆ which define the processing order of the jobs on the same machine
in the current cycle:

βij =


0, if j is processed after i onM(i) = M(j);
1, else

for all i, j ∈ Ω with M(i) = M(j).
A first set of constraints is similar to constraints (2.6) and (2.7) and ensures that an operation cannot start its processing

before the previous job on the same machine has been transported to its succeeding one:

Ssuc(i) + esuc(i)pre(j) + tj ≤ Sj + Cβij, (3.9)

βij + βji = 1, (3.10)

for all i, j ∈ Ω with M(i) = M(j). Considering only one specific cycle, makes it more difficult to deal with overlapping
operations. Beforewe start to tackle this problem, it isworthmentioning that there can be atmost one overlapping operation
on eachmachine and this operation always has to be loaded first off and last onto themachine in the cycle. Such an operation
ihas twoprocessing periods in the cycle. One is at be very beginning, i.e. from time0 to Ssuc(i)−tsuc(i). In addition, one is from Si
toα (cf. Fig. 3). Even if those two physically do not belong to the same repetition of the job, the sum of these processing times
needs to be at least pmin

i . Therefore in the following, we have to distinguish between an overlapping and a non-overlapping



P. Brucker et al. / Discrete Applied Mathematics 160 (2012) 1924–1935 1931

operation on each machine. For the remaining constraints, consider i, j in Ω , with i ≠ j andM(i) = M(j). In the case when i
is overlapping, its successor has to start before any other operation in the cycle. This leads to the following constraints:

Ssuc(i) + esuc(i)pre(j) + tj ≤ Sj + C(1 − γi). (3.11)

Furthermore, all other operations must have finished their processing and been unloaded before the last operation on a
machine can start in the current cycle:

Ssuc(j) ≤ Si + C(1 − γi), (3.12)

where M(i) ≠ M(suc(j)), j ≠ i and M(i) = M(j). Since there is at most one overlapping operation per machine, all other
operations on this machine must have stayed (at least) for their minimal processing times, which leads to:

Sj + pmin
j + tsuc(j) ≤ Si + C(1 − γi), (3.13)

where M(i) ≠ M(suc(j)), j ≠ i and M(i) = M(j). Finally, constraints (1.6) and (1.7) have to hold as before, which gives the
same constraints as in the model from the previous section:

ei,pre(i) + ti ≤ α for i ∈ Ω⋆
\ Ω and esuc(i),pre(i) + ti ≤ α for i ∈ Ω. (3.14)

Finally the model can be summarised by the following mixed integer program.

minα (3.15)
s.t.
i∈Jj

γi ≤ h − 1 j ∈ {1, . . . ,N} (3.16)

S0 = 0 (3.17)
S1 = t1 (3.18)

Si + ei0 ≤ α i ∈ Ω⋆ (3.19)

Si + pmin
i + tsuc(i) ≤ Ssuc(i) + Cγi i ∈ Ω (3.20)

Si + pmin
i + tsuc(i) ≤ Ssuc(i) + α i ∈ Ω (3.21)

Si + ei,pre(j) + tj ≤ Sj + Cθij i, j ∈ Ω⋆ (3.22)

θij + θji = 1 i, j ∈ Ω⋆ (3.23)

Ssuc(i) + esuc(i)pre(j) + tj ≤ Sj + Cβij i, j ∈ Ω, i ≠ j, M(i) = M(j) (3.24)

βij + βji = 1 i, j ∈ Ω, i ≠ j, M(i) = M(j) (3.25)

Ssuc(i) + esuc(i)pre(j) + tj ≤ Sj + C(1 − γi) i, j ∈ Ω, i ≠ j, M(i) = M(j) (3.26)

Ssuc(j) ≤ Si + C(1 − γi) i, j ∈ Ω, i ≠ j, M(i) = M(j), M(i) ≠ M(suc(j)) (3.27)

Sj + pmin
j + tsuc(j) ≤ Si + C(1 − γi) i, j ∈ Ω, i ≠ j, M(i) = M(j) (3.28)

ei,pre(i) + ti ≤ α i ∈ Ω⋆
\ Ω (3.29)

esuc(i),pre(i) + ti ≤ α i ∈ Ω, (3.30)

γi, θij, βij ∈ {0, 1} (3.31)

for all i, j ∈ Ω⋆ and C ∈ N is a sufficiently large constant. Since modelling the overlapping operations on each machine is
the key property of this model, we will refer to it as the CJSPT–MIP–OO. The repetition numbers for a resulting schedule can
be obtained in the same way as in Section 2.

4. Computational results

In this section, we will compare the computational results for the models presented. Both models have been solved with
CPLEX 12.2 on an Intel Xeon E5472 3.0 GHz computer with 16 GB memory, single threaded, running Linux 64 bit. We set
the time limit for each problem instance to 3600 s. Since there are, to our knowledge, no standard benchmarks for the CJSPT
available in the literature, we created our own data set generator (see Appendix for further details).

The computational results are given in Tables 4.1 and 4.2 which are structured as follows. The first column, ‘instance’,
describes the problem instance in the format N × m − k, where N is the number of jobs, m is the number of machines and
k is just a counter for instances of the same size. We have tested the different models with three different instances of the
same size and each instance with a maximum height of 1, 2 and 3. Every job has to visit every machine exactly once which
means that the number of operations is n = Nm.
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Table 4.1
Computational results 1.

Instance Height CJSPT–MIP–LIT CJSPT–MIP–OO
Solution LB Gap Time (s) Memory (MB) Solution Bound Gap Time (s) Memory (MB)

5×5−1 1 519 519 0.0% <1 – 519 519 0.0% <1 –
2 508 508 0.0% <1 – 508 508 0.0% <1 –
3 508 508 0.0% <1 – 508 508 0.0% <1 –

5×5−2 1 446 446 0.0% <1 – 446 446 0.0% <1 –
2 432 432 0.0% <1 – 432 432 0.0% <1 –
3 432 432 0.0% <1 – 432 432 0.0% <1 –

5×5−3 1 519 519 0.0% <1 – 519 519 0.0% <1 –
2 482 482 0.0% <1 – 482 482 0.0% <1 –
3 482 482 0.0% <1 – 482 482 0.0% <1 –

6×6−1 1 616 616 0.0% 1 – 616 616 0.0% 1 –
2 575 575 0.0% 23 – 575 575 0.0% 43 –
3 575 575 0.0% 201 – 575 575 0.0% 10 –

6×6−2 1 605 605 0.0% 2 – 605 605 0.0% <1 –
2 548 548 0.0% 8 – 548 548 0.0% 14 –
3 548 548 0.0% 50 – 548 548 0.0% 8 –

6×6−3 1 559 559 0.0% 1 – 559 559 0.0% <1 –
2 532 532 0.0% 58 – 532 532 0.0% 14 –
3 532 532 0.0% 531 – 532 532 0.0% 63 –

7×7−1 1 683 683 0.0% 89 – 683 683 0.0% 7.3 –
2 623 532 16.1% 3600 1242 620 620 0.0% 788 –
3 623 412 33.9% 3600 414 620 620 0.0% 2621 –

7×7−2 1 735 735 0.0% 81 – 735 735 0.0% 12 –
2 644 612 5.0% 3600 339 634 634 0.0% 394 –
3 634 457 27.9% 3600 3021 634 634 0.0% 930 –

7×7−3 1 676 676 0.0% 129 – 676 676 0.0% 6 –
2 621 539 13.2% 3600 1350 618 618 0.0% 1882 –
3 621 384 38.2% 3600 3912 618 618 0.0% 1190 –

8×8−1 1 948 948 0.0% 2623 – 948 948 0.0% 92 –
2 874 571 34.7% 3600 3506 611 431 29.5% 3600 328
3 893 516 42.2% 3600 3733 530 320 35.8% 3600 488

8×8−2 1 887 792 10.7% 3600 404 884 884 0.0% 135 4
2 811 634 21.8% 3600 1785 649 524 19.3% 3600 327
3 879 634 27.9% 3600 3108 634 491 22.6% 3600 502

8×8−3 1 852 802 5.9% 3600 1657 852 852 0.0% 92 –
2 769 424 44.9% 3600 3196 797 488 38.8% 3600 456
3 882 388 56.0% 3600 4648 972 405 58.3% 3600 489

9×9−1 1 1175 722 38.6% 3600 3839 1050 1033 1.6% 3600 66
2 inf 498 inf 3600 4387 inf 656 inf 3600 418
3 inf 432 inf 3600 3428 inf 588 inf 3600 494

9×9−2 1 1188 728 38.7% 3600 3867 871 714 18.0% 3600 572
2 inf 501 inf 3600 4463 751 480 36.1% 3600 453
3 1137 452 60.2% 3600 3851 inf 387 inf 3600 387

9×9−3 1 1119 764 31.7% 3600 3808 1097 1097 0.0% 925 –
2 1272 665 47.6% 3600 3582 inf inf inf 3600 408
3 inf 665 inf 3600 4639 inf inf inf 3600 410

The first set of columns contains the results for the model from the literature (CJSPT–MIP–LIT) and the second set
(CJSPT–MIP–OO) those from the newly developed model presented in this paper.

The first column contains the maximum given height. The minimal cycle time obtained by CPLEX (‘Solution’) is given
in the next column, followed by the lower bound (‘LB’) and the corresponding gap (‘GAP’) which has been calculated by
solution−LB

solution . The last two columns contain the time needed to solve the problem and the space for storing the tree if the
problem could not be solved to optimality when the time limit had been reached. If no value for a specific column could be
obtained (e.g. no solution has been found) we write ‘inf’.

As we can see, our newmodel mostly outperforms the model from the literature. It always finds the optimumwhen the
CJSPT–MIP–LIT model finds it and this is even the case for 20 more instances. Furthermore the differences in the memory
needed for the branching tree are enormous. The average memory needed for the CJSPT–MIP–LIT model is 2931 MB, not
taking into account instances solved to optimality, whereas the CJSPT–MIP–OO model only uses an average of 400 MB per
unsolved instance. This new formulation especially benefits scenarioswhere there are computerswith lessmemory or 32 bit
operating systems.
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Table 4.2
Computational results 2.

Instance Height CJSPT–MIP–LIT CJSPT–MIP–OO
Solution LB Gap Time (s) Memory (MB) Solution Bound Gap Time (s) Memory (MB)

10×10−1 1 1403 803 42.8% 3600 5749 1389 803 42.2% 3600 93
2 inf 446 inf 3600 2910 inf 346 inf 3600 270
3 inf 228 inf 3600 3294 inf 311 inf 3600 277

10×10−2 1 inf 822 inf 3600 5367 1444 800 44.6% 3600 54
2 inf 362 inf 3600 967 inf 383 inf 3600 297
3 inf 276 inf 3600 2611 inf 351 inf 3600 206

10×10−3 1 inf 720 inf 3600 6572 1441 777 46.1% 3600 521
2 inf 310 inf 3600 3863 inf 318 inf 3600 391
3 inf 289 inf 3600 2821 inf 293 inf 3600 300

10 × 5 − 1 1 819 819 0.0% 728 – 819 819 0.0% 28 –
2 779 649 16.7% 3600 373 779 779 0.0% 704 –
3 783 501 36.0% 3600 724 779 779 0.0% 1310 –

10 × 5 − 2 1 818 818 0.0% 515 – 818 818 0.0% 147 –
2 810 551 32.0% 3600 1350 808 808 0.0% 1150 –
3 816 495 39.3% 3600 665 808 808 0.0% 3124 –

10 × 5 − 3 1 844 844 0.0% 1798 – 844 844 0.0% 245 –
2 798 572 28.3% 3600 1597 798 798 0.0% 1236 –
3 822 463 43.7% 3600 625 798 798 0.0% 2661 –

5 × 10 − 1 1 694 694 0.0% <1 – 694 694 0.0% 7 –
2 560 512 8.6% 3600 – 558 558 0.0% 1610 –
3 617 417 32.4% 3600 – 548 548 0.0% 3455 –

5 × 10 − 2 1 765 764 0.1% 3600 1 765 765 0.0% 6 –
2 545 545 0.0% <1 – 558 461 17.4% 3600 178
3 545 509 6.6% 3600 1098 554 545 1.6% 3600 4

5 × 10 − 3 1 696 696 0.0% <1 – 696 696 0.0% 4 –
2 524 504 3.8% 3600 665 524 524 0.0% 2818 –
3 530 417 21.3% 3600 2848 516 516 0.0% 2276 –

15×15−1 1 inf 953 inf 3600 2979 inf 927 inf 3600 85
2 inf 722 inf 3600 3122 inf 289 inf 3600 201
3 inf 621 inf 3600 4097 inf 316 inf 3600 289

15×15−2 1 inf 942 inf 3600 3099 inf 959 inf 3600 89
2 inf 483 inf 3600 4322 inf 330 inf 3600 209
3 inf 380 inf 3600 76 inf 301 inf 3600 197

15×15−3 1 inf 830 inf 3600 2255 inf 860 inf 3600 100
2 inf 401 inf 3600 5204 inf 295 inf 3600 209
3 inf 352 inf 3600 78 inf 297 inf 3600 193

5. Conclusions and future work

In this paper, we described the cyclic job-shop problemwith one transport robot and blocking. We extended an existing
model from the literature and showed how a mixed integer programming formulation can be applied to solve the problem.
The main contribution of this paper is in Section 3, where we present a new and more tailored integer programming
formulation for solving the CJSPT. The computational results show, that not only more problem instances could be solved
or their solutions improved, but also, that the usage of the memory has been decreased enormously.

In future work, we will try to adjust the formulation, to solve different models from the literature, such as those
mentioned in Section 2. We also aim to apply it to cyclic job-shop problems without transportation and/or no blocking.

Appendix. Generating problem instances

For the cyclic job-shop problemwith one transport robot, there are, as far as we know no standard benchmarks available.
Most authors have considered standard job-shop benchmarks and have added additional times for transportation. To be
able to test any algorithm on different classes of problem instances (especially different ratios between processing times
and transport times), we developed a problem generator for those instances [2].

The underlying pseudo random number generator (PRNG) is based on Park andMiller [16]. Thus, every problem instance
can be reproduced if the program is run with the same parameters. The input parameters are the number of jobs N , the
number of machinesm (including an input and output machine) and a seed number for the PRNG. The generator randomly
assigns a permutation of all machines to the jobs. Furthermore, one can set minimal and maximal values for the precessing,
setup, empty moving and additional transport time. A reasonable assumption is that the transport time cannot be smaller
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than the corresponding empty moving time between the same machines. Therefore, we add a random value between a
minimal and maximal additional transport time to the corresponding empty moving time.

The processing times are calculated as follows. There is a lower bound for the smallest minimal processing time and
an upper bound for the biggest maximal processing time. Additionally, a minimal distance between minimal and maximal
processing time can be set (processing time window).

Since the triangle inequality has to hold, we determine the distances between the machines in the following way. We
create a 2-dimensional quadratic area with diameter equal to the difference between minimum and maximum empty
moving time. Then, we randomly place all machines on this area, calculate their euclidian distances to each other and add
theminimal emptymoving time. This guarantees a distance between themachines according to the given limits.We assume
that every job starts at input machine 0 and finishes at the output machinem − 1. The minimal processing and setup times
of the output machine are set to 0 and the maximum processing time to a big enough number.

Here is an example of a small problem instance with 2 jobs and 5 machines.

*SEED 212121
*MIN_PROCESSING_TIME 10
*MAX_PROCESSING_TIME 99
*MIN_PROCESSING_TIME_WINDOW 20
*MIN_TRANSPORT_TIME 1
*MAX_TRANSPORT_TIME 4
*MIN_EMPTY_MOVE_TIME 1
*MAX_EMPTY_MOVE_TIME 8
*MIN_SETUP_TIME 4
*MAX_SETUP_TIME 8
*The first line represents the numbers of jobs (2) followed by the numbers of machines (5).
*Each of the next 2 line(s) represent all operations of one job.
*Each operation has assigned 5 values which are in the following order:
*Machine | minProcessingTime | maxProcessingTime | transportTime | setupTime
*The other lines representing the time distance between the machines are of the form:
*machine-A | machine-B | distance
*We assume that the distance between the machines is symmetric
2 5 // #jobs #machines
3 42 74 6 8 2 75 97 9 6 1 73 95 8 7 4 0 9999 5 0 // operations job 1
2 27 56 5 7 3 25 68 7 8 1 48 94 8 5 4 0 9999 5 0 // operations job 2
0 0 0 // empty moving times
0 1 5
0 2 4
0 3 5
0 4 5
1 1 0
1 2 6
1 3 5
1 4 7
2 2 0
2 3 3
2 4 2
3 3 0
3 4 4
4 4 0
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