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SUMMARY

Neurophysiological studies of decision making have
primarily focused on decisions about information
that is stable over time. However, during natural
behavior, animals make decisions in a constantly
changing environment. To investigate the neural
mechanisms of such dynamic choices, we recorded
activity in dorsal premotor (PMd) and primary motor
cortex (M1) while monkeys performed a two-choice
reaching task in which sensory information about
the correct choice was changing within each trial
and the decision could be made at any time. During
deliberation, activity in both areas did not integrate
sensory information but instead tracked it and
combined it with a growing urgency signal. Approxi-
mately 280 ms before movement onset, PMd activity
tuned to the selected target reached a consistent
peak while M1 activity tuned to the unselected target
was suppressed. We propose that this reflects the
resolution of a competition between the potential
responses and constitutes the volitional commitment
to an action choice.

INTRODUCTION

When buying a house, one is motivated to first collect relevant

information and then take time to think about the best choice.

Because careful deliberation is important to human behavior,

studies of the neural mechanisms of decision making have

largely focused on scenarios in which subjects decide about

information that is stable over time. For example, perceptual

decisions are usually studied using stimuli whose informational

content is constant in each trial (Britten et al., 1992; Romo

et al., 2004), leading to models of deliberation as the integration

of sensory evidence to a threshold (Gold and Shadlen, 2007;

Ratcliff, 1978). Likewise, studies of value-based decisions focus

on conditions in which the value of options is stable (Padoa-

Schioppa, 2011; Platt and Glimcher, 1999), leading to serial

models in which the costs and benefits are converted into a

‘‘common currency,’’ the decision is made, and the chosen ac-
tion is then prepared (Padoa-Schioppa, 2011). However, the

vertebrate brain evolved to guide behavior in a dynamic world,

in which decisions are made during ongoing activity, action

options and their payoffs are continuously changing, and ani-

mals are free to decide when to take time to deliberate and

when to commit quickly to their current best guess. Here, we

investigate such ‘‘embodied’’ decisions and ask which conclu-

sions from static scenarios generalize to real-time dynamic

decisions.

In particular, studies of static tasks have suggested that the

brain gradually integrates repeated samples of the stimulus,

causing neural activity to build up to a threshold (Gold and Shad-

len, 2007; Ratcliff, 1978). However, if the sensory information can

suddenly change, such a process is suboptimal, because inte-

grators are sluggish to respond to changes in input. Recent

human studies of dynamic tasks have suggested that instead

of integrating the sensory state, the brain quickly tracks it, and

activity buildup is caused by a growing urgency to act (Cisek

et al., 2009; Thura et al., 2012). These models can only be distin-

guished with dynamic tasks, because they make identical

predictions for any static task, at both the behavioral and neural

level.

Furthermore, many neurophysiological studies have shown

that decision making influences activity in the sensorimotor

system (Gold and Shadlen, 2000; Platt and Glimcher, 1999; Sal-

inas and Romo, 1998;Wallis andMiller, 2003). In particular, when

animals are faced with multiple response options, the brain

represents them in parallel within sensorimotor regions (Bau-

mann et al., 2009; Cisek and Kalaska, 2005; McPeek et al.,

2003), and these representations are modulated by decision

variables (Basso and Wurtz, 1998; Dorris and Glimcher, 2004;

Pastor-Bernier and Cisek, 2011; Roitman and Shadlen, 2002;

Yang and Shadlen, 2007). For example, information for deciding

between manual actions influences neural activity in premotor

and parietal regions (Hernández et al., 2010; Klaes et al., 2011;

Pastor-Bernier and Cisek, 2011), modulates corticospinal excit-

ability (Klein-Flügge and Bestmann, 2012; Michelet et al., 2010),

and even influences reflexes (Selen et al., 2012). Such results

have led to the proposal that decisions between actions involve

processes within the sensorimotor system (Cisek, 2007; Hernán-

dez et al., 2010; Shadlen et al., 2008). However, it is also possible

that they simply reflect information that spills in from upstream

regions that are actually responsible for deliberation and

commitment. To establish whether the sensorimotor system
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Figure 1. Task and Behavior

(A) The token task (see text).

(B) Temporal profile (thick gray line) of the probability that a given target is correct, computed using Equation 1. The vertical, dashed red line indicates the

estimated time of the decision (see text), allowing estimation of the success probability at that moment (horizontal, dashed red line).

(C) Profiles of success probability of one easy (blue), one ambiguous (green), and one misleading trial (red). A trial is considered easy if the SP exceeds 0.6 after

two token jumps and 0.75 after five. A trial is ambiguous if SP is 0.5 after two jumps, between 0.4 and 0.65 after three, and then between 0.55 and 0.66 after five

and seven jumps. A trial is misleading if SP is below 0.4 after three jumps.

(D) Distributions of decision durations in easy (blue), ambiguous (green), and misleading (red) trials for monkey S (top) and Z (bottom). Shaded regions indicate

error trials. Vertical dotted lines indicate the mean (in ms) for each trial type.

(E) Cumulative distributions of success probabilities at decision time in the same trial types. Vertical dotted lines indicate mean success probability.

(F) Mean (±SE) of the estimated confidence (SumLogLR) at which the decision was made, averaged across all trials grouped as a function of decision duration.
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plays an active role in deliberation, neural activity must be exam-

ined well before commitment is made, and this can be accom-

plished with dynamic tasks.

Here, we investigate these questions through neurophysiolog-

ical recordings in the dorsal premotor (PMd) and primary motor

cortex (M1) of monkeys trained to perform two reaching tasks.

In the ‘‘tokens’’ task (Figure 1A), monkeys watch a set of 15

tokens jumping every 200 ms from a central target to one of

two peripheral targets and must guess which target will ulti-

mately receive the majority of the tokens. Importantly, the deci-
1402 Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc.
sion can be taken at any time, and when a target is reached, the

token jumps accelerate, allowing the monkey to save time by

taking an early guess. In the ‘‘delayed response’’ (DR) task,

only a single peripheral target is presented, and the monkey

must withhold movement until the 15 tokens jump into the target

simultaneously (GO signal).

Our paradigm has two critical properties. First, the sensory

evidence in the tokens task is continuously changing, allowing

us to dissociate different models of how sensory information is

treated. Second, in the tokens task, the monkeys are free to
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respond at any time, allowing us to distinguish processes related

to deliberation from those related to commitment. In particular,

by comparing activity during the tokens task with activity during

the DR task, in which both the choice and its timing are externally

instructed, we can identify the neural phenomena specifically

associated with volitional commitment to action.

RESULTS

The Decision Criterion Decreases over Time
In the tokens task, monkeys’ success rate varied between

64%–87% (mean: 77%; SD: 5%, SE: 0.5%). To analyze how

behavior depended upon the specific pattern of token jumps in

each trial, we first estimated the total sensory and motor delays

using the mean reaction time (mRT) from the DR task (Monkey S:

291 ± 40 ms; Monkey Z: 335 ± 93 ms) and then subtracted this

from the reaction time (RT) in the tokens task to estimate the

decision time (DT) (Figure 1B). Next, we estimated the success

probability at decision time (SPD) using Equation 1 below. We

compared these variables in three trial types: easy, ambiguous,

and misleading (Figure 1C), classified post hoc from the fully

random trials. As expected, both monkeys made decisions

significantly earlier in easy than in ambiguous or misleading trials

(Kolmogorov-Smirnov [KS] test, p < 0.01) (Figure 1D). They also

made decisions at a significantly lower level of success probabil-

ity in ambiguous and misleading trials than in easy trials (KS test,

p < 0.05) (Figure 1E). This is consistent with the hypothesis that

to solve the task, monkeys use an accuracy criterion that de-

creases over time. To test this across all trials, we grouped

data according to the number of tokens that moved before

DT and calculated an estimate of the accuracy criterion (or

‘‘confidence’’) for the selected target at that time. This estimate

was based on the sum of the log likelihood ratios of individual

token jumps (SumLogLR; see Experimental Procedures), which

is related to the difference in the number of tokens in the two

targets. The result is shown in Figure 1F. Except for fast guesses

(<1 s), there is a trend for decisions to be made at a lower level of

accuracy as time passes. This demonstrates that both monkeys

use a similar strategy as humans to solve the task (Cisek et al.,

2009)—they decrease their accuracy criterion over time. Previ-

ous studies have suggested that this can be implemented by

combining sensory information with a growing ‘‘urgency signal’’

(Churchland et al., 2008; Cisek et al., 2009; Standage et al., 2011;

Thura et al., 2012).

Neural Activity in PMd and M1 Reflects the Time Course
of Sensory Evidence
While monkeys performed the tokens task, neural activity

was recorded from 178 cells in the arm area of PMd (135 in

monkey S) and 74 cells in M1 (55 in monkey S) excluding the

most caudal region in the central sulcus (Figure S1 available

online). Among these, 99 cells (68 in PMd and 31 in M1) had a

significant directional preference before DT (see Experimental

Procedures) and thus reliably predicted whether an arm move-

ment would be made toward or away from the cell’s preferred

target (PT).

Figure 2A shows the activity of an example PMd neuron,

aligned on the start of token jumps and plotted until 300 ms
before movement onset, during easy, ambiguous, and

misleading trials in which the monkey chose the cell’s PT or

the opposite target (OT). In easy trials, activity strongly and

quickly increases when the monkey selects the PT and is quickly

suppressed when the OT is chosen. In ambiguous trials, activity

fluctuates and gradually increases during the first seven token

jumps (�1.4 s), and the cell discriminates between PT and OT

only late in the trial. The pattern of activity is again very different

in misleading trials. When the PT is ultimately selected, activity is

initially low while the first few tokens favor the OT and later

switches to predict the PT choice. In contrast, in OT trials the

early activity is strong, while tokens favor the PT, and later

decreases.

Interestingly, we found very similar phenomena in M1, as

shown in Figure 2B for an example cell. Like the PMd cell in

Figure 2A, this M1 neuron quickly reflected the choice in easy

trials, fluctuated during ambiguous trials, and reflected the

switch of evidence in misleading trials.

Figure 2C illustrates the average activity of all 68 PMd and

31M1 decision-related neurons. The top panel shows the profile

of success probability for each cell’s PT for easy (blue), ambig-

uous (green), and misleading (red) trials in which the monkey

correctly chose the PT (solid) or OT (dashed). Below that, we

show the average neural activity of the 68 PMd and 31 M1 cells

aligned on the first token jump and plotted until 300 ms before

movement initiation (diamonds) during those same trials. About

150 ms after the first token jump, activity increases or decreases

in a manner that reflects the sensory evidence and the monkey’s

ultimate choice, especially in PMd. In addition to the influence

of the changing sensory evidence, there is a trend for activity

to increase over time, and this is especially pronounced in M1.

To further quantify these observations, we calculated the

latency at which activity discriminates between PT and OT for

all PMd and M1 decision-related cells in easy or ambiguous

trials. The mean discrimination time was significantly shorter in

easy than in ambiguous trials both in PMd (280 versus 624 ms;

KS test; p < 0.01) and in M1 (341 versus 807 ms; KS test; p <

0.01). Moreover, in both easy and ambiguous trials, discrimina-

tion times were shorter in PMd than in M1, although this did

not reach significance (KS test; p > 0.05).

To quantify the effect of sensory evidence on neural activity

across all trials (not just the three types shown in Figure 2), we

measured each cell’s firing rate in successive 200 ms epochs

following the first token jump. We then plotted this as a function

of the sensory evidence (SumLogLR) present during the previous

token jump (to allow for sensory delays). The result for example

PMd and M1 cells is shown in Figures 3A and 3C, respectively.

Both neurons exhibited a clear modulation of activity as a func-

tion of the evidence, increasing their firing rate as the evidence in

favor of their PT increased (Spearman’s rank test; mean r = 0.93

for the PMd neuron and 0.75 for the M1 neuron). Moreover, this

relationship changed as time was passing. In particular, both the

baseline and the slope (calculated at the equal evidence

point; vertical dashed line) tended to grow over time. These

effects also held at the population level in both PMd and M1

(Figures 3B and 3D). Notably, at the population level, the in-

crease of activity over time was primarily due to a baseline shift

(Figure S2).
Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc. 1403
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Figure 2. Neural Activity Tracks the Changing Evidence

(A) Response of a decision-related PMd neuron in the tokens task during easy (left), ambiguous (middle), andmisleading (right) trials in which themonkey correctly

chose the cell’s PT (colored) or OT (gray). Activity is aligned on the first token jump (squares) and truncated 300 ms before movement onset (diamonds) to avoid

averaging artifacts. Rasters are sorted by decision duration.

(B) Same as A for an example M1 neuron.

(C) Top shows the success probability of the PT during easy (blue), ambiguous (green), and misleading (red) trials, in which the monkey correctly chose the PT

(solid lines) or OT (dotted lines). Middle shows the average activity of 68 spatially tuned PMd neurons during those same trials. Bottom shows the average activity

of 31 spatially tuned M1 cells.
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PMd and M1 Track the State of Sensory Information
without Integrating It
The above results raise the question of what computational

mechanism transforms sensory information into neural activity

and what is responsible for the activity buildup. It has been

suggested that during perceptual discrimination, such as

deciding about the direction of noisy motion, the sensory signal

is integrated over time by repeatedly resampling the stimulus

(Bogacz et al., 2006; Gold and Shadlen, 2007). Does a similar

mechanism operate during the tokens task? In particular, does

the brain temporally integrate the state of the sensory informa-

tion about which the decision is made (i.e., the distribution of

tokens), or does it simply track that sensory state? To distinguish
1404 Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc.
between these two mechanisms, we examined additional trial

types, classified post hoc from the fully random set. For

example, during ‘‘bias-up/down’’ (BUD) trials (Figure 4A, top,

green line) the first three tokens move to the PT, then the next

two move toward the OT, and then the rest of the trial resembles

an easy trial toward the PT (which is the correct target). In

contrast, during ‘‘bias-down/up’’ (BDU) trials, the first two tokens

move to the OT and the next three to the PT, and the rest of the

trial is similar to BUD. Comparison between these two trial types

is critical, because if the sensory state is integrated, then after

the fifth token neural activity related to the PT will be higher in

BUD than in BDU trials (because an integrator retains a ‘‘mem-

ory’’ of previous states). In contrast, if the sensory state is simply



PMd, cell #418

-2 -1 0 1 2
0

20

40

60

-2 -1 0 1 2
0

10

20

30

M1, cell #439

-2 -1 0 1 2
5

10

15

20

25

30

-2 -1 0 1 2
5

10

15

20

25

30

35

PMd, Population

M1, Population

A
ct

iv
ity

 (H
z)

A
ct

iv
ity

 (H
z)

SumLogLR SumLogLR

Evidence for PTEvidence against PT Token jump

1 15

A B

C D

Figure 3. Evolution of the Relationship

between Neural Firing and Sensory Evidence

(A) Analysis for one example PMd neuron. Each line

illustrates the relationship between the SumLogLR

with respect to the PT and the mean neural activity

calculated 200 ms later in a 200 ms epoch, color

coded from the darkest (first token jump) to the

lightest. Only epochs preceding our estimate of DT

are included.

(B) Same analysis averaged across 68 PMd cells.

(C) Same as (A) for an example M1 cell.
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tracked, then one would not predict a significant difference

between the trial types.

Figure 4A illustrates the activity of one PMd neuron recorded

during BUD and BDU trials. Importantly, we include only trials

in which the monkey made decisions after the initial bias

(>800 ms) and truncate activity 300 ms before movement onset.

About 200 ms after the first token jump, activity begins to reflect

the bias in the two trial types, becoming stronger in BUD than

BDU trials. After 800 ms, as sensory evidence converges in

both trials, neural activity likewise becomes similar. Therefore,

this neuron did not integrate the sensory state during the bias,

but instead tracked it quickly (note the rapid increase of activity

after 800ms inBDU trials, clearly visible in the rasters). Thisobser-

vation holds true when activity is averaged across PMd and M1

cells (Figure 4B). To test whether this effect is robust across indi-

vidual cells, we compared themean activity of each PMd andM1

decision-related cell in BUD and BDU trials in two epochs: during

and after the bias. As predicted by both mechanisms, during the

bias, the response is usually stronger in BUD than BDU trials.

However, after the bias, most of the cells no longer discharge

differently in the two trial types, consistentwith a system that sim-

ply tracks the sensory state (Figures 4C and 4D).

The integration and tracking mechanisms also make very

distinct predictions at a behavioral level. In particular, integration
Neuron 81, 1401–141
predicts faster decisions in BUD than BDU

trials, whereas tracking predicts no differ-

ence. In agreement with the latter, we

found no statistical difference between

decision durations in BUD versus BDU

trials in both monkeys (Figure 5A, top

row). Similar analyses on two other pairs

of trial types (Figure 5A,middle and bottom

rows) yielded the same conclusion—that

choices were not biased by the early

evidence, consistent with fast tracking of

the sensory state and not with integration.

In Figure S3 we show that neural activity in

both PMd and M1 also tracks the sensory

state in these trial types and exhibits no

memory of the sensory state after the initial

bias has ended.

The observations above suggest that

the sensory information is quickly tracked,

perhaps through a low-pass filter with a
very short time window (i.e., less than the duration between

two token jumps [200 ms]). To test this explicitly, we computed

the mean neural activity during two 200 ms epochs, from 200–

400 ms and from 400–600 ms after the first token jump, and

sorted trials according to the pattern of the two first token jumps:

in step-for trials, the first token jumps to the cells’ PT, and the

second token jumps to the OT. In step-against trials, this pattern

is reversed. Accounting for sensory delays, the first epoch of

analysis reflects the consequences of the first token jump. Com-

parison between step-for and step-against trials shows that

activity in PMd is significantly higher (KS test; p < 0.05) and

shows a similar trend in M1 during that first epoch in step-for

than in step-against trials (Figure 5B). However, 200 ms later in

the trial, activity is similar between the two conditions, in agree-

ment with fast tracking of sensory information.

PMd and M1 Activity Signals the Commitment to a
Decision
Becausemonkeys are allowed tomake their decision at any time

during the tokens task, we can examine cortical activity for the

neural signature of themoment at which commitment to a choice

is made. To this end, we aligned activity on movement onset, as

shown on Figures 6A and 6B, for one PMd and one M1 neuron.

Note that approximately 300 ms before the monkey chooses the
6, March 19, 2014 ª2014 Elsevier Inc. 1405
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Figure 4. Neural Activity Does Not Integrate the Sensory State

(A) Top shows the success probability with respect to PT during bias-up/down (green) and bias-down/up trials (magenta). Bottom shows the activity of a PMd

neuron during the two trial types. Only trials in which DT R800 ms are included.

(B) Top shows the mean success probability during bias-up/down (green) and bias-down/up trials (magenta). Middle shows the average activity of 68 decision-

related PMd neurons during the two trial types. Bottom shows the average activity of 31 M1 neurons.

(C) Comparison of mean neural activity (±SE) of 68 PMd (top) and 31 M1 neurons (bottom) recorded during bias-up/down versus bias-down/up trials from 600–

800 ms after the first token jump (left shaded area in [B]). Colored crosses illustrate neurons with a significant modulation of activity (green indicates stronger

activity in bias-up/down; magenta indicates stronger activity in bias-down/up). Percentages denote the proportion of significantly modulated cells.

(D) Same as (C), but showing activity from 900–1,100 ms after the first token jump (right shaded area in [B]).
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cell’s PT, there is a clear peak of activity in both cells, and the

amplitude and timing of this peak are similar across the different

trial types. As shown in Figure S4, this phenomenon exists at the

level of individual trials and is not an artifact of averaging over

trials of different lengths. It is also not related to saccades:

although analysis of oculomotor behavior in our task will be

described in a future publication, it is important to mention

here that in most trials (74%–79%), the monkeys were already

fixating the chosen target well before the peak in PMd activity.

Figure 6C shows the average activity of the 68 PMd and 31M1

neurons aligned on movement onset. In both areas, neural activ-

ity related to the PT shows a striking characteristic regardless of

the trial type: between the start of token jumps and movement

onset, activity first shows the influence of the mounting sensory

evidence, then reaches a peak, and finally decreases prior to

movement onset. The approximate timing of that peak (vertical
1406 Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc.
gray line in Figure 6C) as well as its amplitude is very similar

across trial types, appearing earlier in PMd than in M1. Impor-

tantly, at approximately the same time, activity in M1 related to

the unselected OT target becomes rapidly suppressed. This is

seen most clearly in ambiguous and misleading trials, in which

there was some evidence favoring the OT choice. To further

quantify the timing of these phenomena, we first averaged the

activity of PMd and M1 neurons across all trials in which the

PT was chosen and detected the peak firing rate across 10 ms

bins. In PMd, this peak was reached 280 ms before movement

onset, whereas in M1 it occurred 140 ms later (Figures 7A and

7D, left). To assess the robustness of this observation, we also

calculated the peak timing for each cell separately and

computed its mean and median latency across the population

(Figures 7A and 7D, right). Except for a few cells whose

maximum activity occurs very early, there is a clear trend for
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reversed. Right shows average (±SE) neural activity

in PMd and M1 from 200–400 ms and 400–600 ms

after the first token jump.
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the peak to occur approximately 260ms before movement onset

in PMd and 179ms inM1. Next, we sought to determine whether

the latencies of neural activity peaks correlate with RTs and are

consistent across trial types. For each cell, we calculated the

mean latency of the peak in easy and misleading trials and

then plotted these against the RT in those same trials (Figures

7B and 7E). In almost all PMd and M1 neurons, there is a strong

relationship with a slope near unity, suggesting that regardless of

the history of sensory information during a trial, the timing of PMd

and M1 peaks is consistent relative to movement initiation.

Here, we will use the earliest of these latency values as our

estimate of the timing of commitment: 280 ms before movement

onset. Figure 7C shows that the amplitude of the PMd activity at

this moment in PT trials is very consistent across trial types,

although there is a slight trend for it to be lower in easy trials,

in which decisions are shorter.

Most interestingly, at this same moment, M1 activity tuned to

the unselected target becomes rapidly suppressed (Figure 6C).

For each PMd and M1 cell, we quantified the timing of this

suppression by examining how activity changed between two
Neuron 81, 1401–141
consecutive 50 ms bins at different

latencies with respect to movement onset

(see Figure S5). The distribution of the

time of the greatest change between bins

is quite broad for PMd, suggesting that

there is no specificmoment of suppression

of cells tuned to the unselected target. In

M1, however, the distribution is narrower,

and the mean timing across cells

(275 ms) roughly corresponds to our esti-

mate of commitment time.

Comparison of Volitional
Commitment versus Instructed
Movement
In the tokens task, monkeys are free to

decide both which target to choose and

the time at which they commit to that

choice. Figures 6 and 7 suggest that the

neural peak in PMd and suppression in

M1 signals this moment of free commit-
ment. However, are these phenomena simply the correlates of

movement initiation? To address this, we examined the activity

of the same cells during the DR task, in which both the target

and the time to respond are externally instructed. Most of the

cells recorded in the tokens task (58/68 in PMd; 25/31 in M1)

were also recorded in the DR task. Using the same PT and OT

as in the tokens task, we found that 30/58 PMd cells tuned in

the tokens task before DT were also significantly tuned in the

DR task (for the same targets) during the last 200 ms before

the GO signal. Figures 8A and 8B illustrate the activity of one

of these tuned cells. Likewise, most M1 cells (18/25) tuned in

the tokens task were also tuned in the DR task (e.g., Figures

8E and 8F). In both cells, activity increased shortly after target

onset (�160ms) and then stabilized well before the GO signal.

Notably, at the time of the GO signal there was no obvious

change in neural activity, which began to decrease only just

before movement onset. This observation held true at the popu-

lation level, as shown in Figures 8C and 8G, for the 30 PMd cells

significantly tuned in the delayed reach (DR) task, the 28 other

PMd cells, as well as the 18 tuned M1 cells. Note that when
6, March 19, 2014 ª2014 Elsevier Inc. 1407
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Figure 6. Neural Correlates of the Moment of Commitment

(A) Response of a tuned PMd neuron in easy (left), ambiguous (middle), and misleading (right) trials. Same convention as in Figure 2A except that here activity is

aligned on movement onset (diamonds). Triangles mark movement offset.

(B) Same as (A) for an example M1 neuron.

(C) Success probability (top) and average activity of 68 PMd (middle) and 31M1 (bottom) neurons, aligned onmovement onset. The vertical gray line indicates our

estimate of commitment time (see Figure 7 and text for details).
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activity is aligned on the GO signal (middle plots of [A], [C], [E],

and [G]), there is no clear change in neural activity in any of the

cell groups. In contrast, in the tokens task all three groups exhibit

a clear peak well before movement onset.

To further test whether the activity peak before movement is

particular to volitional commitment as opposed to movement

initiation, we also examined a group of cells in M1 that were

more closely related to the kinematic or dynamic aspects of

themovement itself (Kalaska et al., 1989). In particular, we chose

cells (n = 19) whose predecision activity in the tokens task did not

correlate with success probability, but whose premovement

activity in the tokens task was significantly correlated with

movement speed. None of these were among the 31 cells

described above. In contrast to the decision-related cells, in
1408 Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc.
both tasks these cells exhibit a similar peak of activity shortly

before movement onset (tokens task: �100 ms; DR task:

�40 ms) and do not exhibit any particular response in the tokens

task at our estimated moment of commitment (Figure S6). We

propose that the activation of such cells is what determines

movement initiation, but the PMd peak that occurs about

180 ms earlier is related to volitional commitment.

In summary, the PMd and M1 cells described here appear

to be involved in both deliberation and commitment. These

processes are most clearly dissociable in misleading trials,

which include an initial bias toward thewrong target that is visible

in neural activity (Figure 2). If the monkey correctly withholds

commitment at this time, activity related to the misleading target

should not exceed the level of activity reached at commitment
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Figure 7. Timing and Robustness of the Neural Activity Peak

(A) Left shows average activity of the 68 decision-related PMd cells across all trials (in 10ms bins) for PT (solid) and OT choices (dotted). The peak of the average

PT-related activity is indicated and its timing defined relative to movement onset. Right shows cumulative distribution of PT- (solid) and OT- related (dotted) peak

activity timing relative to movement onset, calculated individually in each of the 68 PMd cells.

(B) Relationship between latencies of peak activity of the 68 PMd cells and reaction time. For each cell (black lines), themean peak activity latencies are calculated

in easy (blue) and misleading (red) trials for the cell’s PT and plotted against the mean RTs in these same trials. The inset shows the distribution of slopes of the

black lines (dashed line is unity slope).

(C) Comparison of themean firing rate ±SE at commitment time (280ms beforemovement onset) of each of the 68 PMd cells during easy-versus-ambiguous (left),

easy-versus-misleading (middle), and ambiguous-versus-misleading trials (right). Colored crosses illustrate neurons for which the difference is significant (KS

test, p < 0.05). Percentages denote the proportion of neurons whose activity is significantly different in each comparison.

(D) Same as (A) for a population of 31 decision-related M1 neurons.

(E) Same as (B) for the 31 M1 neurons.

(F) Same as (C) for the 31 M1 cells (note that the mean firing rate ±SE of M1 cells is calculated 280 ms before movement onset).
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time. To test this, we performed an additional analysis of each

cell (recorded during at least four trials) to see if neural activity

during the bias ever reaches a level higher than that reached at

commitment (Figure S7). Results show that, in both PMd and

M1, there is a clear trend for misleading-related activity to be

weaker than correct-target-related activity around decision

commitment. We also show that when the monkey makes an

error during misleading trials, the activity tends to be higher

than in correct trials, suggesting that the errors occur when neu-

ral activity is strong enough to reach the level for commitment,

leading the monkey to make an overly hasty guess.

DISCUSSION

Decisions about action are arguably the most fundamental kinds

of decisions that animals face in the natural world. For such
decisions, the choices themselves are defined by the immediate

environment and are constantly changing during ongoing

activity. This motivates the hypothesis that multiple potential

actions are specified simultaneously and compete against

each other within the sensorimotor system (Cisek, 2007) and

that this competition is biased by a continuous flow of sensory

information (Coles et al., 1985; Kim and Shadlen, 1999). Our

results support this hypothesis and suggest a mechanism for

how sensory information brings the system to commit to one

action versus another. In particular, we show that information

pertinent to reach selection is continuously influencing activity

in reach-related regions of PMd and M1 (Figures 2–5). This in-

formation is combined with a nonspecific urgency signal that

gradually builds up tension between the options until one of

them gets strong enough to suppress the other (Figures 6

and 7). We propose that this moment, when the competition
Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc. 1409



0

20

40

60

A
ct

iv
ity

 (H
z)

PMd, cell #144

A
ct

iv
ity

 (H
z)

0

10

20

0 0.2 0.4 -0.6 -0.2 0 0.2

0

20

40

A
ct

iv
ity

 (H
z)

M1, cell #272

0

10

20

30
A

ct
iv

ity
 (H

z)

-1.0 0 1.0

0

10

20

30

0 0.2 0.4
Time from target onset (s)

-0.2 0 0.2
Movement onset (s)

0

10

20

30

A
ct

iv
ity

 (H
z)

-1.0 0
Time from movement onset (s)

A
ct

iv
ity

 (H
z)

0 0.2 0.4 -0.6 -0.2 0 0.2

0 0.2 0.4 -0.2 0 0.2

A
ct

iv
ity

 (H
z)

10

20

30

0
-1.0 0

0

10

20

30

40

50

A
ct

iv
ity

 (H
z)

-1.0 0 1.0

PMd,  population

M1, population

-0.5 0 0.5

-0.2 0 0.2
GO (s)

-0.5 0 0.5

-0.2 0 0.2

A B

C D

E F

G H

-2.0

-2.0
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(A) Activity of a PMd decision-related neuron during the delayed reach task, in trials to the PT (blue) or OT (gray), aligned on target onset (left), GO signal (middle),

and movement onset (right).
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(C) Average activity of 58 PMd neurons recorded during the DR task, in trials to the PT (blue) or OT (gray). Among these, 30 are significantly tuned in the DR task

(solid) whereas 28 are not (dotted).

(legend continued on next page)
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between actions is resolved within themotor system, constitutes

the voluntary commitment to an action choice.

The proposal that the motor system is involved in decision

making is based on the observation that decision-related vari-

ables modulate activity in many regions implicated in sensori-

motor control (Basso and Wurtz, 1998; Cisek and Kalaska,

2005; Gold and Shadlen, 2000; Platt andGlimcher, 1999; Salinas

and Romo, 1998; Wallis and Miller, 2003). However, the pres-

ence of such modulation does not prove that the motor system

participates in the decision process, because it could be argued

that the modulation is related to other variables such as arousal

(Leathers and Olson, 2012; Roesch and Olson, 2003) or is merely

reflecting decision-making processes occurring upstream.

Padoa-Schioppa (2011) suggests that to truly establish that

motor regions contribute to the decision process, it is necessary

to show that (a) decision-related activity is indeed within the

motor system, (b) it reflects subjective variables, and (c) it is

not downstream of the decision process. Here, we satisfy these

criteria by showing neural correlates of deliberation within M1

(criterion a), reflecting not just the sensory information but also

the animal’s subjective urgency to act (criterion b), and occurring

prior to the moment of commitment (criterion c). Because our

recordings were limited to PMd and M1, it is conceivable

that another region, such as lateral or medial prefrontal cortex

(PFC), may be the site of commitment and simply relay its results

downstream. However, it is hard to imagine neural events that

are more consistent across conditions than what we observed

in PMd and M1. Indeed, preliminary recordings in dorsolateral

PFC showed that the peak of activity in that region does not

remain consistent across easy, ambiguous, andmisleading trials

in terms of its timing and amplitude (Thura and Cisek, 2010). We

thus conclude that PMd and M1 are part of the circuit respon-

sible for the commitment to a choice between reaching actions.

Continuous Flow and Competition between Actions in
Premotor and Motor Cortex
Our results demonstrate that the sensory information provided

by the token movements continuously influences neural activity

in PMd and even M1. In particular, Figure 2 shows that neural

activity in both regions quickly predicts the choice in trials clas-

sified as easy, remains uncommitted longer in ambiguous trials,

and reflects when the bias switches in misleading trials. These

phenomena are clearer in PMd than in M1, and in both regions

there is an overall tendency for activity to increase over time. In

Figure 3 we show that similar results hold across all trials and

that neural activity in both regions appears to be a gradually ris-

ing sigmoidal function of the log evidence for a choice.

Many studies have shown that information pertinent to deci-

sions can influence the sensorimotor system (for reviews, see

Cisek and Kalaska, 2010; Glimcher, 2003; Gold and Shadlen,

2007; Hernández et al., 2010). For example, electromyographic

responses to transcranial magnetic stimulation of M1 correlate
(D) Average activity of the same PMd neurons during easy trials in the tokens tas

(E) Same as (A) for an example M1 neuron.

(F) Same as (B) for the same M1 neuron as (E).

(G) Same as (C) for 18 M1 neurons tuned in the DR task.

(H) Same as (D) for the same 18 M1 neurons.
with the potential value of movements (Klein-Flügge and Best-

mann, 2012) and reflect when subjects change their mind

between conflicting choices (Michelet et al., 2010). Even at the

periphery, reflex gains change with the evidence in favor of a

given response (Selen et al., 2012), demonstrating a continuous

flow of sensory information into the motor system (Coles et al.,

1985). The influence of decision variables on neural activity is

well-documented in many parts of the oculomotor (Platt and

Glimcher, 1999; Roitman and Shadlen, 2002) and reaching

system (Donner et al., 2009; Klaes et al., 2011; Pastor-Bernier

and Cisek, 2011; Romo et al., 2004). For example, PMd cells

appear to engage in a biased competition between potential

actions represented in a sensorimotor map (Pastor-Bernier and

Cisek, 2011), and the same cells continue to reflect when a

monkey changes his mind even after movement onset (Pastor-

Bernier et al., 2012).

Here, we characterize how the bias between potential actions

unfolds over time. Although the bias is surely subject tomany fac-

tors, in our experimentwecanclearly identify two: the evidence in

favor of each option and the growing urgency to act. This finding

was predicted by a previous study with humans (Cisek et al.,

2009), which showed that behavior in the tokens task could be

explained by a model (‘‘urgency-gating’’) in which a filtered esti-

mate of sensory evidence was combined with a growing urgency

signal. Our present results with monkeys are in good agreement

with that study. In particular, decisions are made more quickly in

easy than in ambiguous trials but at a higher level of success

probability (Figures 1D and 1E), DTs are similar in any tested

pair of trial types that differ only in the initial sensory state (Fig-

ure 5A), and the overall criterion of information for committing

to a choice decreases over time (Figure 1F). Furthermore, here

we confirm that evidence and urgency influence the time course

of activity in directionally tuned PMd and M1 neurons, at both a

single-cell and population level (Figures 2 and 3).

Importantly, in a human study using the tokens task (Cisek et

al., 2009) as well as the present study, the sensory information

was not integrated over time, as predicted by the widely

accepted drift-diffusion model (Mazurek et al., 2003; Ratcliff,

1978). Any integrator predicts that even after the state of sensory

information became identical in two trials, neural activity would

continue to reflect the within-trial history of that state. However,

here we saw no effects of within-trial history differences (Figures

4 and 5), as if the sensory information was not integrated but

instead simply low-pass filtered with a short time constant

(less than 200 ms) (Figure 5B). Although a leaky integrator (Usher

and McClelland, 2001) could potentially explain this result, the

leak would have to be so strong that the time constant of the

system would be very short, and it would effectively be equiva-

lent to a low-pass filter.

It is possible that fast tracking of sensory information is

specific to the tokens task but that the brain integrates informa-

tion with a longer time constant when the stimulus is noisy or
k.
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when a memory of sensory events is necessary. However, a

recent study using a variant of the classic motion discrimination

task in which the coherence was changing during each trial

(Thura et al., 2012) found results similar to those reported here,

inconsistent with a long-time constant of integration. Indeed,

slow integration does not make good sense during natural

behavior (Chittka et al., 2009), because it is too sluggish to

respond to sudden changes. It is more useful for the brain

to emphasize only novel information, thus remaining sensitive

to the current sensory state without integrating redundant

samples. Furthermore, we have shown that a decreasing deci-

sion criterion (Figure 1F), which may be implemented using an

urgency signal, yields a higher reward rate than any setting of

a constant criterion (Thura et al., 2012). Thus, we conclude that

during natural, dynamic decisionmaking, the brain does not inte-

grate sensory samples but instead quickly tracks sensory infor-

mation and combines it with a growing urgency signal. It remains

to be seen whether a longer time constant of integration is used

when making decisions in static tasks.

The results shown on Figures 2–4 are compatible with two

recent studies using tasks in which evidence changed over

time. In the monkey, Yang and Shadlen (2007) showed that LIP

activity reflects the sequential information provided by stimulus

cues about which of two saccade targets was the most likely

to yield a reward. Similar to what we found in PMd and M1 (Fig-

ure 3), LIP activity resembled a sigmoidal function of the log

evidence for a choice. Some buildup over time was also

observed, but it was much weaker than what we found here.

This may be due to differences in recording sites and effector

systems or due to the fact that in their study the monkeys were

not allowed to make decisions until the end of the trial, moti-

vating them to keep the urgency signal low.

In the human, Gluth et al. (2012) showed that when subjects

were given sequential information about the value of a hand

response choice, the BOLD signal in motor output regions

combined value information with a signal related to the growing

urgency to respond. The effect of growing urgency was strong,

perhaps because subjects were allowed to respond at any

time, as in our study. This agrees with the proposal (Ditterich,

2006; Standage et al., 2011; Thura et al., 2012) that when an

agent is free to decide at any time, the policy that maximizes

reward rate is to have a decreasing decision criterion, which

can be implemented through a growing urgency signal. Some

studies have suggested that urgency is multiplicatively com-

bined with sensory information (Cisek et al., 2009; Ditterich,

2006; Stanford et al., 2010; Thura et al., 2012), while others

suggest an additive process (Churchland et al., 2008; Gluth

et al., 2012). Here, we found that while some cells showed a

change in both the slope and baseline of their neural response

function over time (Figures 3 and S2), the average population

response was dominated by a baseline shift (Figures 3B and

3D), consistent with an additive urgency.

The proposal of a biased competition in the sensorimotor

system raises the question of what the source of the relevant

biases is. Previous studies implicate the lateral prefrontal cortex

(lPFC) as a major source of task-specific information for action

selection (Kim and Shadlen, 1999; Tanji and Hoshi, 2001; Wallis

and Miller, 2003), and it is likely that, in our task, that is the region
1412 Neuron 81, 1401–1416, March 19, 2014 ª2014 Elsevier Inc.
contributing information about token movements. Indeed, pilot

recordings in lPFC of monkey S showed an effect of sensory

evidence on cell activity (Thura and Cisek, 2010). Buildup activity

resembling our urgency signal has been reported in the supple-

mentary motor areas (Casini and Vidal, 2011; Fried et al., 2011;

Mita et al., 2009) and for oculomotor tasks in LIP (Churchland

et al., 2008; Janssen and Shadlen, 2005; Maimon and Assad,

2006). It is also plausible that all of these regions receive a com-

mon urgency signal from the basal ganglia, which may control

both the timing of action selection as well as the vigor of the

selected movement (Desmurget and Turner, 2010).

Decision Commitment Occurs when the Competition
between Actions Is Resolved
Our results are consistent with a model in which a competition

between movement options is continuously biased by evolving

sensory and urgency signals. In Figures 6 and 7, we observe

themoment at which this competition is resolved, approximately

280 ms prior to movement onset. Here, we refer to this as the

‘‘moment of commitment,’’ although we recognize that such

labels are perforce tentative. At this moment, the activity of

PMd cells tuned to the selected target reaches a peak, while

the activity of M1 cells tuned to the OT is suppressed (Figure 6C).

Approximately 140 ms later, M1 cells tuned to the selected

target also reach their peak of activity. Finally, approximately

another 40 ms later, a peak occurs among M1 cells that are

not significantly tuned during decisions (Figure S6), but which

reflect kinematics of movement and may be involved in initiation

and execution (Kalaska et al., 1989).

The timing of these events is remarkably consistent across trial

types and clearly predicts movement initiation (Figures 6C

and 7B). However, the peak of PMd activity is not simply related

to movement initiation itself. First, it is very early, about 280 ms

before the cursor begins to move, and thus at least 200 ms

before any voluntary muscle contractions. This is close to the

monkey’s total RT in the DR task, a point we will return to later.

Second, when movement is externally instructed in the DR

task, there is no evidence for similar events taking place around

the GO signal (Figure 8). During the DR task, the delay-tuned

PMd population becomes strongly active shortly after cue

presentation (Figure 8C, solid lines), reaching a discharge rate

comparable to its activity at the moment of commitment in the

tokens task (about 25Hz) (Figure 8D, solid lines). However, unlike

in the tokens task, this activity is sustained throughout the delay

period, and at the time of movement onset, it falls to a level

comparable to onset-time activity in the tokens task (16 Hz)

(Figure S8). Similar phenomena are seen in the delay-tuned M1

population. However, when activity is aligned at the time of the

GO signal (middle panels in Figure 8A, 8C, 8E, and 8G), we see

no evidence of task-related activity changes in either area. Inter-

estingly, PMd cells that do not meet the criteria for significant

tuning in the DR task still show similar trends (Figures 8C and

8D, dashed lines), although their activities at movement onset

are not consistent across the tasks.

We propose the following interpretation of these results: To

initiate a movement, the motor system must have committed to

a given option and must not be actively inhibited. In the DR task

(as in previous studies with static decision tasks), the
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commitment presumably occurs shortly after the presentation of

the cue, but the system is actively inhibited from initiating move-

ment by amechanism that does not involve the cells we recorded

here. Previous studies have suggested that there are no ‘‘omni-

pause’’ neurons in M1 (Kaufman et al., 2013) and that active inhi-

bition of movement initiation may involve spinal mechanisms

(Duque et al., 2010; Prut and Fetz, 1999). In the tokens task,

such active inhibition is not necessary because the monkey is

allowed to respond at any time. Therefore, all that is necessary

tomeet theconditions formovement initiation is that commitment

to a given option is reached. For this reason, in the tokens taskwe

observe a buildup of activity with a clear and brief PMd peak that

predicts movement onset time approximately 280 ms later.

We now return to the question of the timing of this ‘‘moment of

commitment.’’ It precedes movement onset by approximately

280 ms, which is remarkably close to the average RTs in the

DR task (Monkey S: 291 ± 40 ms; Monkey Z: 335 ± 93 ms).

This raises an intriguing quandary: how can the time interval

between the GO signal and movement onset, which presumably

includes both sensory andmotor delays, be similar to the interval

between an internal commitment and movement onset, which

presumably only includes a motor delay? We considered two

possibilities. The first is that in the DR task the monkeys may

have learned to anticipate the timing of the GO signal so well

that, on average, movement initiation begins before the sensory

cue, and so the mean RT is entirely accounted for by pure motor

delays. However, monkeys’ behavior is not consistent with this

explanation. For instance, in monkey S, the distribution of RTs

in the DR task was narrower (SD = 71.2 ms) than the distribution

of latencies between target and movement onsets (SD =

140.6 ms), and there was no trend for the latter to decrease

during training. An alternative explanation is that the motor delay

is longer when commitment is volitional than when it is externally

instructed, as suggested by previous studies. For example, van

Donkelaar et al. (1999) found that the latency between activity in

the motor thalamus and movement onset was often 50–150 ms

longer when actions were internally generated than when they

were visually triggered. Earlier studies by Romo et al. (Romo

et al., 1992; Romo and Schultz, 1992) comparing striatal and

SMA activity during visually versus internally triggered tasks

found that activity in both regions begins long before self-initi-

ated movements. Those authors suggested that self-initiated

movements require reverberating activity within the cortico-

striatal circuit, whose total loop time was estimated at 35–

50 ms. Our findings are in good agreement with this proposal.

If total RT in the DR task is approximately 300 ms and the visual

latency in PMd is approximately 50–80 ms (Cisek and Kalaska,

2005; Ledberg et al., 2007), then the motor delay is about 220–

250 ms. If volitional commitment requires an additional pass

through a cortico-striatal loop, then the delay between commit-

ment in PMd/M1 and movement should be about 255–300ms,

compatible with our estimate of 280 ms. Further research would

be necessary, of course, to test this conjecture.

A Mechanism for Action Choice Formation and
Commitment
All of the results summarized above may be parsimoniously

explained in terms of a class of simple dynamic ‘‘attractor’’
models of recurrent competitive networks (Cisek, 2007; Gross-

berg, 1973; Standage et al., 2011; Wang, 2002). In such models,

cells tuned to different options compete through mutual inhibi-

tion, and this competition is biased by various factors. A decision

is said to be made when the activity of one group of cells be-

comes strong enough to suppress the others, and the system

exhibits a phase transition. This event need not involve any

explicit threshold detection mechanism but instead emerges

from the dynamics of the system (Grossberg, 1973). Neverthe-

less, the activity of the winning cells at that moment may be

similar across task conditions and thus appear as a consistent

peak of activity, as in our data.

While our findings contradict the traditional view that all

decision making is a cognitive process taking place in terms of

abstract outcome-related variables (Padoa-Schioppa, 2011), it

should be emphasized that not all decisions are the same. Obvi-

ously, the challenges faced by an animal moving around its envi-

ronment are very different from those faced by an economist

selecting a stock portfolio or a radiologist looking for a tumor.

In particular, during action selection, the choices themselves

are defined by sensory information about the geometric layout

of the environment around the animal, which may be continu-

ously changing, especially if the animal is moving. That informa-

tion influences not just the reward and costs of the potential

actions but also determines whether the decision between

them must be all-or-none or whether a mixture is also an option

(Pastor-Bernier and Cisek, 2011). Because opportunities may be

lost over time, there is no preset level of desired performance but

instead a trade-off between speed and accuracy that may be

achieved through a growing urgency signal (Thura et al., 2012).

Finally, regardless of how the decision unfolds over time, its con-

sequences only begin to play out after an action is taken. Thus,

commitment is only meaningful insofar as an action is initiated.

In summary, when deciding between actions, there are many

reasons why the processes of deliberation and commitment

should take place within the sensorimotor system itself.

EXPERIMENTAL PROCEDURES

Subjects and Apparatus

Twomalemonkeys (Macacamulatta; S was 6 years old and 6 kg; Zwas 4 years

old and 4 kg) were implanted, under anesthesia and aseptic conditions, with a

titanium head-fixation post and recording chambers. Surgery, testing proce-

dure, and animal care were approved by the local animal ethics committee.

Monkeys sat head-fixed in a custom primate chair and performed two planar

reaching tasks using a vertically oriented cordless stylus whose position was

recorded by a digitizing tablet (CalComp, 125 Hz). Their nonacting hand (for

S, left hand for �2 years then right hand for 6 months; for Z, left hand) was

restrained on an arm rest with Velcro bands. In some sessions, unconstrained

eye movements were recorded using an infrared camera (ASL, 120Hz). Stimuli

and continuous cursor feedback were projected onto a mirror suspended

between the monkey’s gaze and the tablet, creating the illusion that they are

in the plane of the tablet. Neural activity was recorded with one to four inde-

pendently moveable (NAN microdrive) microelectrodes (FHC), and data was

acquired with the AlphaLab system (Alpha-Omega Eng.).

Behavioral Tasks

In the ‘‘tokens’’ task (Figure 1A), the monkey is presented with one central

starting circle (1.75 cm radius) and two peripheral target circles (1.75 cm

radius, 180� apart, and 5 cm from the center). Each trial begins when the cursor

is placed in the central circle, in which 15 small tokens are randomly arranged.
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The tokens then begin to jump, one-by-one every 200 ms (‘‘predecision’’ inter-

val), from the center to one of the two targets. Themonkey’s task is tomove the

cursor to the target that he guesses will ultimately receive the majority of

tokens, and he is allowed to make the decision at any time. When the cursor

reaches a target, the remaining tokens move more quickly to their final targets

(‘‘postdecision interval,’’ which was either 50 ms or 150 ms in separate ‘‘fast’’

and ‘‘slow’’ blocks of trials). In the present report, we primarily use data from

the slow blocks (although we also include some fast blocks from monkey Z

early in his experience, while his behavior was statistically indistinguishable

in the two blocks). Once all tokens have jumped, visual feedback is provided

(the chosen target turns green for correct or red for error choices), and a

drop of fruit juice delivered after correct choices.

In the DR task (usually 30–48 trials per session), the monkey again begins by

placing the cursor in the central circle containing the 15 tokens. Next, one of six

peripheral targets is presented (1.75 cm radius, spaced at 60� intervals around
a 5 cm radius circle), and after a variable delay (500 ± 100 ms), the 15 tokens

simultaneously jump into that target. This ‘‘GO signal’’ instructs the monkey to

move the handle to the target to receive a drop of juice.

Neural Recordings

Recording chambers were centered near the arcuate sulcus of the hemisphere

contralateral to the performing hand. Placement was guided using anatomical

MR images (Siemens 3T) coupled with neuro-navigation software (Rogue

Research Inc.). Within each chamber, we used the frontal eye field as a land-

mark, localized as the region where saccades could be evoked by intracortical

microstimulation (40 ms train of 0.2 ms monophasic pulses at 500 Hz) with

current ranging from 50–100 mA (Bruce et al., 1985). During recordings in

PMd and M1, the extracellular signal was amplified (31000) and band-pass

filtered (0.3–3 kHz), and action potentials were isolated on-line using template

matching. This was used to identify task-related cells and estimate their spatial

tuning for target placement. However, all analog waveforms were stored on

disk for subsequent offline sorting using principal components (Plexon), and

all results presented here are based on the offline sorted data. All tasks events,

kinematics, gaze position, and spike times were stored in a database (Micro-

soft SQL) accessed for data analysis via custom-written scripts (Matlab,

Mathworks).

During recording sessions, we focused on cells showing a change of activity

in the tokens task, and monkeys were usually performing the task while we

were searching for cells. When one or more task-related cells were isolated,

we ran a block of 30 to 48 trials of the DR task to determine spatial tuning

and select a PT for each cell (i.e., the target associated with the highest firing

rate during one or more task epochs). Next, we ran blocks of tokens task trials

using the PT of an isolated cell and the 180� OT.We sometimes simultaneously

recorded several task-related cells showing different spatial preferences, and

since we always selected a single pair of targets, the actual best direction for

each of the recorded cells was not always one of these two. Nevertheless,

when comparing activity between the tokens and DR tasks, we always chose

a cell’s ‘‘PT’’ from among the two targets used in the tokens task.

Behavioral Data Analysis

In the tokens task we can calculate, at each moment in time, the success

probability pi(t) associated with choosing each target i. For instance, if at a

particular moment in time the right target contains NR tokens, whereas the

left contains NL tokens, and there are NC tokens remaining in the center,

then the probability that the target on the right will ultimately be the correct

one (i.e., the success probability of guessing right) is the following:

pðRjNR;NL;NCÞ=NC!

2NC

XminðNC ;7�NLÞ

k = 0

1

k!ðNC � kÞ!: (Equation 1)

Calculating this quantity for the 15 token jumps allows us to construct

the success probability profile pi(t) associated with each trial (Figure 1B).

Although each token jump and each trial was completely random, we could

classify a posteriori some specific classes of trials embedded in the fully

random sequence (e.g., ‘‘easy,’’ ‘‘ambiguous,’’ and ‘‘misleading’’ trials)

(Figure 1C).
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We focus behavioral analyses on three variables: DT, SPD, and ‘‘confi-

dence’’ at DT. To estimate the DT, we first detect the time of movement onset

(based on analysis of kinematics; see Pastor-Bernier et al., 2012) and subtract

from this the monkey’s mRT in the DR task on the same day. We then use

Equation 1 to compute for each trial the SPD (Figure 1B).

Calculation of the monkey’s confidence at DT is based on the available

sensory evidence favoring the chosen target at the time of the decision. We

do not believe that monkeys can calculate Equation 1, but we expect that

they canmake a reasonable estimate.We thus computed a simple approxima-

tion of sensory evidence as the sum of log likelihood ratios (SumLogLR) of

individual token movements (see Cisek et al., 2009 for more details), which

is proportional to the difference in the number of tokens present in each target.

Neural Data Analysis

All neurophysiological data reported here were acquired from correct or error

trials in which the monkeys completed the tokens task by choosing one of the

two targets. Neurons were selected according to their anatomical location and

physiological properties. Among all cells recorded in PMd and M1, we focus

here on those showing a significant spatial preference for one of the targets

during the deliberation process (i.e., between the first token jump and our

estimate of DT). For each cell, we calculated the mean activity for each target

choice during the 200 ms preceding DT in the tokens task and assessed the

significance using a receiver-operating characteristic analysis with a criterion

of 0.65.

Instantaneous firing rate was assessed via a partial interspike interval

method. When analyzing data with respect to the start of the trial (first token

jump), we usually exclude all spikes occurring after our estimate of DT, thus

precluding any activity associated with movement initiation and/or execution.

This is important in order to prevent averaging artifacts due to the very wide

range of DTs in the tokens task. KS tests were used to compare activity distri-

butions. Spearman’s rank test was used to assess significance of the relation-

ship between SumLogLR and neural activity. We determined the moment that

a cell discriminated between PT and OT when the difference of activity

exceeded two SDs (computed from baseline) in a 10 ms sliding window with

a 2 ms step size (Sato and Schall, 2003). To be included in our analyses, cells

had to have been recorded during at least four trials in each tested condition.

The significance level of all statistical tests was set at 0.05.
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Gluth, S., Rieskamp, J., and Büchel, C. (2012). Deciding when to decide: time-

variant sequential sampling models explain the emergence of value-based

decisions in the human brain. J. Neurosci. 32, 10686–10698.

Gold, J.I., and Shadlen, M.N. (2000). Representation of a perceptual decision

in developing oculomotor commands. Nature 404, 390–394.

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making.

Annu. Rev. Neurosci. 30, 535–574.

Grossberg, S. (1973). Contour enhancement, short term memory, and

constancies in reverberating neural networks. Stud. Appl. Math. 52, 213–257.
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