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Abstract

Over the last years multiple variations of the Social Force model have been proposed. While most of the available force-based

models are calibrated on observed human movement data, validation for investigating the model characteristics, e.g. variance in

parameter values, is still sparse. We present a novel methodology for validating Social Force based models which investigates

the reproducibility of human movement behavior on the individual trajectory level with real-world movement data. Our approach

estimates model parameter values and their distribution with non-linear regression on observed trajectory data, where the resulting

variances of the parameter values represent the model’s validity. We demonstrate our approach on a comprehensive (235 pedestri-

ans) and highly accurate (within a few centimeters) set of human movement trajectories obtained from real-world pedestrian traffic

with bidirectional flow using an automatic people tracking approach based on Kinect sensors. We validate the Social Force model

of Helbing and Molnár (1995), Helbing and Johansson (2009) and Rudloff et al. (2011).
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1. Introduction

Nowadays, pedestrian simulation is used in many different applications and has proven to be a valuable tool to

support the design and evaluation of architectural plans, to estimate traffic needs and capacities, to increase safety,

efficiency and comfort in crowded areas and to analyze different scenarios for emergency evacuations. Microscopic

models, in particular, allow to simulate very detailed human movement interactions on the individual level and thus

can reveal a multitude of useful information for designers and planners of infrastructures and urban places. As

computational power increases, and becomes more affordable, these microscopic models are also more frequently

used for highly complex environments which comprise crowd flows of several 10,000 individuals such as airports,

public transit hubs and mass events.

Human movement involves different behavioral processes which according to Hoogendoorn and Bovy (2004) can

be roughly grouped into a strategic (choice of general behavior, e.g. destinations, and activity area), a tactical (activity

scheduling and route choice) and an operational (short range behavior and instantaneous decisions) level. This paper
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focuses on the microscopic modeling of pedestrian movement on the operational level where a model generally has to

take care of the following two tasks: 1) each pedestrian wants to walk with an individual desired speed while 2) keeps

a certain distance from other pedestrians and static obstacles.

Various academic tools, e.g. NOMAD (Hoogendoorn (2003)), Hermes (Holl et al. (2014)), and commercial soft-

ware, e.g. SimWalk (Savannah Simulations), PedGo (TraffGo), VisWalk (PTV), MassMotion (Oasys Software), Cast

(ARC), exist. On the operational level, many of them are based or are closely related to the Social Force approach

which was first described in Helbing and Molnár (1995). Inspired by the principles of the Social Force model different

variations have been proposed in the scientific literature such as in Lakoba et al. (2005), Parisi et al. (2009), Seyfried

et al. (2006).

In order to develop a model that is able to represent realistic movement behavior one has to perform model calibra-

tion and a validation of the results. Therefore, observations of real pedestrians are needed which can be obtained from

(controlled) experiments (Daamen and Hoogendoorn (2012)) or from real-world measurements. Quantitative data

from human movement observations can comprise, for instance, travel times, flow rates, speed-density fundamental

relation or even trajectories of individual pedestrians. The process of collecting individual trajectories to calibrate

microscopic models is cumbersome since robust (including all individuals being in a scene at the same time), accu-

rate (within a few centimeters) and comprehensive (minimum of several 100 individuals) trajectories from various

scenarios (e.g. different pedestrian densities) are needed. To meet these high standards, typically video footage of

pedestrian movement is recorded and annotated either manually or semi-automatically (Boltes et al. (2010)). Recently,

an approach using the Microsoft Kinect as a low cost sensor for obtaining highly accurate people trajectories (Seer

et al. (2012)) was shown to be a valuable tool for developers of microscopic models in the calibration and validation

process. In this paper we also rely on the data set collected in the work of Seer et al. (2012).

Several calibration procedures were suggested in the literature where in particular two distinct approaches are pre-

dominant: the first is model estimation by maximum likelihood or nonlinear least square methods (e.g. Hoogendoorn

et al. (2007) or Ko et al. (2013)). However, as shown in Rudloff et al. (2014) this approach suffers strongly from errors

in variables due to the large measurement errors from data collection using pure video data. The second approach

involves the comparison of real and simulated trajectories (e.g. Moussaı̈d et al. (2009), Rudloff et al. (2011)) and

hence is time consuming as a complete simulation run is needed during each optimization step.

Since the quality of the trajectories from Seer et al. (2012) is significantly higher compared with those automatically

extracted from video footage, it needs to be determined if the added data quality makes a nonlinear least square

estimation feasible. Many of the available force-based models are calibrated on observed human movement data (e.g.

Campanella et al. (2014)) However, validation for investigating the model characteristics, e.g. variance in parameter

values, is still sparse. It needs to be determined if the estimated parameters can explain the diverse behavior of

pedestrians or if parameters need to be more flexible and differ for different pedestrians. This would suggest that a

Social Force model with a single parameter set might not be able to explain pedestrian behavior in different situations

for example with respect to different densities.

The contribution of this work is to present a methodology for validating Social Force based models which inves-

tigates the reproducibility of human movement behavior on the individual trajectory level for different settings with

real-world movement data. Our approach estimates model parameter values and their distribution with non-linear

regression on observed trajectory data, where the resulting variances of the parameter values represent the model’s

validity. We demonstrate our approach on a comprehensive (235 pedestrians) and highly accurate (within a few cen-

timeters) set of human movement trajectories obtained from real-world pedestrian traffic with bidirectional flow using

an automatic people tracking approach based on Kinect sensors (Seer et al. (2012)). We validate the Social Force

model of Helbing and Molnár (1995), Helbing and Johansson (2009) and Rudloff et al. (2011).

The remainder of this paper is structured as follows. Section 2 describes the variants of the Social Force model

that are used in this work. In Section 3, we describe the data set originating from real-world observations and the

preprocessing of the trajectories. Section 4 presents our methods of model calibration and validation also including

the results. Section 5 concludes the main findings and discusses future research directions.

2. Variants of the Social Force model

In the scientific literature, different variants of the Social Force approach have been described. All of them are

based on the principle of modeling behavioral changes guided by so-called social forces. Given that the movement of
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a person depends on velocity and hence on acceleration, the principle of the Social Force model aims at representing

individual walking behavior as a sum of different accelerations as

fα(t) =
v0
αeα − vα
τα

+
∑
β�α

fαβ(t) +
∑

i

fαi(t) (1)

The acceleration fα at time t of an individual α towards a certain goal is defined by the desired direction of movement

eα with a desired speed v0
α. Here, the current velocity vα is adapted to the desired speed v0

α within a certain relaxation

time τα. The movement of a pedestrian α is influenced by other pedestrians β, which is modeled as a repulsive

acceleration fαβ. A similar repulsive behavior for static obstacles i (e.g. walls) is represented by the acceleration fαi.

For notational simplicity, we omit the dependence on time t for the rest of this section.

From the set of different formulations of the Social Force model available in the scientific literature, we compare

three variations of the Social Force model based on the general formulation (1).

Model A: The first model from Helbing and Molnár (1995) is based on a circular specification of the repulsive

force given as

fA
αβ = Aαe−

(rα+rβ−‖dαβ‖)
Bα ·

dαβ∥∥∥dαβ∥∥∥ (2)

where rα and rβ denote the radii of pedestrians α and β, and dαβ is the distance vector pointing from pedestrian α
to β. The interaction of pedestrian α is parameterized by the strength Aα and the range Bα, where their values are

determined in the model calibration process.

Model B: The second model uses the elliptical specification of the repulsive force as described in Helbing and

Johansson (2009) determined by

fB
αβ = Aαe−

wαβ
Bα ·

∥∥∥dαβ∥∥∥ + ∥∥∥dαβ − yαβ
∥∥∥

2wαβ
·

1

2

⎛⎜⎜⎜⎜⎜⎝ dαβ∥∥∥dαβ∥∥∥ +
dαβ − yαβ∥∥∥dαβ − yαβ

∥∥∥
⎞⎟⎟⎟⎟⎟⎠ (3)

where the semi-minor axis wαβ of the elliptic formulation is given by

wαβ =
1

2

√(∥∥∥dαβ∥∥∥ + ∥∥∥dαβ − yαβ
∥∥∥)2 − ∥∥∥yαβ∥∥∥2 (4)

with yαβ = (vβ − vα)Δt. Here, the velocity vectors vα and vβ of pedestrians α and β are included allowing to take into

account the step size of pedestrians.

Model C: The third model is an implementation of Rudloff et al. (2011) in which the repulsive force is split into

one force directed in the opposite of the walking direction, i.e. the deceleration force, and another one perpendicular

to it, i.e. the evasive force. Here, the repulsive force is given as

fC
αβ = nα Ane

−Bnφ2αβ
vrel

−Cn‖dαβ‖︸��������������︷︷��������������︸
deceleration force

+pα Ape
−Bp|φαβ|

vrel
−Cp‖dαβ‖︸����������������︷︷����������������︸

evasive force

(5)

where nα is the direction of movement of pedestrian α and pα its perpendicular vector directing away from pedes-

trian β. Furthermore, φαβ is the angle between nα and dαβ and vrel denotes the relative velocity between pedestrians α
and β. Model parameters are denoted by An, Bn,Cn, Ap, Bp and Cp.

The repulsive force from static obstacles fαi is modeled by using the functional form as given by the repulsive force

for pedestrians from Model B in all cases. Here, the point of an obstacle i closest to pedestrian α replaces the position

β and vi is set to zero. Furthermore, we take into account that pedestrians have a higher response to other pedestrians

in front of them by including an anisotropic behavior, as described in Helbing and Johansson (2009), into the first two

formulations.
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3. Measures for human movement

The data used in this paper for model calibration and validation originates from a real-world setting at the Mas-

sachusetts Institute of Technology (MIT)’s Infinite Corridor as described in Seer et al. (2012). This hallway serves as

the most direct indoor route between the east and west ends of the campus and is highly frequented by students and

visitors. In order to collect a large dataset on pedestrian movement, three Kinect sensors were suspended from the

ceiling and covered a total scanning area of roughly 2 m x 6 m. By applying the automatic tracking approach from

Seer et al. (2012), we obtain a set

T ′ =
{[

t′α x′α y′α
]T }
α∈N,

(6)

of human trajectories represented by 3 × D′α matrices where N is the set of pedestrians, D′α is the number of positions

in the trajectory of a pedestrian α and the matrices are composed of a vector of timestamps t′α and 2D positions

x′α =
[
x′α y′α

]T
. As a result of the automated tracking, each trajectory in T ′ consists of coordinate sequences of

arbitrary length and time. To have trajectory data points at a regular time interval Δt = 0.1 seconds and to remove

small local variations along trajectories, each trajectory in T ′ was resampled. Hence, we obtained a set of resampled

trajectories T with tα =
[
tin
α , t

in
α + Δt, tin

α + 2Δt, . . . , tout
α

]
, tin
α =
⌊
t′α1/Δt

⌋
Δt and tout

α =
⌊
t′
αD′α
/Δt
⌋
Δt. The corresponding

xα and yα at regular time intervals tα are obtained by cubic spline approximation (see de Boor (2001)) with a smoothing

parameter p = 0.98.

Fig. 1a illustrates the automatically obtained trajectories from a walking experiment with a single centralized ob-

stacle in the scene. This walking experiment was performed under real world conditions, meaning that the individuals

traversing MIT’s Infinite Corridor had no information about being observed. The red and blue trajectories in Fig. 1a

represent the two walking lanes in opposite directions which people form most of the time. Fig. 1b shows the trajectory

density map using a kernel density estimation with a normal kernel function and a bandwidth of 0.1 m. This reveals

the main paths located on both sides of the corridor which pedestrians use to evade from the centralized obstacle.

From the trajectories one can directly extract the acceleration f̃α(t) for each individual α at each time instance t
from the collected trajectories according to

f̃α(t) :=
[
f̃ x
α (t), f̃ y

α(t)
]
=

[
(xα(t + 1) − xα(t)) − (xα(t) − xα(t − 1))

Δt2
,

(yα(t + 1) − yα(t)) − (yα(t) − yα(t − 1))

Δt2

]
(7)

(a) (b) (c)

Fig. 1. Observed (a) trajectories with walking directions encoded in red and blue, (b) density map and (c) acceleration map based on real-world

observations in a corridor with a single centralized obstacle.
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Fig. 1c shows the time averaged accelerations inside the scanning area. As expected the accelerations are higher

the nearer pedestrians pass the central obstacle. Besides, in the lower right and in the upper left part of the figure, the

areas where people start to deviate can be identified. We derive the position and the desired goal for a pedestrian α
from the first point at time tin

α and the last point at tout
α of the associated observed trajectory Tα. The desired velocity

v0
α of pedestrian α is defined as the 95th percentile of the observed velocities. The magnitude of the current velocity

vector vα is set equal to v0
α, and it directs towards the pedestrian’s desired goal. Furthermore, we set for each simulated

pedestrian r = 0.25 and τ = 0.5.

Since only a section of the corridor was observed, it has to be guaranteed that all individuals influencing each

other’s movements (i.e. persons closer than 2 m in front or 1 m behind) are present in the scene. We selected a subset

of trajectories T S corresponding to a set of pedestrians M, where M is a subset of N, that fulfills two constraints:

1) they are long enough, i.e. start below y = 1 m and end above y = 4 m and vice versa without stops, and 2) all other

individuals who are present or appear during the time span of the relevant trajectory have to be present for the whole

time span or until they leave the scene. For the subsequent calibration, we only use segments of trajectories in T S ,

which in upward direction are between y = 1 m and y = 4 m and between y = 5 m and y = 2 m for the downward

direction (see Fig. 1). Hence, we denote the start and end time of the segments by tstart
α and tend

α .

4. Model estimation and validation results

As a first step, we examine the validity of estimating the parameters of the investigated Social Force models using

non-linear least square estimation. In the estimation procedure we use the objective function

fob j(θ) =
∑
α∈M

tend
α∑

t=tstart
α

((
f̃ x
α (t) − f x

α (t, θ)
)2
+
(

f̃ y
α(t) − f y

α(t, θ)
)2)

(8)

where fα(t, θ) =
[
f x
α (t, θ), f y

α(t, θ)
]

is the acceleration at time t given a parameter set θ. The optimization uses the

gradient based method fmincon in MATLAB. This method also allows to extract the Hessian matrix Hf of fob j at

the estimated optimal parameter set θ̂, which in turn gives an estimate of the covariance matrix of the parameters as

Cov(θ̂) = H−1
f . Using fob j(θ) the three Social Force models are calibrated in two ways: by estimating the parameters

for all pedestrians at once (general calibration) and by estimating them for the first 33 pedestrians (personalized cali-
bration) in order to examine if the models transfer well to single pedestrians. The results of the parameter estimation

for all three models can be seen in Table 1.

Table 1. Estimated parameter values for the three models with standard deviations of the parameters in brackets. Parameters significantly different

from zero are in bold letters.

Model

Value of fob j

General Calibration

Avg. value of fob j and (std)

Personalized Calibration Parameter

Parameter Value and (std)

General Calibration

Avg. Parameter Value and (std)

Personalized Calibration

Model A 2189.4 7.0374 (5.1200) A 0.1634 (0.0104) 0.4500 (04050)

B 4.1554 (0.6535) 13.4651 (18.3852)

Aw 1.9534 (1.2244) 8.8260 (15.4703)

Bw 0.1090 (0.0231) 0.2882 (07676)

Model B 2244.4 7.9460 (5.7311) A 0.1845 (0.0205) 0.4213 (0.3941)

B 5.9334 (1.6812) 5.7032 (0.7336)

Aw 1.9534 (0.6035) 1.5540 (2.1782)

Bw 0.1366 (0.0248) 0.7415 (2.7448)

Model C 1925.2 6.1492, (3.8987) An 0.2615 (0.0551) 1.0310(1.9060)

Bn 0.4026 (0.1238) 2.0385 (5.2833)

Cn 2.1614 (0.3728) 2.3522 (0.9944)

Ap 1.5375 (0.3084) 1.8980 (0.8775)

Bp 0.4938 (0.1041) 0.9656 (0.9226)

Cp 0.5710 (0.1409) 0.9190 (0.8823)

Aw 0.3280 (0.1481) 0.7450 (1.5747)

Bw 0.1871 (0.0563) 1.8044 (4.1646)
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Fig. 2. Boxplots with estimated parameter values from personalized calibration for (a) Model A, (b) Model B and (c) Model C.

The results show that the objective function is best for Model C and that Model A with the original circular

formulation outperforms Model B with the elliptical form. Despite the large number of data points (7799 from 235

trajectories) the parameters estimated in the general calibration are not all significant, which suggests either that the

information contained in the data is not sufficient or that there is a strong variation in behavior between different

pedestrians. It can be seen from Table 1 that the parameters of the personalized calibration are higher on average than

the parameters of the general calibration and their standard deviations are rather large. Fig. 2 shows that all these

parameters lie in a relatively small band and that there are only a few outliers. This, together with the plots in Fig. 3,

suggest that some pedestrians react much stronger than others to obstacles. Furthermore, the accelerations from the

parameter set estimated by the general calibration do not suffice to model this strong reaction.

In order to test if the results from the non-linear least square estimation in a model reproduce good reaction to other

pedestrians, it is important to investigate the collision avoidance behavior of the model. As an example, we show in

Fig. 4 the accelerations in x and y directions resulting from the three models with parameters from general calibration.

In this setting a pedestrian is walking with a velocity of [0, 1] towards a goal upwards in y-direction while another

pedestrian stands at position [1.1, 3]. The accelerations resulting from the model are calculated for all positions in

a 2D regular grid with grid size 0.1 m. One can see that all models show collision avoidance behavior. Due to

model restrictions Models A and B do not show much acceleration to the side when a pedestrian is walking towards

an obstacle straight ahead, but rather just decelerates the pedestrian. In comparison Model C does show avoidance

behavior in that case. Overall, the models show a promising behavior, however, a calibration should be performed on

denser scenarios to ensure that the collision avoidance works in those cases as well.

It was noted in Rudloff et al. (2014) that Social Force models have relatively large parameter areas where they

behave very similarly with respect to closeness of trajectories. However, the validation results in Fig. 3 show that the

different parameter sets from personalized calibration (see Fig. 2) produce significant variations in the behavior of

accelerations in x and y-directions. In particular there are some outliers in the acceleration behavior which result from

the fact that for some pedestrians the parameters from personalized calibration are much larger than for the general

calibration using the points from all trajectories.

5. Conclusion

We presented a procedure to estimate model parameter values for the validation of Social Force based approaches

using real-world pedestrian motion data. By using a comprehensive and highly accurate set of human movement

trajectories we were able to evaluate the model parameter values and their distribution of three different Social Force

variants based on non-linear least square parameter estimation. Due to the high quality of the trajectory data used

in this work, the problem of errors in variables in the calibration is reduced. This leads to parameter values for the

investigated models which reveal good collision avoidance behavior, despite the relatively simple scenario with low

pedestrian densities. Hence, the parameter values in this paper have to be taken with caution. A recalibration with

denser scenes should be performed to ensure that average pedestrian behavior can be reproduced well. This would be

in accordance with previous results (e.g. Johansson et al. (2007)) where the Social Force model proved to be able to

reproduce macroscopic characteristics, such as flow-density relations, well.
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Fig. 3. Accelerations calculated with Model A (left), B (middle) and C (right) in x-direction (a, b and c) and y-direction (d, e and f) for parameters

from personalized (black lines) and general calibration (bold red line).

It has to be noted though that parameters estimated for each pedestrian separately show large standard deviations.

The primary reason are large deviations of the parameter values of a few pedestrians. This suggests that the trajectories

of those pedestrians include large evasive maneuvers that cannot be described by the model using the parameter set

with the general calibration.

The results of our validation weakens the claim that the Social Force model as a microscopic model can reproduce

human behavior at a trajectory level for each single pedestrian. While it performs well for the majority of pedestrians,

the behavior of single pedestrians with more unusual or erratic behavior might not be well predicted using Social

Force approaches. However, pedestrians with unusual behavior might be important for the overall behavior of the

crowd, since other pedestrians need to react to them. This reveals the need for future discussion on how to calibrate

Social Force models and how to interpret the simulation results of these models. Even in simple scenarios, such as

the one presented in this work, the investigated models cannot be expected to reproduce all trajectories exactly.

It also needs to be discussed if the calibration of Social Force models on pedestrian trajectories is a good ap-

proach since the outliers in behavior might strongly influence the parameters. Other objective functions involving

macroscopic measures like densities and travel times might produce more reliable models for the prediction of these

important features. This approach needs to be evaluated in future. Furthermore, we suggest that all other microscopic

pedestrian simulation models should be investigated with respect to these considerations.
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