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We present a method for finding continuous (and consequently homeomorphic) orientation
preserving iterative roots of a Brouwer homeomorphism which is embeddable in a flow.
To obtain the roots we use a countable family of maximal parallelizable regions of the
flow which is a cover of the plane. The maximal parallelizable regions are unions of
equivalence classes of an appropriate equivalence relation. We show that if an equivalence
class is invariant under the nth iterate of a Brouwer homeomorphism g, then it is invariant
under g. We use this fact to prove that each maximal parallelizable region of the flow must
be invariant under all homeomorphic orientation preserving iterative roots of the given
Brouwer homeomorphism.
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1. Introduction

In this paper we give the form of all homeomorphic orientation preserving solutions g of the functional equation

gn = f , (1)

where n is a positive integer and f is a given Brouwer homeomorphism of R
2 (i.e. it is a homeomorphism of the plane

onto itself without fixed points which preserves orientation) embeddable in a flow { f t : t ∈ R}.
Difficulties in dealing with the problem of determining solutions of Eq. (1), where f is a given function, were described

in the survey paper [3] by Karol Baron and Witold Jarczyk. All continuous solutions of Eq. (1) were constructed by Marek
Kuczma [14] in the case where the given function f is a homeomorphism of a real interval. The existence and properties
of iterative roots of continuous piecewise monotone (and piecewise linear) maps of an interval were studied by Alexan-
der Blokh, Ethan Coven, Michał Misiurewicz and Zbigniew Nitecki [4], by Jingzhong Zhang and Lu Yang [34], by Lin Li,
Dilian Yang and Weinian Zhang [22] and by Weinian Zhang [36]. The existence of globally smooth iterative roots were
investigated by Weinian Zhang [35].

Wanxiong Zhang and Weinian Zhang [37] gave an algorithm to compute piecewise linear solutions of Eq. (1) in the
case where f is a piecewise linear function with finitely many non-monotone points. For linear fractional transformation
f an algorithm to compute iterative roots was given by Richard J. Martin [23]. Under the assumption that f is a home-
omorphism of the unit circle, Eq. (1) was studied by Krzysztof Ciepliński and Marek C. Zdun [6], Witold Jarczyk [10],
Paweł Solarz [30,31,33,32] and by Marek C. Zdun [38].

Eq. (1) has been extensively studied in the class of complex analytic functions. Carl C. Cowen [7] considered this equation
for an analytic mapping f of the open unit disc into itself and showed that such a map can be intertwined with a linear
fractional transformation. Mark Elin, Victor Goryainov, Simeon Reich and David Shoikhet [8] gave criteria for the existence of
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fractional iterates for a holomorphic self-mapping of the open unit disc. All meromorphic iterative roots of a linear fractional
transformation on C were constructed by YongGuo Shi and Li Chen [29].

Tony Narayaninsamy [26,27] studied Eq. (1) for some non-bijective continuous mapping f : M → R
n , where M is

a bounded convex subset of R
n . Fractional iterates of mappings defined on some neighbourhood of U ⊂ R

n of zero
which are given by formal series with zero free coefficient were investigated by Semeon Bogatyi [5]. Witold Jarczyk and
Weinian Zhang [11] considered the existence of iterative roots of set-valued functions defined on an arbitrary nonempty
set.

The general form of a continuous solution of Eq. (1) under the assumption that the given function f is a Sperner
homeomorphism (i.e. a homeomorphism of the plane which is topologically conjugate with a translation) was given
in [15,19]. The construction is based on the idea of Marek Kuczma [14]. Such a construction was possible since Sperner
homeomorphisms have a similar properties to homeomorphisms of an interval. However, the behaviour of Brouwer homeo-
morphisms is much more complicated. The structure of an arbitrary Brouwer homeomorphism was described by Tatsuo
Homma and Hidetaka Terasaka [12]. Hiromichi Nakayama [25] and Yoon Hoe Goo [9] gave an example of a Brouwer
homeomorphism which have no iterative roots of order 2. In the present paper we restrict our attention to Brouwer
homeomorphisms which are embeddable in a flow. We find all orientation preserving homeomorphic solutions of Eq. (1).
In the construction we use the structure theorem for Brouwer homeomorphisms that are embeddable in a flow given
in [18].

2. Maximal parallelizable regions

Throughout this section we assume that f is a Brouwer homeomorphism which is embeddable in a flow { f t : t ∈ R}.
It follows from the Jordan theorem that each orbit C of { f t : t ∈ R} divide the plane into two simply connected regions,
since f t(p) → ∞ as t → ±∞ for each p ∈ R

2. Note that each of them is invariant under f t for t ∈ R. Thus two different
orbits C p and Cq of points p and q, respectively, divide the plane into three simply connected invariant regions, one of
which contains both C p and Cq in its boundary. We will call this region by the strip between C p and Cq and denote
by D pq .

For any distinct orbits C p1 , C p2 , C p3 of { f t : t ∈ R} one of the following two possibilities must be satisfied: exactly one
of the orbits C p1 , C p2 , C p3 is contained in the strip between the other two or each of the orbits C p1 , C p2 , C p3 is contained
in the strip between the other two. In the first case if C p j is the orbit which lies in the strip between C pi and C pk we will
write C pi |C p j |C pk (i, j, k ∈ {1,2,3} and i, j, k are different). In the second case we will write |C pi , C p j , C pk | (see [13]).

Put

J+(q) := {
p ∈ R

2: there exist a sequence (qn)n∈Z+ and a sequence (tn)n∈Z+

such that qn → q, tn → +∞, f tn(qn) → p as n → +∞}
,

J−(q) := {
p ∈ R

2: there exist a sequence (qn)n∈Z+ and a sequence (tn)n∈Z+

such that qn → q, tn → −∞, f tn(qn) → p as n → +∞}
.

The set J (q) := J+(q) ∪ J−(q) is called the first prolongational limit set of q. Let us observe that p ∈ J (q) if and only if
q ∈ J (p) for any p,q ∈ R

2. For a subset H ⊂ R
2 we define

J (H) :=
⋃
q∈H

J (q).

One can observe that for each p ∈ R
2 the set J (p) is invariant.

An invariant region M ⊂ R
2 is said to be parallelizable if there exists a homeomorphism ψ mapping M onto R

2 such
that

f t(x) = ψ−1(ψ(x) + (t,0)
)

for x ∈ M.

The homeomorphism ψ occurring in this equality will be called a parallelizing homeomorphism of M . It is known that a
region M is parallelizable if and only if there exists a homeomorphic image K of a straight line which is a closed set in M
such that K has exactly one common point with every orbit of { f t : t ∈ R} contained in M (see [2, p. 49] and e.g. [21]).
Such a set K we will call a section in M .

It is known that a region M is parallelizable if and only if J (M) ∩ M = ∅ (see [2, pp. 46 and 49]). Hence for every
parallelizable region M we have J (M) ⊂ fr M . If M is a maximal parallelizable region (i.e. M is not contained properly in
any parallelizable region), then J (M) = fr M (see [24]).

Let α = (p1, . . . , pn) be a sequence of integers. Then, for any integer k by α ∗ k will be denoted the concatenation
of the sequences α and the one-element sequence k (for one-element sequences we omit parentheses), i.e. the sequence
(p1, . . . , pn,k).
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A class A+ of finite sequences α of positive integers will be termed admissible if the following conditions hold:

(1) A+ contains the sequence: 1, and no other one-element sequence;
(2) if α ∗ k is in A+ and k > 1, then so also is α ∗ (k − 1);
(3) if α ∗ 1 is in A+ , then so also is α.

A class A− of finite sequences α of negative integers will be termed admissible if the following conditions hold:

(1) A− contains the sequence: −1, and no other one-element sequence;
(2) if α ∗ k is in A− and k < −1, then so also is α ∗ (k + 1);
(3) if α ∗ −1 is in A− , then so also is α.

The set A := A+ ∪ A− , where A+ , A− are some admissible classes of finite sequences of positive, negative integers,
respectively, will be said to be admissible class of finite sequences.

Lemma 2.1. (See [18].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Let p ∈ R
2 . Then there exists an at most countable

family of maximal parallelizable regions {M j: j ∈ J }, where J is the set of all positive integers or J = {1, . . . , N} for some positive
integer N, such that p ∈ M1 and for each positive integer n the set cl B(p,n), where B(p,n) is the ball centered at p with radius n, is
covered by a finite subfamily {M1, . . . , M jn } of {M j: j ∈ J }. Moreover, jn � jn+1 for every n.

Theorem 2.2. (See [18].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Then there exist a family of orbits {Cα: α ∈ A}
and a family of maximal parallelizable regions {Mα: α ∈ A}, where A = A+ ∪ A− is an at most countable admissible class of finite
sequences, such that

Cα ⊂ Mα for α ∈ A,⋃
α∈A

Mα = R
2

and

f t(x) = ψ−1
α

(
ψα(x) + (t,0)

)
for x ∈ Mα, t ∈ R

for arbitrarily chosen parallelizing homeomorphism ψα of Mα . Moreover, the families can be constructed in such a way that

Mα ∩ Mα∗i 
= ∅ for α ∗ i ∈ A,

Cα∗i ⊂ J (Mα) for α ∗ i ∈ A,

|Cα, Cα∗i1 , Cα∗i2 | for α ∗ i1,α ∗ i2 ∈ A, i1 
= i2,

Cα |Cα∗i |Cα∗i∗l for α ∗ i ∗ l ∈ A.

The construction of the families occurring in Theorem 2.2 starts from the orbit C1 = C−1 of an arbitrary point p ∈ R
2

and the maximal parallelizable region M1 occurring in Lemma 2.1 (we take M−1 = M1 and the same parallelizing homeo-
morphisms ψ1 = ψ−1 of M1). Having constructed an α ∈ A and Cα , Mα , we index bijectively the set of all orbits contained
in

fr Mα ∩ Hα,

where H1, H−1 are components of R
2 \ C1 and for all α = β ∗ l ∈ A the set Hα is the components of R

2 \ Cα which has
no common point with Mβ , by sequences of the form α ∗ k starting from k = 1 and taking subsequent positive integers k if
α ∈ A+ and starting from k = −1 and taking subsequent negative integers k if α ∈ A− . We enlarge the set A by all sequences
α ∗ k and for each such a sequence α ∗ k we denote by Cα∗k the orbit indexed by α ∗ k and take as Mα∗k an element of
the subfamily {M j: j = 1, . . . , jmα∗k } of the family occurring in Lemma 2.1, where mα∗k is the smallest integer which is
greater or equal to the distance of the orbit Cα∗k from p. Moreover, we only consider such parallelizing homeomorphism
ψα : Mα → R

2 that ψα(Cα) = R × {0} and

ψα(Mα ∩ Hα) = R × (0,+∞) if α ∈ A+

and

ψα(Mα ∩ Hα) = R × (−∞,0) if α ∈ A−.
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Corollary 2.3. (See [18].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Then there exists a family of connected subsets of the
plane {Uα: α ∈ A}, where A = A+ ∪ A− is the admissible class of finite sequences occurring in Theorem 2.2, such that⋃

α∈A

Uα = R
2,

Uα = Cα ∪ Nα , where Nα = Mα ∩ Hα and Cα , Mα and Hα are those occurring in Theorem 2.2, and fr Uα = Cα ∪ ⋃
α∗i∈A Cα∗i for

α ∈ A, Nα1 ∩ Nα2 = ∅ for distinct α1,α2 ∈ A, Cα ⊂ J (R2) for α ∈ A \ {−1,1}, C1 = C−1 , Cα1 
= Cα2 for distinct α1,α2 ∈ A satisfying
at least one of the conditions α1 /∈ {−1,1}, α2 /∈ {−1,1} and

f t(x) = ϕ−1
α

(
ϕα(x) + (t,0)

)
, x ∈ Uα, t ∈ R

for some homeomorphisms

ϕα : Uα
onto−−→ R × [0,+∞) for α ∈ A+,

ϕα : Uα
onto−−→ R × (−∞,0] for α ∈ A−.

3. Invariance of equivalence classes

Now we proceed to the functional equation (1). It turns out that under our assumption on f every continuous solution
of (1) is a homeomorphism. To prove this fact one can use the invariance of domain theorem, since directly from Eq. (1) we
obtain that g is a bijective map.

Proposition 3.1. (See [19].) If f is a homeomorphism of R
2 onto itself, g is continuous and gn = f for some positive integer n, then g

is also a homeomorphism of R
2 onto itself. Moreover, if f has no fixed points, then g has no fixed points.

Proposition 3.2. (See [19].) Let f be a homeomorphism of R
2 onto itself which preserves orientation. Let g be a continuous function

defined on R
2 such that gn = f for some odd positive integer n. Then g is a homeomorphism of R

2 onto itself which preserves
orientation.

For even n Eq. (1) can have also orientation reversing solutions. In this paper we are interested only in orientation
preserving homeomorphisms g , so from now on we will assume that g is a Brouwer homeomorphism.

For an arbitrary Brouwer homeomorphism g we consider an equivalence relation in R
2 defined in the following way:

p ∼ q if p = q or p and q are endpoints of some arc K for which gm(K ) → ∞ as m → ±∞
(see [1,16]). By an arc K with endpoints p and q we mean the image of a homeomorphism c : [0,1] → c([0,1]) satisfying
conditions c(0) = p, c(1) = q, where the topology on c([0,1]) is induced by the topology of R

2.

Proposition 3.3. Let g be a Brouwer homeomorphism and n be a positive integer. Then the Brouwer homeomorphisms g and gn have
the same equivalence classes.

Proof. Put f = gn . Let x, y ∈ R
2 belong to an equivalence class of g . Then there exists an arc K with endpoints x and y such

that gm(K ) → ∞ as m → ±∞. Hence gkn(K ) → ∞ as k → ±∞. Since gn = f , we have gkn(K ) = f k(K ). Thus f k(K ) → ∞
as k → ±∞, and consequently x, y belong to an equivalence class of f .

Fix x, y ∈ R
2 belonging to an equivalence class of f . Then there exists an arc K with endpoints x and y such that

f m(K ) → ∞ as m → ±∞. We will show that gk(K ) → ∞ as k → ±∞. Since g is a homeomorphism of the plane onto
itself, it can be prolonged to a homeomorphism of S2 onto itself by putting g(∞) = ∞. Fix a ball B(p, R) centered at a
p ∈ R

2 with radius R > 0. Take an R0 > R . Then

R
2 \ cl B(p, R0) ⊂ R

2 \ cl B(p, R).

By continuity of g, g2, . . . , gn−1 at ∞, for every i ∈ {1,2, . . . ,n − 1} there exists a real Ri > 0 such that

gi(
R

2 \ cl B(p, Ri)
) ⊂ R

2 \ cl B(p, R).

Put Rn = max{R0, R1, . . . , Rn−1}. Then for every i ∈ {0,1, . . . ,n − 1}
R

2 \ cl B(p, Rn) ⊂ R
2 \ cl B(p, Ri)

and consequently

gi(
R

2 \ cl B(p, Rn)
) ⊂ gi(

R
2 \ cl B(p, Ri)

)
.
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Thus for every i ∈ {0,1, . . . ,n − 1}
gi(

R
2 \ cl B(p, Rn)

) ⊂ R
2 \ cl B(p, R).

From the fact that f m(K ) → ∞ as m → ±∞ it follows that there exists a positive integer N0 such that

f m(K ) ⊂ R
2 \ cl B(p, Rn)

for all m ∈ Z such that |m| � N0. Then for all i ∈ {0,1, . . . ,n − 1} and m such that |m| � N0 we have

gi( f m(K )
) ⊂ R

2 \ cl B(p, R).

Hence

gi+nm(K ) ⊂ R
2 \ cl B(p, R)

for all i ∈ {0,1, . . . ,n − 1} and m such that |m| � N0, since f = gn . Thus

gk(K ) ⊂ R
2 \ cl B(p, R)

for every integer k such that k � nN0 and k � −nN0 + n − 1. Hence gk(K ) → ∞ as k → ±∞, and consequently x, y belong
to the same equivalence class of g . �
Proposition 3.4. Let {Gi}i∈I be the family of all equivalence classes of the relation ∼ defined for a Brouwer homeomorphism g. Then
for every i ∈ I there exists a j ∈ I such that g(Gi) = G j .

Proof. Fix an i ∈ I and a p0 ∈ Gi . Then there exists a j ∈ I such that g(p0) ∈ G j . Take a p ∈ Gi . We will show that g(p) ∈ G j .
From the definition of ∼ we obtain that there exists an arc K1 having p0 and p as its endpoints such that

gm(K1) → ∞ as m → ±∞.

Put L1 = g(K1). Then g(p0) and g(p) are endpoints of L1 and

gm(L1) → ∞ as m → ±∞.

Hence g(p) ∈ G j , and consequently

g(Gi) ⊂ G j.

Take a q ∈ G j . Then there exists an arc L2 such that g(p0) and q are its endpoints and

gm(L2) → ∞ as m → ±∞.

Put K2 = g−1(L2). Then p0 and g−1(q) are endpoints of K2 and

gm(K2) → ∞ as m → ±∞.

Thus g−1(q) ∈ Gi , and hence q ∈ g(Gi). Consequently

G j ⊂ g(Gi). �
To prove a sufficient condition for invariance of an equivalence class we will use the following proposition.

Proposition 3.5. (See [1].) Let g be a Brouwer homeomorphism of R
2 and assume that {Ei}i∈I is a finite collection of disjoint arcwise

connected sets. If each g(Ei) is equal to some E j , then

g(Ei) = Ei for i ∈ I.

Proposition 3.6. Let g be a Brouwer homeomorphism of R
2 and n be a positive integer. Then for every equivalence class G0 of the

relation ∼ the equality gn(G0) = G0 implies that g(G0) = G0 .

Proof. Let G0 be an equivalence class of the relation ∼ such that gn(G0) = G0. Put Gm = gm(G0) for all m ∈ Z. Then, by
Proposition 3.4, Gm is an equivalence class for every m ∈ Z. Then Gr = Gr+kn for all k ∈ Z and r ∈ {1, . . . ,n − 1}, since
Gn = G0. Thus the family {Gm: m ∈ Z} contains at most n distinct equivalence classes. Consequently, by Proposition 3.5, we
have that Gm is invariant under g for each m ∈ Z (each equivalence class is arcwise connected directly from the definition
of the relation). In particular, g(G0) = G0. �
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From the above proposition we obtain the following result.

Corollary 3.7. If f is a Brouwer homeomorphism of R
2 . Let G0 be an equivalence class such that f (G0) = G0 . Assume that g is a

Brouwer homeomorphism of R
2 such that gn = f for some positive integer n. Then g(G0) = G0 .

Proof. Since G0 is invariant under f and gn = f , we have that G0 is invariant under gn . Thus by Proposition 3.6, G0 is
invariant under g . �

To obtain the next corollary we will use Corollary 3.7 and the following proposition.

Proposition 3.8. (See [16].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Then each equivalence class of the relation ∼
defined for f 1 is invariant under f t for t ∈ R.

Corollary 3.9. If f is a Brouwer homeomorphism of R
2 which is embeddable in a flow, g is a Brouwer homeomorphism of R

2 and
gn = f for some positive integer n, then g(G0) = G0 for every equivalence class G0 of the relation ∼.

To obtain the next corollary we use the following result.

Proposition 3.10. (See [20].) A maximal parallelizable region M of { f t : t ∈ R} is a union of equivalence classes of the relation ∼.

Corollary 3.11. If f is a Brouwer homeomorphism of R
2 which is embeddable in a flow { f t : t ∈ R}, g is a Brouwer homeomorphism

of R
2 and gn = f for some positive integer n, then g(M) = M for every maximal parallelizable region M of { f t : t ∈ R}.

Moreover, using the next two results we will prove the invariance of the boundary of each equivalence class.

Proposition 3.12. (See [21].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Let G be an equivalence class and p ∈ G ∩ fr G.
Then the whole orbit of p is contained in G ∩ fr G.

Proposition 3.13. (See [21].) Let { f t : t ∈ R} be a flow of Brouwer homeomorphisms. Then the boundary of each equivalence class is a
union of a family of orbits and each equivalence class can contain at most two orbits that are contained in its boundary.

Proposition 3.14. Let f be a Brouwer homeomorphism of R
2 which is embeddable in a flow { f t : t ∈ R}. Let g be a Brouwer homeo-

morphism of R
2 such that gn = f for some positive integer n. Then for each p ∈ R

2 contained in the boundary of an equivalence class
of the relation ∼ defined for f the orbit C p of p is invariant under g.

Proof. Let p ∈ fr G1, where G1 is an equivalence class of the relation ∼. Denote by G2 the equivalence class which contains p
(it may happen that G2 = G1). Then p ∈ fr G2. By Proposition 3.12, the orbit C p of p is contained G2 ∩ fr G2. On account of
Corollary 3.7, we have g(G2) = G2 and consequently g(int G2) = int G2. Hence g(G2 ∩ fr G2) = G2 ∩ fr G2.

By Proposition 3.13 the set G2 ∩ fr G2 is either an orbit or a union of two orbits. In case G2 ∩ fr G2 = C p , we
have g(C p) = C p , since g(G2 ∩ fr G2) = G2 ∩ fr G2. Now, we consider the case where G2 ∩ fr G2 = C p ∪ Cq for some q ∈
(G2 ∩ fr G2) \ C p . Then either g(C p) ⊂ C p or g(C p) ⊂ Cq , since g(C p) is a connected set. Similarly, either g(Cq) ⊂ Cq or
g(Cq) ⊂ C p . Hence either g(C p) = C p and g(Cq) = Cq or g(C p) = Cq and g(Cq) = C p . Using Proposition 3.5 to the family
{C p, Cq} we get that the second possibility cannot hold. Thus g(C p) = C p and g(Cq) = Cq . �
4. Form of fractional iterates

In this section we give the form of all solutions of Eq. (1) which are Brouwer homeomorphisms. We start from recalling
such a result for the case where the given function f is a Sperner homeomorphism (i.e. a Brouwer homeomorphism having
exactly one equivalence class). It follows from Proposition 3.3 that in this case every Brouwer homeomorphism satisfying
Eq. (1) is a Sperner homeomorphism.

Theorem 4.1. (See [19].) Let f be a Sperner homeomorphism of R
2 . Then for every positive integer n the Brouwer homeomorphism g

is a solution of Eq. (1) if and only if it can be expressed in the form

g = ϕ−1 ◦ T 1
n

◦ ϕ,

where ϕ is a homeomorphic solution of the Abel equation

ϕ
(

f (x)
) = ϕ(x) + (1,0), x ∈ R

2
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and

T 1
n
(x1, x2) :=

(
x1 + 1

n
, x2

)
for (x1, x2) ∈ R

2. (2)

An immediate consequence of Theorem 4.1 is the following result.

Corollary 4.2. Let f be a Sperner homeomorphism of R
2 . Then for every positive integer n and every Brouwer homeomorphism g

satisfying Eq. (1) there exists a flow { f t : t ∈ R} such that f = f 1 and g = f
1
n .

From Theorem 4.1 we can also obtain the following form of the iterative roots of f on each of the maximal parallelizable
regions of the cover occurring in Theorem 2.2.

Corollary 4.3. Let f be a Brouwer homeomorphism of R
2 which is embeddable in a flow and g be a Brouwer homeomorphism satisfying

Eq. (1). Let {Mα: α ∈ A} be a family of maximal parallelizable regions occurring in Theorem 2.2. Then for each α ∈ A there exists a
homeomorphism ψα : Mα → R

2 such that

g(x) = (
ψ−1

α ◦ T 1
n

◦ ψα

)
(x), x ∈ Mα.

Proof. Fix an α ∈ A. Then f restricted to Mα is a Sperner homeomorphism of Mα . Since Mα is simply connected region, it
is homeomorphic to the whole plane. Therefore we can use Theorem 4.1 which gives the form of g . �
Proposition 4.4. (See [13].) Let F be a family of homeomorphic images of a straight line which are closed sets in the plane such that for
every p ∈ R

2 there exists exactly one C ∈ F such that p ∈ C and for every p ∈ R
2 there exists an open set U p containing p which can

be mapped homeomorphically on the open square {(x, y) ∈ R
2: |x| < 1, |y| < 1} in such a way that the images of the intersections

of elements of F with U p are the sets {(x, y) ∈ R
2: |x| < 1, y = c} for some c ∈ R such that |c| < 1. Assume that S is an infinite

subfamily of F such that for all distinct C1, C2, C3 ∈ S the relation |C1, C2, C3| holds. Then S is countable and every compact set K has
a common point with a finite number of elements of the family S.

Proposition 4.5. (See [17].) Let M be a parallelizable region of { f t : t ∈ R}. Let r ∈ M and H be a component of R
2 \ Cr . Then for all

distinct orbits C p1 , C p2 contained in fr M ∩ H the relation |C p1 , C p2 , Cr | holds.

Lemma 4.6. Let f be a Brouwer homeomorphism of R
2 which is embeddable in a flow { f t : t ∈ R}. Let {Cα: α ∈ A} and {Mα: α ∈ A}

be families occurring in Theorem 2.2. Then for every α ∈ A and every p ∈ Cα there exists an ε > 0 such that the ball B(p, ε) centered
at p with radius ε has common points with exactly two elements of the family {Uα: α ∈ A} occurring in Corollary 2.3 (i.e. with U1
and U−1 for α ∈ {1,−1} and with Uβ and Uβ∗k for α = β ∗ k).

Proof. Let F be the family of all orbits of the flow { f t : t ∈ R}. Then the family F satisfies the assumptions of Proposition 4.4,
since { f t : t ∈ R} is a flow of Brouwer homeomorphisms. Put S1 = {C1}∪ {C1∗i: 1 ∗ i ∈ A}, S−1 = {C−1}∪ {C−1∗i,: −1 ∗ i ∈ A},
Sβ = {Cβ} ∪ {Cβ∗i: β ∗ i ∈ A} and Sβ∗k = {Cβ∗k} ∪ {Cβ∗(k,l): β ∗ (k, l) ∈ A}. By Proposition 4.5, the subfamilies S1, S−1, Sβ and
Sβ∗k of F satisfy the assumptions of Proposition 4.4.

Let p ∈ C1. Then p ∈ C−1, since C1 = C−1. On account of Proposition 4.4 the closure of the ball B(p,1) centered at p
with radius 1 has common points with finitely many elements of the families S1 and S−1. Hence there exists an ε > 0
such that B(p, ε) ∩ (

⋃
(S1 ∪ S−1) \ C1) = ∅, since cl B(p,1) ∩ (

⋃
(S1 ∪ S−1) \ C1) is a compact set which does not contain p.

Since B(p, ε) ∩ (
⋃

S1 \ C1) = ∅, the set B(p, ε) ∩ H1 is contained in U1, where H1 is the region occurring in Theorem 2.2.
Similarly, since B(p, ε) ∩ (

⋃
S−1 \ C−1) = ∅, the set B(p, ε) ∩ H−1 is contained in U−1. Thus B(p, ε) ⊂ M1.

Let p ∈ Cα , where α = β ∗k. On account of Proposition 4.4 the closure of the ball B(p,1) has common points with finitely
many elements of the families Sβ and Sβ∗k . Hence there exists an ε > 0 such that B(p, ε)∩ (

⋃
(Sβ ∪ Sβ∗k) \ Cβ∗k) = ∅, since

cl B(p,1) ∩ (
⋃

(Sβ ∪ Sβ∗k) \ Cβ∗k) is a compact set which does not contain p. Since B(p, ε) ∩ (
⋃

Sβ∗k \ Cβ∗k) = ∅, the set
B(p, ε) ∩ Hβ∗k is contained in Uβ∗k . Denote by H̃β∗k the component of R

2 \ Cβ∗k which has no common points with Uβ∗k .
Then B(p, ε) ∩ H̃β∗k is contained in Uβ , since B(p, ε) ∩ (

⋃
Sβ \ Cβ∗k) = ∅. Consequently B(p, ε) has common points with

exactly two elements of the family {Uα: α ∈ A}, namely with Uβ and Uβ∗k . �
Theorem 4.7. Let f be a Brouwer homeomorphism of R

2 which is embeddable in a flow and n be a positive integer. Let {Cα: α ∈ A}
and {Mα: α ∈ A} be families occurring in Theorem 2.2. For each α ∈ A let { f t

α: t ∈ R} be a flow such that f t
α : Mα → Mα for t ∈ R

and f 1
α(x) = f (x) for all x ∈ Mα . Assume that f

1
n

1 (x) = f
1
n−1(x) for every x ∈ C1 = C−1 and

lim f
1
n
α (xk) = f

1
n
α∗i(x)
k→∞
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for each x ∈ Cα∗i and every sequence (xk)k∈Z+ of elements of Mα such that limk→∞ xk = x. Then the function g such that for every
α ∈ A

g(x) = f
1
n
α (x), x ∈ Uα,

where {Uα: α ∈ A} is the family occurring in Corollary 2.3, is a Brouwer homeomorphism of R
2 satisfying Eq. (1). Moreover, each

Brouwer homeomorphism of R
2 satisfying Eq. (1) can be obtained in this way.

Proof. From the construction of the family {Uα: α ∈ A} it follows that {Uα: α ∈ A+} and {Uα: α ∈ A−} consist of pairwise
disjoint sets and⋃

α∈A+
Uα = C1 ∪ H1 and

⋃
α∈A−

Uα = C−1 ∪ H−1.

The assumption that f
1
n

1 (x) = f
1
n−1(x) for every x ∈ C1 = C−1, guaranties that the function g is well defined on the

whole plane. From the definition of g and the assumption that f 1
α(x) = f (x) for all x ∈ Uα we obtain that g satisfies

Eq. (1).
Now we will prove that g is continuous. Fix x ∈ C1 = C−1. Let (xm)m∈Z+ be a sequence such that limm→∞ xm = x. On

account of Lemma 4.6 there exists an ε > 0 such that the ball B(p, ε) has common points with exactly two elements of the
family {Uα: α ∈ A}, namely with U1 and U−1. Thus without loss of generality we can assume that xm ∈ U1 ∪ U−1 for all
m ∈ Z

+ . If there is a subsequence (xml )l∈Z+ of the sequence (xm)m∈Z+ such that each element of the subsequence belongs

to U1, then by the continuity of f
1
n

1 we have

lim
l→∞

g(xml ) = lim
l→∞

f
1
n

1 (xml ) = f
1
n

1 (x) = g(x).

Similarly, for a subsequence (xml )l∈Z+ which consists of elements belonging to U−1 we have

lim
l→∞

g(xml ) = lim
l→∞

f
1
n−1(xml ) = f

1
n−1(x) = g(x).

Fix an α = β ∗k ∈ A and a point p ∈ Cα . Let (xm)m∈Z+ be a sequence such that limm→∞ xm = x. On account of Lemma 4.6
there exists an ε > 0 such that the ball B(p, ε) has common points with exactly two elements of the family {Uα: α ∈ A},
namely with Uβ and Uβ∗k . Thus without loss of generality we can assume that each elements of the sequence (xm)m∈Z+
belongs to Uβ ∪ Uβ∗k . For a subsequence (xml )l∈Z+ of the sequence (xm)m∈Z+ which consists of elements belonging to Uβ∗k ,

by the continuity of f
1
n
β∗k , we have

lim
l→∞

g(xml ) = lim
l→∞

f
1
n
β∗k(xml ) = f

1
n
β∗k(x) = g(x).

However, for a subsequence (xml )l∈Z+ such that xml ∈ Uβ for all l ∈ Z
+ we use our assumption. Therefore

lim
l→∞

g(xml ) = lim
l→∞

f
1
n
β (xml ) = f

1
n
β∗k(x) = g(x).

On account of Proposition 3.1 we have that g is a homeomorphism of the plane onto itself without fixed points. Now
we use the fact that each homeomorphism of the plane either preserves orientation or reverses orientation and to check to
which of the two classes a homeomorphism belongs it is sufficient take one arbitrary Jordan curve (see [28, p. 197]). Let

J be a Jordan curve contained in M1. Then J and g( J ) = f
1
n

1 ( J ) have the same orientation, since every element of a flow
preserves orientation. Thus g preserves orientation, and consequently g is a Brouwer homeomorphism.

Now let g be a Brouwer homeomorphism satisfying Eq. (1). Then for each α ∈ A the restrictions of f and g to Mα are
Brouwer homeomorphisms on Mα . Since Mα is homeomorphic to R

2, we can use Corollary 4.2. We obtain then that for

each α ∈ A there exists a flow { f t
α: t ∈ R} such that f t

α : Mα → Mα for t ∈ R and f |Mα = f 1
α , g|Mα = f

1
n
α . Let x ∈ C1. Then

f
1
n

1 (x) = g(x) = f
1
n−1(x). For all α ∗ i ∈ A and x ∈ Cα∗i the condition

lim
k→∞

f
1
n
α (xk) = f

1
n
α∗i(x)

is satisfied for every sequence (xk)k∈Z+ of elements of Mα such that limk→∞ xk = x, since f
1
n
α∗i is continuous and f

1
n
α (z) =

g(z) = f
1
n
α∗i(z) for z ∈ Mα ∩ Mα∗i (without loss of generality we can assume that each element of the sequence (xk)k∈Z+

belongs to Mα∗i , since Mα∗i is a neighbourhood of x and limk→∞ xk = x). �
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[16] Z. Leśniak, On an equivalence relation for free mappings embeddeable in a flow, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (7) (2003) 1911–1915.
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[20] Z. Leśniak, On maximal parallelizable regions of flows of the plane, Int. J. Pure Appl. Math. 30 (2) (2006) 151–156.
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