A Bounded Velocity Postulate and Special Relativity

Michael Lee Steib
University of Houston, Houston, Texas 77004

Submitted by A. Ramakrishnan

Although the theory of special relativity follows in a straightforward manner from the assumption that the speed of light is invariant as measured by observers having uniform velocities with respect to one another [2], it would be interesting to know that the theory also follows from the assumption that there is some number l such that no velocity exceeds l. The article, "Einstein - A Natural Completion of Newton" [1] outlines a candidate for such a derivation based on the following conjecture.

Conjecture. Suppose l is a number and suppose f is a real valued function with domain the set of ordered number pairs $\left(v_{a}, v_{b}\right)$ with v_{a} and v_{b} having opposite algebraic signs. Then the following two statements are equivalent:

1. (a) if $\left|v_{a}\right|<l$ and $\left|v_{b}\right|<l$ then $\left|v_{a}-v_{b}\right| \mid f\left(v_{a}, v_{b}\right)<l$.
(b) $\left[\left(v_{a}-v_{b}\right) / f\left(v_{a}, v_{b}\right)\right] \rightarrow 0$ as $v_{a} \rightarrow 0$ and $v_{b} \rightarrow 0$,
(c) $\left[\left|v_{a}-v_{b}\right| / f\left(v_{a}, v_{b}\right)\right] \rightarrow l$ as $\left|v_{a}\right| \rightarrow l$ for each number v_{b},
(d) $\left[\left|v_{a}-v_{b}\right| \mid f\left(v_{a}, v_{b}\right)\right] \rightarrow l$ as $\left|v_{b}\right| \rightarrow l$ for each number v_{a},
2. $f\left(v_{a}, v_{b}\right)=1-v_{a} v_{b} / l^{2}$.

However, this conjecture is not true. Each function of the following form satisfies statement $1, \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d above, but only in case $N=1$ does statement 2 hold.
$f\left(v_{a}, v_{b}\right)=N\left(1+\frac{\left|v_{a} v_{b}\right|}{l^{2}}\right)-(N-1)\left(\frac{\left|v_{a}\right|+\left|v_{b}\right|}{l}\right), \quad N>0$.
Let $\left|v_{a}\right| \equiv l-\epsilon_{a}$ and $\left|v_{b}\right| \equiv l-\epsilon_{b}$, with $\epsilon_{a}>0$ and $\epsilon_{b}>0$ and note that

$$
\begin{align*}
\left|v_{a}-v_{b}\right| \mid f\left(v_{a}, v_{b}\right) & =\frac{l^{2}\left[l-\epsilon_{a}+l-\epsilon_{b}\right]}{N l^{2}+N\left(l-\epsilon_{a}\right)\left(l-\epsilon_{b}\right)-l(N-1)\left[l-\epsilon_{a}+l-\epsilon_{b}\right]} \\
& =\frac{2 l^{3}-l^{2}\left(\epsilon_{a}+\epsilon_{b}\right)}{2 l^{2}-l\left(\epsilon_{a}+\epsilon_{b}\right)+N\left(\epsilon_{a} \epsilon_{b}\right)} . \tag{2}
\end{align*}
$$

It is apparant from (I) that statement $1(\mathrm{~b})$ is true. It is apparent from (2) that statement $1(\mathrm{a})$ is true since

$$
l\left[2 l^{2}-l\left(\epsilon_{a}+\epsilon_{b}\right)+N\left(\epsilon_{a} \epsilon_{b}\right)\right]>2 l^{3}-l^{2}\left(\epsilon_{a}+\epsilon_{b}\right)
$$

Equation (2) also implies statements 1(c) and 1(d).
The following is a stronger condition than statement $1(b)$ and would be an appropriate condition to include in statement 1 of the conjecture

$$
1 \text { (b') } f\left(v_{a}, v_{b}\right) \rightarrow 1 \text { as } v_{a} \rightarrow 0 \text { and } v_{b} \rightarrow 0
$$

To obtain a function f which satisfies $1(a)$, (b^{\prime}), (c), and (d), but which does not satisfy statement 2 , the N in (1) could be defined as a function of $\left(v_{a}, v_{b}\right)$ so that

$$
\begin{equation*}
N\left(v_{a}, v_{b}\right)=\frac{K+\left|v_{a}\right|\left|v_{b}\right|}{K} \tag{3}
\end{equation*}
$$

with K a positive number.

References

1. A. Ramakrishnan, Einstein-A natural completion of Newton, J. Math. Anal. Appl. 42 (1973), 377-380.
2. M. Steib, Extraction of relativistic concepts, Amer. J. Phys. 44 (1976), 60-62.
