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I. INTRODUCTION: BACKGROUND, MOTIVATION AND SUMMARY 

The principal results of the present paper are the proofs of two 
fundamental identities for generalized hypergeometric coefficients, com- 
pleting a series of papers [l-71, partly based on the presumed validity of 
these results. We shall attempt a self-contained treatment so that the 
present paper can be read independently of earlier results. 

This work, and the subject of generalized hypergeometric coefficients 
itself [8-241, had its origins in the problem of constructing tensor operators 
for compact symmetry groups, a problem that is itself subsumed in the 
general problem of vertex operator algebras in quanta1 field theory, a 
subject of great current interest in both mathematics and physics [251. 

Our particular interest has been the construction of the irreducible 
tensor operators of the unitary symmetry group SU(3) which have been 
shown [7] to be uniquely determined from their characteristic null space, 
which in turn is defined [2,3,6,71 by polynomial invariants denoted by G$ 
q E N = (0, 1,2,. . .}, t = 1,2,. . . ) q. The explicit determination of this set 
of polynomials, {Gi}, is a major step toward the goal of obtaining algebraic 
expressions for all SU(3) tensor operators and their associated invariant 
structures (called 3nj-coefficients). The analysis of these invariant Gl 
polynomials provided the motivation for a far-reaching symmetric (Schur) 
function generalization [lo] of the Gauss hypergeometric function, *Fi, 
and its PF4 extensions. Equivalently, it is the properties of the generalized 
hypergeometric coefficients, denoted (,Fi(u, b; c>]p) in [lo-121 and de- 
fined below in Eq. (1.4), that are the subject of this paper. 

This paper can be read without knowledge of the tensor operator 
problem for SU(3). Its results stand independently in the arena of special 
function theory, as the relations given below (Eqs. (1.13)-(1.15)) generaliz- 
ing Saalschiitz’s formula, Bailey’s identity, and the binomial addition 
theorem clearly show. The main results of this paper (referred to above) 
are the proofs of Eq. (1.11) and Theorem 4.8 which are new generaliza- 
tions of Bailey’s identity (in addition to relation (1.13)), as the special case, 
Eq. (1.22), for t = 1 shows. Theorem 4.8, together with Eq. (4.18) ex- 
presses, in one master statement, a number of important relations for the 
theory of symmetric functions, as developed and proved in [12]. 

While the results for special functions given here are presented for their 
own intrinsic interest, as noted above, it is useful, for continuity with our 
previous work on various SU(3) coefficients, to place these topics in the 
appropriate context. The canonical resolution of the multiplicity problem 
for irreducible unit (normalized) tensor operators in SU(3) is equivalent to 
a map from the set of all such SU(3) tensor operators to a set of SU(3) 
invariant functions known as the denominator functions and denoted 
D2(I,; x). Here I, denotes an operator pattern labelling a canonical SU(3) 
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unit tensor operator and x = (xi, x2, x3) denotes a lattice point in the 
Mobius plane associated with the irreducible representation (irrep) spaces 
in which the unit tensor operators act. The details of this construction for 
SU(3) have been described in [l-71. The original form one obtains for the 
denominator function is extremely complicated and thoroughly unwieldy. 
Considerable progress has been made in bringing this function to a more 
comprehensible form involving the ratio of two successive polynomials in 
the set 

(up; ~)lt = o,i,. . ., 4). (14 

Here q E N = IO, 1,2,. . . }, A = (A,, AZ, As) denotes the common shift 
coordinates associated with the set of operator patterns {rtlt = 1,2,. . . , q), 
and x = (xi, xz, xj) the barycentric coordinates of an arbitrary point in 
the Mobius plane (we arbitrarily define Gi = 1 for all q). 

The relationships between the polynomials (G$A; x)} and the denomi- 
nator functions {D’(I’,; x)) are discussed in detail in [3-71. (In particular, 
the properties of the {G$A; x)} polynomials have been developed in 
[6-71.) All of these results have culminated in [7], where it is proved that 

G;(A; X) = &;(A; x), (1.2) 

where the new polynomials dqr<A; x) on the right-hand side are explicit 
polynomials, both in the shift parameters A = (A,, A,,A,) and in the 
barycentric coordinates x = (xi, x2, x3). (The nontrivial content of rela- 
tion (1.2) is that it had not been possible previously to give Gi explicitly as 
a polynomial.) The proof of Eq. (1.2) has been achieved in [7], but subject 
to the condition that the polynomials 3: obey a certain symmetry, called 
determinantal symmetry, an already proved property of the Gi. Thus, the 
validity of Eq. (1.2) depends still on a proof of determinantal symmetry of 
the known 3:. 

It was shown in [7] that determinantal symmetry of the polynomial $i 
is implied by known (proved) symmetries plus one other additional symme- 
try, which will be proved below. We have been able to show in [7] that this 
additional symmetry is equivalent to proving a new identity, which is most 
conveniently formulated in terms of yet another set of functions, denoted 
by A,, and enumerated by partitions A having t parts, including zero as a 
part, 

A = (h,,A, ,..., h,),A, 2 A, 2 a*- 2 A, 2 0, (1.3) 

where each A, (s = 1,2,. . . , t) is a nonnegative integer. We denote the 
(infinite) set of all partitions having t parts by Pt. The polynomials A,, 
A E Pt,, are defined over five parameters (a, b, c, d, e> that are simply 
related to the shift parameters (A,, A,, A,), to the barycentric coordinates 
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(xi, x2, x,), and to 4 and t. (The precise relation is given by Eq. (5.9a) of 
[7], but this detailed result is not needed here.) Of interest here are the 
properties of the polynomials A,, especially their symmetries, as ex- 
pressed in terms of the parameters (a, b, c, d, e), which will now be 
regarded as indeterminates. Accordingly, let us begin by defining fully the 
polynomials A,, stating their proved symmetries and the one additional 
symmetry-proved in the present paper-which is needed for establishing 
the determinantal symmetry of the polynomials .a,‘, and, hence, the 
fundamental relation (1.2). 

The polynomials A, are defined in terms of a set of coefficients, 
hereafter called generalized hypergeometric coeficients, first introduced in 
[lo] and defined by 

(P+, b; c)lA) 

= M-l(A)s~l(u -s + l)h,(b -s + l)h,/(c -s + l)h,. (1.4) 

In this definition, (a, b, c) are arbitrary parameters (indeterminates) and 
A is a partition of the form (1.3). The Kummer symbol (x), for k = 0, 1, . . . 
and indeterminate x denotes the rising factorial 

(x)~ =x(x + 1) .*. (x + k - 1) (1.5a) 

with (x), = 1 for all x. For arbitrary y E R, we extend definition (1.5a) by 
using the gamma function, 

(x)y = l-(x + Y)/y+ ( 1.5b) 

The quantity M-‘(A) is defined for each partition A by 

M-*(A) = Dim A/ fi (t - s + l),+,, (1.6) 
s=l 

where Dim A denotes the dimension of irrep A of the unitary group U(t), 
which, using Weyl’s formula, is given by 

Dim A = 
l,E,,(Ar - 

A, + s - r)/1!2! .a * (t - I)!, (l-7) 

with Dim = 1 for t = 1. (M(A)-called the measure of the Young frame 
A- has an interesting tableau interpretation (see 1261 and 1271) in terms of 
the hook graph of A, and in this context is denoted by HA.) 

The hypergeometric coefficients (1.4) satisfy several remarkable rela- 
tions (proved in [lo-12]), which we will summarize below, since these 
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identities will be required in the present paper. But let us first define the 
polynomials A, and then state the basic problem addressed in this paper. 

Let (a, b, c, d, e) denote a five-tuple of indeterminates and A, p, v, . . . 
partitions containing t parts, as described in Eq. (1.3). Then the polyno- 
mial A, is defined by 

A*(yy = &a +b + c - s + l)*,(d + e + c - s + l),+* 

X(,Fl(d + c,e + c;d + e + c)lv). (1.8) 

In this definition, the symbol g(pLvh) denotes the number of times irrep A 
of U(t) occurs in the direct product p x v of irreps p and v (the so-called 
Littlewood-Richardson numbers). Each partition p and v in the summa- 
tion in (1.8) satisfies, for each given partition A, the relations 

FU, 5 4, vs I A,, s=1,2 t. ,.“, (l-9) 

It follows from this property and 

(x)k/(~)l= (x + Ok-I (1.10) 

for k, 1 E N and k r 1 that factors from the multiplicative term in front of 
the sum in definition (1.8) always cancel all the denominator factors in the 
.rFr-coefficients under the summation; that is, the function A, is indeed a 
polynomial in the indetemzinates (a, b, c, d, e). 

The occurrence of summations over partitions in which the 
Littlewood-Richardson numbers occur is a striking feature of the general- 
izations of hypergeometric functions given in [lo, 111. This characteristic 
carries over to a variety of relations between hypergeometric coefficients 
obtained in [12] and to the new relations obtained here for A,. We believe 
this is indicative of the nontrivial nature of these generalizations, which 
themselves are rooted in the underlying group-theoretical origin of the 
SU(3) Wigner-Clebsch-Gordan coefficients. 

The polynomial A, is clearly invariant under the interchange of a and b 
as well as under the interchange of d and e. The symmetry of A, needed, 
however, to prove the determinantal symmetry of the polynomials 3: of 
interest is 

THEOREM 1.1 (proven in Section VI). The polynomial A, is invariant 
under the interchange of b and e; that is, 

(1.11) 
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The transpositions Cab), (de&which are obvious symmetries-plus the 
transposition (be) suffice to generate the group S, of permutations of the 
parameters II, b, d, e. It is this invariance of the polynomials A, (for all 
partitions A) under the action of the group S, that implies the determi- 
nantal symmetry of the explicit SU(3) invariant denominator polynomials, 
.a,‘, needed in the proof of Eq. (1.2). 

The invariance of A*( ,,b,d,e) under interchange of b and e may 
appear, at first glance, to be rather straightforward, but this apparent 
simplicity is very deceptive! We found the construction of a valid proof to 
be unusually elusive and difficult. None of the known identities among the 
generalized z Fi hypergeometric coefficients given in [lo-121 seem to 
bear directly on the problem, although these relations are indeed needed 
for the proof of special cases (for example, d = 0 below; see Eq. (1.21b)). 

Let us now state three general relations satisfied by the generalized 
hypergeometric coefficients (see [lo-121). For this purpose, we first note 
the definition: 

(P&qI~) =(27(.,ww) 

= Dim*fi ~~~z~~~~‘. 
I 

The relations are 

(1.12) 

(i) Generalization of Bailey’s identity. 

~g(/.LVh)(,F~(C - a,c - 6;c)I&F~(c’ - a’,c’ - b’;c’)lv) 

where 

c-a-b+c’-a’-b’=O; 

(ii) Generalization of Saalschiitz’s identity. 

Cg(P4(2q~, b; 4IP)(I%(C - fz - w) 
PLY 

=(*F,(c - a,c - b;c)lA); 

(iii) Generalized addition rule of binomial type. 

Cg(CLyh)(I~(X)I~L)(I~(Y)ly) =M& + Y&o 
PLY 

(1.13a) 

(1.13b) 

(1.14) 

(1.15) 
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Relation (1.13) is called a generalization of Bailey’s identity because for 
t = 1 we have 

= W*(b)* u’, b’, 1 - c’ - A, -A; 
A!(C)* c’,l-a-h,l-b-h 

= W*(b’)* 
A!(d), 4F3 

u, b, 1 - c’ - A, -A; 
c,l --d-A,1 -b’-A 

(1.16) 

in which c - u - b + c’ - a’ - b’ = 0. The second identity, used above in 
(1.161, between the two 3F3 hypergeometric series (of unit argument) is 
the reversal identity (reverse the order of terms in the finite series 
expression). Using (1.16) in the identity (1.13) for t = 1 now gives Bailey’s 
identity (see p. 56 of Bailey [28]). 

Relation (1.14) is called a generalization of Saalschtitz’s identity because 
for t = 1 it reduces to the well-known Saalschiitz identity (see Bailey [28]) 
given by 

c WJbMc - a - b)v = (c - a>*(~ - b)A 
(c)+!v! (C)AA! 

. (1.17) 
cL.v 

pL+lJ=* 

Relation (1.15) is called a generalized binomial addition rule because 
for t = 1 it reduces to the well-known rule 

c wcLo))Y = (x l,Y)*, 
p+v=* p!v! 

which itself implies the classical binomial identity: 

c 
XPY” (x + Y)^ -= 

p+Y=h p!v! A! ’ 

The polynomials A, possess yet another symmetry that is proved 
directly from the defining relation, Eq. (1.8), and the generalization of 
Bailey’s identity, Eq. (1.13). Using this property, we easily prove 

LEMMA 1.1. The polynomials A, are invariant under the linear trunsfor- 
mution L defined by 

L: a-u+c, b-,b+c, 
dHd+c, eMe+c, 
c * -c. (1.18) 
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Remark. A basis set of independent invariants under the transforma- 
tion L is: 

Linear invariants, 

J1 = a + ;c, 
t3 = d + ;c, 

Quadratic invariant, 

(1.19a) 

5 = c*. (1.19b) 

In particular, the transformation L leaves invariant the combinations 
u + b + c = l1 + l2 and c + d + e = l3 + &, which occur in Eq. (1.8). 

It is useful to give some special cases of the polynomials A, in which 
the invariance under the transposition (be) is evident, and other instances 
that support this property (see [12]): 

LEMMA 1.2. The polynomials A, are invariant under the interchange of b 
and e if at least one of the conditions a = 0, d = 0, c = -a, c = -d holds. 

Proof. The proof of this lemma is a straightforward application of the 
generalized Saalschiitz identity, Eq. (1.141, to each of the four cases. 

Before proceeding with the proof, it is useful and straightforward to 
extend the definition of the generalized hypergeometric function *Fi in 
[lo] to P% (see also Shukla [ll]). In particular, we will need the general- 
ized hypergeometric coefficient, 

(,&(a,b,c)lA) = M-‘(A)sG(u -s + l)As(b -s + l)~\,(c -s + 1)~~ 

(1.20) 

which is clearly completely symmetric in a, b, c. 
The polynomials A, for the special cases in this lemma all have a 

common form, as we now give. For a = 0 or d = 0 (similarly, for b = 0 or 
e = O), the polynomial A, reduces to 

=(3F0(b + c,d + c,e + c)lh), (1.21a) 

=(&&a + c,b + c,e + c)lh), (1.21b) 
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while for a + c = 0 or c + d = 0, it becomes 

(1.21c) 

In all of these special cases, symmetry under b * e exchange is euident. q 

There are two further important (but still special) cases, where invari- 
ance of A, under b and e interchange may be proved directly. These 
cases are more difficult to prove than those above and are valid for general 
values of the indeterminates (a, b, c, d, e), but only for special partitions 
A. These special cases were significant in suggesting methods of general 
proof. Accordingly, we give these results here. 

For t = 1 and A, = n E N, the polynomial A,, can be expressed in 
terms of the standard 4F3 hypergeometric series. Directly from the defin- 
ing relation, Eq. (1.Q and the 4F3 relation, Eq. (1.16), we find 

(a + b + c)Jc + d),(c + e), 
] 

xJ3 
a,b,l-c-d-e-n,-n; 
a+b+c,l- 1 c-d-n,l-c-e-n * 

(1.22a) 

Using Bailey’s identity, we can give a different form for this result: 

(a + b + c)Ja + c + d),(a + c + e), 
An(~~b~d~e) = [ n! ] 

XJ3 
i 

a,a+c,a+b+d+e+2c+n-1,-n 
a+b+c,a+c+d,a+c+e 1. 

(1.22b) 

The form given in Eq. (1.22b) explicitly shows the invariance of A, 
under interchange of b and e, since hypergeometric series are invariant 
under permutations of their denominator parameters. Thus, it is the 
Bailey transformation that implies the desired symmetry. A subtle hint 
toward generalization is also contained in relation (1.22b): Ignoring the 
multiplicative factors in front of the 4F3 series, one finds that the depen- 
dence of A, on the integer n E N occurs in the kth term in the explicit 
summation expression for the 4 F3 series as 

(-n)k(n + tl + l2 + l3 + l4 - lJk, k=O,l,..., n. (1.23) 

(See Eqs. (1.19)). While the significance of this result is hardly obvious at 
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this point, it turns out to be a crucial structural property (developed below 
as R-symmetry) in the generalization of Eqs. (1.22) to A,. (We actually 
found this symmetry in a very different way.) 

The second special case of A, showing explicitly the invariance under b 
and e interchange is for A, = A, = * * - = A, = A, which we denote (using 
a convenient computational notation) by 

(A,A ,..., A) =(A). (1.24) 

For this special partition we are able to transform the original definition 
(1.8) to the form 

LEMMA 1.3. For the special partition ,i, the polynomial Ai( zy b,dyc) has 
the form: 

4’ ) a b,d,e 

= seCa+b + c - s + l)r(a + d + c - s + l)A(a + e + c - s + 1)~ 

x c mfb4mw’ IfI 
( - l)“‘(a - s + 1)&a + c - s + l)p, 

CL s=l (a + b + c - s + l)&,(a + d + c - s + l)p, 

(h+2c+a+b+d+e-t-s+l),, 
X 

(a+e+c-s+l),, 
(1.25) 

In this result, p denotes the partition defined in terms of p by 

FL, = A - it-s+l> (1.26a) 

so that 

M-‘(p) = Dim p 
I 

,llj WA-r,. (1.26b) 

The summation in Eq. (1.25) is over all partitions p satisfying 

O~y,<h, s = 1,2 ,***, t. (1.27) 

Relation (1.25) for Ai shows explicitly the invariance under the interchange 
of b and e. 

Proof. The derivation of relation (1.25) proceeds straightforwardly 
from the general definition (1.8) using 

g(/k v, i) = s,,,. (1.28) 
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The basic identity needed is the following one for arbitrary 
(a, b, c, a’, b’, c’): 

&T(u, b; c)l/-&T(d b’; c’>l$ 
CL 

parameters 

x c(,F,( -c’ - A + t, b; c)lp)(~Fl(u’, b’; --(I - A + t)ljZ). 
CL 

(1.29) 

The transformation of the left-hand side of this relation to the right-hand 
side is effected by using the identity 

t (a -s + l)P, t (a -s+ l)A 

sy (c’ -s + l)& = (-l)“fSy (c’ -S + l)* 

XlfI(-C’--h+t-s+l),S 

SE1 (-u-A+t-s+l),-S’ (lS30) 

The verification of this identity uses the relation (1.10). 
We next replace c by u + b + c and then set a’ = c + d, 6’ = c + e, 

c’ = c + d + e in relation (1.29). This transforms relation (1.8), for A = A, 
to 

= (-1)“’ jjI@ - [ s + l)*(u + b + c - s + l)* I 
x c(,FI( -c - d - e - A + t, b; a + b + c)(p) 

CL 

x(~F~(c + d,c + e; -a - A + t)l$ 

= (l)*‘sl$~ - s + l)*(u + b + c - s + l)* 

X c(,Fl(2c + a + b + d + e + A - t, a + c; a + b + c)Ip) 
CL 

x(,5$(-u-c-d-A+& -a - c - e - A + t; -a - A + t)&). 

(1.31) 

The second identity in this relation has been obtained by applying the 
generalization of Bailey’s identity [Eqs. (1.13)] for A = A to the first 
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summation, after noting that the parameters do satisfy the required 
relation (1.13b) (with parameters renamed). Several elementary operations 
with rising factorials may now be used to bring the final expression in 
relation (1.31) to the stated form, Eq. (1.251, which shows explicitly the 
invariance under b, e interchange. q 

The results given above in Lemma 1.2, Eqs. (1.20)~(1.221, and Eq. (1.25) 
constitute our initial evidence for believing A, to be symmetric in b and e, 
in the general case. We give in Section IV a conjectured new form of A, 
(denoted there by dA> that shows explicitly the invariance under inter- 
change of b and e, and which reduces correctly to the special cases just 
cited. 

We have been able to prove the validity of the new (conjectured> form 
only by using yet another symmetry, which generalizes the factor given in 
Eq. (1.23). Thus, the proof of the invariance of A, under b and e 
interchange has been replaced by the proof of a quite different symmetry. 
We believe this reformulation of the problem is a significant step forward, 
not only for the problem at hand, but also for the new results in symmetric 
function theory stemming from it (discussed in Section IV). 

The plan of this paper is as follows: in Section II, we reformulate the 
polynomial A, by evaluating the Littlewood-Richardson numbers. (This 
simplifies actual computations, although the formulae are lengthier.) Thus, 
the results here in the Introduction and in Section II constitute a complete 
statement of the problem addressed in this paper; namely, to prove the set 
of identities A, = J-X“‘ for all parameter values (a, b, c, d, e), for all 
partitions A E P,, for all t E N. The strategy of the proof, which uses 
Carlson’s theorem, is discussed in Section III. Here the relevant objects 
are a set of polynomials, denoted PL, which are defined in terms of the 
A,. The detailed properties of these polynomials are developed in Section 
III. In Sections IV and V, a parallel course of development is followed for 
a new set of polynomials, denoted 9;, the definition of which is suggested 
by the established properties of the original PL. The conjectured new form 
JZ’* of A, is now given. In Section VI, we complete the proof that 
A, = Jaz,, thereby establishing not only b * e symmetry, but a number of 
new hypergeometric coefficient identities as well. 

II. REFORMULATION OF A, 

The purpose of this section is to reformulate the original definition of 
the polynomial A”( ,,b,d,e) as given in Eq. (1.8) into a new expression that 
not only brings out more clearly the symmetries inherent in the polyno- 
mial, but is actually more amenable to calculation. 
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The first step is to reformulate the Littlewood-Richardson numbers 
g&h). Here we use the fact that, for given partitions p and u, we have 

d/-w = 0, unless Y = A - p, (2.1) 

where p denotes the content of a standard Young-Weyl tableaux of shape 
CL. Equivalently, p can be defined as the weight of a Gel’fand-Weyl 
pattern as we now discuss. Let us denote the partition p by 

A Gel’fand-Weyl pattern (m) is defined to be a triangular array of 
integers in the form: 

(?,I m2,* ‘*’ mt-l,r ml,, 

ml,t-l 
. . . 

mt-l,t-l 

(m) = 

ml2 m22 

\ ml1 I 

(2.3a) 

The key structural element of this pattern is that the allowed integers must 
fulfill the betweenness conditions, that is, 

mlj 2 m,,j-l 2 m2j 2 m2 j-1 2 .‘. 2 Mj-l,j 2 mj-l,j-1 2 mj,j, 

(2.3b) 

for j = n, n - 1,. . . , 2. These inequalities express the condition that row 
j - 1 of the pattern, (m,,j-1,m2,j-1 ,..., mj-l,j.-l) E Pj-i is a partition 
whose parts fall between those of row j of the pattern, which is the 
partition (mlj, mzj,. . . , m,) E Pj. The number of triangular patterns (2.3a) 
for hxed partition p is given by the Weyl dimension formula Dim /.L (see 
Eq. (1.7)). The use of Gel’fand-Weyl patterns for labelling the irreducible 
representations of the group U(t) is well known. The one-to-one corre- 
spondence between the set of Gel’fand-Weyl patterns belonging to a 
partition and the set of Young-Weyl standard tableaux of shape p is also 
well known. It is described in detail in several places (see, for example, 
[29-301. Here we will use Gel’fand-Weyl patterns exclusively. 

The weight of a Gel’fand-Weyl pattern (m) is defined to be the t-tuple 

w(m) = (w,(m),w2(m),...,w,(m)), 
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with 

Wj(rn) = c mij ( iI, ) - (l<mi,j-l), i = l,...,t. (2.4) 

(We define mij = 0 if i > j.) 
Note that, whereas the Gel’fand patterns are all distinct, the weights 

w(m) generally have multiplicities; that is, different patterns (m) may have 
the same weight. We denote a given weight by (Y and the set of all distinct 
weights by W(p), the weights of the irrep p without repetitions. 

The multiplicity of a weight (Y E W(p) is called the Kostka number, 
denoted K(p, (~1. Clearly K(p., cr> is the number of distinct Gel’fand-Weyl 
patterns (m) with fixed partition p and with w(m) = (Y. (This provides a 
convenient algorithm for actually computing these numbers.) It is useful to 
define 

K(P,(W) = 0 for (Y e W(p). (2.5) 

For v = A - /3, the Littlewood-Richardson number g(p, A - p, A), 
0 E W(p), can be expressed as a sum over the set of Kostka numbers, 

(%-b 4Ia E J%4). (2.6) 

Using these notations, we have the following identity (see [31]): 

g(p,A - P,A) = c q&.0 + r(A + 6) - (A + 6)). (2.7) 
?TES, 

Here S, denotes the symmetric group on the integers (1,2,. . . , t), r an 
element of S, with signature E,, and 6 = (t - 1,. . . , LO). The action of 
r E S, on an arbitrary t-tuple y = (-yl, yz, . . . , yI) is defined by 

for 

(2.8a) 

The summation in Eq. (2.7) is carried out over all t! elements r E S,. 
Finally, A + 6 denotes the t-tuple of partial hooks: 

A + 6 = (A, + t - l,..., A,-i + l,A,). (2.8~) 

The second step in our reformulation of A,, as defined by Eq. (1.81, is 
to extend the definition of the hypergeometric coefficients (,9&z, 6; c)]A) 
to arbitrary t-tuples y = (ri, yz, . . . , yt) of nonnegative integers; that is, to 
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arbitrary t-tuples in place of partitions A. Thus, we define 

D(Y + 6) 2 (a-s+l),S(b-s+l),S 

= 1!2! . . . (t - l)! Sy (t -s + l)Jc -s + l)& ’ (2-9) 

where D(r + 8) denotes the Vandermonde determinant in the t variables 
(Yl + t - 1,. . . , yt-1 + 1, YJ If y is a partition, the extended hypergeo- 
metric coefficient (2.9) reduces to the earlier definition (1.4) (see also Eqs. 
(1.5) and (1.7)). 

The extended coefficient (2.9) obeys the rule 

(2~(a,b;c)ly~~) = E,(2q(u,b;c)Iy), each r E St, (2.10) 

where here the action of the permutation rr on y, denoted y 0 r, is 
defined by 

y”T=T(y+q -6, each 7 E S,. (2.11) 

The signature E, of r E S, in Eq. (2.10) comes from 

D(yo7r + S) = D(r(y + 6)) 
= &,D(Y + S). (2.12) 

Factors of the form l-l:,,(u - s + l&, are invariant under y + y 0 r = 7’; 
that is, 

s + l)& = fi (u - s + l),:, (2.13) 
s=l 

as direct calculation shows (since the individual terms are simply rear- 
ranged in the product). 

Consider next the definition of A, given by Eq. (1.8). In this relation, 
we now replace v by A - /3, and the summation over Y by a summation 
over all p such that p E W(p) and A - p is a partition. In the result- 
ing relation, we also replace g(p, A - & A) by its expression in terms 
of Kostka numbers, Eq. (2.7), and the hypergeometric coefficient 
(,.Y@ + c, e + c; d + e + c)lA - /3> by its extended form, Eq. (2.9). 

The polynomial A, is defined in terms of the partition A, but the parts 
A, of A do not occur symmetrically. The symmetric variables (as we shall 
show) are the gurtial hooks pS. We replace the partition A by the t-tuple 
P = (PI, P2,. . .7 p,) of partial hooks defined in terms of the partition 
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A = (A,, A,, . . . , A,) by 

p=h+S, s = (t - l,...,l,O); (2.14a) 

that is, 
ps = A, + t - s, s = 1,2 ,**-, t. (2.14b) 

In terms of the partial hooks, p = A + 6, the Kostka numbers and the 
Vandermonde determinant occurring in the new expression for Eq. (1.8) 
are K(p, p - p + rp) and D(p - p). Carrying out these steps, we obtain 
the intermediate form given by 

=j@+b + c - s + l)*,(d + e + c - s + l)*, 

x &%(a, b; a + b + 41~) c’ c K(P, P -P + TP) 
P rsst 

x(~Fl(d+c,e+c;d+e+c)~(p-p-S)~rml). (2.15) 

In this result, the summation of /3 is over the subset of p E W(p) such 
that A - /I = p - p - S is a partition (this restriction is denoted by the 
prime on the summation symbol). 

For each IT E S, and each /3 E W(p), we define (uniquely) for each p, 
the t-tuple (Y by 

Using the properties 

7r(p -a) =p -p. (2.16a) 

K(CLPP -P + PP) = K(CL,ra) = q/44, 

(p -p - S)VT-’ = &r(p - a) - S = A - a, (2.16b) 

we now bring the intermediate form (2.15) to the following expression: 

AA(~‘b’d’e) = f’$u + b + c - s + l)*,(d + e + c - s + l)h, 

x &%<u, b; u + b + c)lp) 
/J 

X xK(p,(~)(~St~(d + c,e + c;d + e + c)lA -a). 
a 

(2.17) 
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The summation over p is over all partitions p such that 0 I pS s A,, 
s = 1,2,..., t. For each such ~1, the summation is over all a E W(p). This 
last step requires proof, which we next give. 

Proof. In Eq. (2.19 /3 runs over the subset of p E W(p) such that 
A - /3 is a partition, and r runs over all t! elements in S,. To justify that 
the final summation in Eq. (2.17) is over all cr E IV(p) in Eq. (2.15), we 
first eliminate B in favor of (Y by using Eq. (2.16a), so that (symbolically) 

cc-4 c* 
B res* es, crEA,(T) 

The set A,(a) is the set of weights (cy) defined for each given r and p by 

T(P - a) - 6 E W(p); 
p - (Y has distinct components ’ 

The sets A,(a) and AJrr’) are disjoint for r f r’, since any common 
element (y must satisfy ~(p - a) = ~‘(p - a), which implies r = rr’, 
since the components of p - CY are distinct. Finally, for each (Y E W(p), 
we have either p - (Y has at least two components equal, or all compo- 
nents are distinct, in which case there exists a unique permutation rr’ such 
that d(p - LY) - 6 E W(p); the permutation r’ is the one that brings the 
components of p - (Y to decreasing order (as read from left to right). 
Thus, each (Y E IV(p) is either such that D(p - a) = 0 or (Y belongs to 
one of the sets in the family {A,(~>l~ E S,). We have thus proved 

TpjA4 = 1 (YEW(/.L)D(P-a) +q. 
I 

This result proves that the summation in the right-hand side of (2.15) may 
be replaced by a summation (Y E IV(p). 0 

An equivalent, but computationally very convenient, form of Eq. (2.17) 
is obtained by eliminating the Kostka numbers and replacing the sum over 
distinct weights (Y E IV(p) by a sum over all Gel’fand-Weyl patterns 
(m) E p (that is, all patterns (m) whose top row is p). In this way we 
obtain 

+ c - s + l)*,(d + e + c - s -t l)h, 

x ~(~~@,b;~ + b + c)b) 
P 

x C (*Fl(d + c,e + c;d + e + c)lh - W(m)). 
(mhl.4 

(2.18) 
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It is useful to rewrite Eq. (2.17) in still another way that parallels 
relation (1.22a) for t = 1. We use the identity for indeterminate y, 

(Y -s + l)h, 
(y _ s + l)*r-as = (P, +Y - t - as + 1Lv (2.19) 

where ps = A, + t - S. We also use relations (1.6) and (1.7) to express 
~-i(h) and M-‘(A - (Y) in terms of Vandermonde determinants. In this 
way, we bring A, to the form 

AA(~~b~d~e) = W(A) fi (d + s=l c-s+l)hS(e+c-s+l)AS 

x(a + b + c -s + l)h, 

X C(2Fl(a,b;a + b + c)b)G:(c,d,e;p), (2.20a) 
CL 

where Gk is defined for arbitrary variables z = (zl, z2,. . . , zI) by 

GL(c, d, e; z) = D-‘(z) xK(p, a)D( z - a) 
a 

xri 
(zs - a, + l)Jz, + c + d + e - t - a, + 1)11, 

s=l (z, + c + d - t - (Y, + l)a,( z, + c + e - t - a, + l),, ’ 

(2.2Ob) 

It is useful to introduce this new function G$ since it has an important 
structural property given by the following lemma. 

LEMMA 2.1. The function Gt(c, d, e; z) has the property 

GL(c,d,e;p) = 0, unlessp.,Ih,;s= l,...,t, (2.21) 

for z = p = A + S. 

Proof: This property is a consequence of the fact that the summation 
over the weights (Y in Eq. (2.2Ob) has the form 

Cq/-w)qP - a)S(a, P), 
a 

where K(p, SLY) = K(p., a), D(r(p - (Y)) = e,D(p - a), and S(ra, ap) 
= ,!$(a, p). This sum is nonzero if and only if the components of p - (r are 
distinct and in this case there exists a unique permutation r’ E S, that 
brings the components of p - (Y to strictly decreasing order. Accounting 
for II = +D(p), we see that G$c, d, e; p) can always be expressed, 
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for given p, in a modified form where the summation over (Y extends only 
over those (Y E IV(p) such that 

p, - a1 >pz - cY2 > *** >pr -at. 

The rising factorial (z, - (Y, + l)U, appearing in Eq. (2.2Ob) has the 
property (which follows from the definition given in Eq. (Ma)): 

(P, - ff, + l)a, = 0, unlessa, sp,,s = l,...t. 

These two properties, in turn, imply that the only weights cr E W(~L) that 
contribute to the summation are those satisfying the conditions 

The only partitions p E lPt that have weights IY satisfying these conditions 
are those for which 

Thus, the summation over (Y in Eq. (2.2Ob) yields zero for z = p = A + 6 
unless CL, I A,, s = 1,. . . , t, as stated in Eq. (2.21). q 

Remarks. (1) For arbitrary variables z, the (formal) function 
G,(a, b, c, d, e; z) defined by 

G,(a,b,c,d,e;z) = ~(2FI(a,b;u + b + c)lp)G~(c,d,e;z) (2.22) 
CL 

is an infinite series. 
(2) Equation (2.20a) is in a form analogous to Eq. (1.22a). Comparing 

these two relations for t = 1 and setting A, = n E N shows that 

G,(u,b,c,d,e;n) = ~(2~I(u,b;u+b+c)lk)G~(c,d,e;n) 
k 

=4F3 
a, b, 1 - c - d - e - n, -n; 

1 u+b+c,l-c-d-n,l-c-e-n * 
(2.23) 

The extension of this result given by Eq. (2.22) for t = 1 is the replace- 
ment of n by an arbitrary variable zl, in which case the hypergeometric 
series is nonterminating. 

(3) The function GL defined by Eq. (2.2Ob) is always a finite series for 
arbitrary variables z. Indeed, it is a symmetric function in the variables z 
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as easily follows from K(p, OTT = K(p, a), D(P(z - a) = E,D(z - CW), 
D(rz) = E,+(Z), each r E S,, where we also observe that permutations 
of the weights (Y leave the sum over (Y invariant. Thus, 

GL(c, d, e; TZ) = GL(c, d, e; z), each r E S,. (2.24) 

III. THE POLYNOMIALS PL AND THEIR PROPERTIES 

All our attempts at a direct attack on proving the main theorem (S, 
symmetry of the polynomial Ah) were unsuccessful. In such a situation, 
the standard strategy (cf. Polya’s heuristics [32]) is to retreat to the study 
of simpler subproblems, in the hope that this indirect approach may offer 
insights that will carry the day, as indeed proved to be the case here. 

We show below that the polynomial A*( ,,b,d,e) simplifies remarkably 
when a is a nonpositive integer. But there is an even greater advantage in 
this specialization: aside from a multiplicative factor (which can be re- 
moved) the result is a symmetric polynomial in the partial hooks (p, = A, + 
t - s}, as well as a polynomial in the remaining four parameters (b, c, d, e). 
Study of these special cases of Ah( ,,b*d,e) for a = -k, k E N will prove 
to be quite rewarding and (by appeal to Carlson’s theorem or even the 
Lagrange interpolation formula) will allow at the end full recovery of the 
polynomial A, itself. This is the motivation behind our introduction of yet 
another family of polynomials, which we denote by Pl(b, d, e; c; p) and 
now define. 

DEFINITION. The functions P$b, d, e; c; p> are defined by 

Pl(b,d,e;c;p) EM(A) *A, -k’b’d9e 
C t 

s’l(c + b - s + l)A,-k(c + d - s + 1)*,-k 

1 
-1 

X(c + e -s + 1)*,-k , (3.la) 

where k, t E N, b, d, e, c are indeterminates and A is a partition in t-parts. 
The parts A, of the partition A and the partial hooks p, are related by 

p,=A,+t-s 7 llslt. (3.lb) 

Let us now establish some properties of the PL which help in showing 
why these objects are of interest. 



82 BIEDENHARN, BINCER, LOHE AND LOUCK 

LEMMA 3.1. For a = -k the function AA( ,*b,d.e) has the factors: 

sp+b- s + l),+k(c + d - s + l),+,-k(c + e - s + 1)*,-k. (3.2) 

Proof. The condition a = -k forces the partition k in the summation 
in Eq. (2.20a) to those partitions for which ps I k, in consequence of the 
zeros of the factors (-k - s + ljp, of <,9$-k, b; -k + b + cl. By ex- 
amining the terms that enter the sum, the form claimed in the lemma is 
seen to be valid. 0 

Remark. Using the symmetries discussed in Section I, a similar result 
obtains for b, d, or e = -k. For c + a = -k, a result of the same form 
obtains but the factors are in b, d, e (not in c + b, c + d, c + e as above), 
and similarly for c + b = -k, c + d = -k, c + e = -k. 

The usefulness of the partial hook variables is established by the next 
lemma. 

LEMMA 3.2. The function A,(E,b,d,e) regarded us a function of the 

parameters (p,} obeys the symmetry: A, 5 E,A~ for every permutation T 
of the variables { p,}. 

Proof This result has essentially been established in Section II, where 
it was remarked (see Eq. (2.24)) that the terms appearing in the sum 
defining A”( ,*b*d*e), Eq. (2.20a), are invariant under permutations of the 
partial hooks. This leaves only the multiplicative factors outside the sum in 
Eq. (2.20a) to be considered. These factors are 

M-‘(h) fi (d + c -s + l),,*(e + c - s + l)*,(u + b + c -s + l),+,. 
s=l 

From the definition of the Kummer notation we see that 

T(d + c - s + 1 + A,) 
(d+c-s+l)p r(d+c-s+l) = “,“,+j::‘--::;‘, 

and similarly for the remaining terms under the product. Clearly any 
permutation simply rearranges the terms in the product leaving the 
product itself invariant. 

The remaining factor M-i(h) has the definition: 

M(A) = h (A, + t - s)! n(A, -A, + s - r), 
s=l I r<s 

(3.3) 
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Hence, 

M(A) 4 &#(A), each r E S,, 

and the lemma follows. 0 

Using Lemma 3.2, definition (3.1) of PL, and the form of A, given by 
Eq. (2.20a) (with a = -k), we can combine various factors, 

(c + d - s + l)h, 

(c + d - s + l)+(hs + c + d - (Y, - s + l)n, 

= (A, + c + d - k - s + l)k-u,, 

with a similar expression with e replacing d. Similarly, we have 

(-k+b+c-s+l),5 

(b + c - s + l)A,-k( -k + b + c - s + l)P, 

= (-k + b + c + p, - s + l)+. 

Carrying out these substitutions explicitly in definition (3.1) of Pi and 
recognizing that the partial hook variables pS can be extended to arbitrary 
variables zs, we establish 

THEOREM 3.1. Thefunctions PL(b, d, e; c; z) fork, t E N arepolynomi- 
als in the indeteminates b, d, e, c and symmetric polynomials in the variables 
z = (q, z2, . . . ) z,). The explicit polynomials Pi are given by 

Pi( b, d, e; c; z) 

= &%< --k)b) f!(b - s + l)p,(b + c - k + CL, - s + l)/c-pLr 
CL 
x f+L,Jc, d, e; z), (3.4a) 

where the polynomials FL, ~ in c, d, e, and z = (zl, z2, . . . , z,) are defined 
by 

F&(c, d, e; z) 

=D-‘(z)~K(p,a)D(Z -a) 
a 

t 
x~!~(z,--a,+l)as(z,+c+d+e-t-a,+l),a 

X( z, + c + d - k - t + l)k-o,( z, + c + e - k - t + l)k-a,. 
(3.4b) 
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It is the factor (i&C- k)lp) that restricts the summation over p to 
p, s k (s = 1,2,..., t) in the definition (3.4) of the polynomials PL. 
Accordingly, these polynomials are well defined for arbitrary indetermi- 
nates z = (zi, zz, . . . , zt); that is, we may replace the integer-valued 
partial hooks p in the definition (3.1) by z. 

The introduction of the auxiliary polynomials FL,. (given by Eq. (3.4b)) 
into the definition (3.4a) of the polynomials PL is for the purpose of 
making the structure of the latter easier to discuss. The polynomials FL,. 
carry the full (symmetric) dependence of the polynomials Pi on the 
variables (zi, z2,. . . , z,). The properties of the FL,. given in Eqs. 
(3.7)-(3.8) and Lemma 3.3 below underlie similar results (Eq. (3.9) and 
Lemma 3.3) for the Pi themselves. 

The polynomials P,@, d, e; c; z) defined by Eqs. (3.4) are explicit, but 
they do not show, in general, the desired b @ e symmetry. Nonetheless, 
they possess a number of properties that are important for establishing 
b +P e symmetry. These properties are inferred either from those of the 
A, already proved in Sections I and II, or directly from the definition (3.4). 

We begin by giving several properties of the polynomials FL,p: 

Permutational symmetry in z. 

FL,Jc, d, e; rz) = Fk’,Jc, d, e; z), each7rEESt. (3.5) 
Zeros. 

f’L,Jc, d, e; P) = 0, unless IL, I A,, s = 1,. . . , t, (3.6) 

where p = A + 6. 

Reduction formulas. 

F’ k,(w....1*r) (~,d,e;z~,...,z,-~,O) 

= 6,,,,(c + d - k - t + l)k(c + e - k - t + l)k 

x F&k1 ,..., p,-l)(c, d, e; z1 - 1,. . ., z,-~ - 11, (3.7) 

Fkt,(CL1,...,~,)(c,d,e;zl,...,z,) = hzs(zs + 
[ 

c+d+e-t) 
s=l 1 xFL-l,(,l-l ,..., p,-l)(~,d,e;zl - L-..,zt - 11, pt 2 1. 

P-8) 

Proof of Eqs. (3.5H3.8). The permutational symmetry is obvious from 
the definition (3.4b), using the permutational symmetries of the variables 
in the Vandermonde determinants and of the weights (Y in the Kostka 
numbers. The zeros given by Eq. (3.6) are just a restatement of property 
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(2.21) of the functions GL. Relation (3.7) is proved directly from the 
definition (3.41, using the following results: 

unless at = 0, 

implies pt = 0, 

Relation (3.8) is similarly proved directly from the definition (3.4) by 
noting that the functions D(z), D(z - a), K&,, a) are all invariant to the 
shifts of z, a, and p by (1, 1,. . . , 1). •I 

Relation (3.8), applied to the polynomials Pl defined by Eqs. (3.4) 
implies 

Pl(b,c,d;e;z, ,..., z,-,,O) 

=[(-k+c+b-t+l),(-k+c+d-t+l), 

x(-k+c+e-t+l)k] 

x P/‘( b, c, d; e; z1 - 1,. . . , z,-I - 1). 

This relation, in turn, when used in Eq. (3.1) for A,, yields 

A,A ,,..., A,-1.0) . (3.10) 

The following lemma summarizes easily verified symmetry properties of 
the functions Fl,. and the polynomials P$ 

LEMMA 3.3. The functions Fl,,(b, c, d, e; z) are invariant under the 
interchange of d and e and under the linear transformation J defined by 

J: b ++ b, c c, c, 
d-, -c -d + t, e- -c-e+t, 

z,c,z,+c+d+e-t, s=1,2 ,..., t. (3.11) 

These symmetries are aLFo true for polynomials Pl(b, d, e; c; z). 

Remark. The reduction formula (3.9) and J-symmetry for the polyno- 
mials Pl turn out to have key roles in our proof of b * e symmetry of 
these polynomials. 
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We need another important general property of the polynomials PL in 
the sequel. For the statement of this property, we define the quantity 
Qk,, by 

Qi,,(b, c, 4 e) 

= h (A, + c + b - k - s + 1),&h, + c + d - k -s + l)k-A, 
s=l 

~(h,+c+e-k-~+l)~-*,. (3.12) 

LEMMA 3.4. The polynomials Pi, evaluated on the integer-valued vari- 
ablesp, =A, + t -s, s = 1,2 ,..., t, may be written in the factored form 

PL(b,d,e;c;p) = Q:,,(b,c,d,e)R~,,(b,c,d,e) (3.13a) 

for all partitions A E pt such that 

O<A,<k, s = 1,2 )...) t, (3.13b) 

where Ri,,(b, c, d, e) is a polynomial in the parameters b, c, d, e. 

Proof. Set z = p = A + 6 in Eqs. (3.4) and use property (3.7) of the 
functions FL, cl. The summation over p in Eq. (3.4a) for Pl is then over all 
p such that 0 I pS I A,, s = 1,2,. . . , t. Accordingly, in this expression for 
Pl, we may write 

fi (c + b - k + pL, - s + l),+(pS + c + d - k - t + &a, 
s=l 

= Q:,,(b,c,d,e) sfil(c + b -s + l)~,-,+ 
[ 

X(c + d -s + l)A,-o,(c + e -s + 1)~~~~~ . 
I 

From this, we find that the explicit form of Ri,, in Eq. (3.13a) is 

Ri,*( b, c, d9 e) 

= &%C -W-d sj (b - s + %s(c + b - s + lb,-ps CL 
x F&(c, d, e), (3.14a) 
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where 

X ( ps + c + d + e - t - (Y, + 1)Jc + d - s + l)hSPa, 

X(c + e -s + l)~-~,. (3.14b) 

Since the summation is over all p such that 0 I p, I A,, s = 1,. . . , t, the 
function Ri, h is clearly a polynomial of finite degree in each of the 
parameters b, c, d, e. •I 

There are still five important properties of the polynomials PL that need 
to be noted. Four of these, Eqs. (3.1%(3.18), are just the transfer of the 
proved properties (1.21b), (1.21d), (1.18), and (1.25) of the A, to proper- 
ties of the polynomials PL; the fifth is a relation that is derived by using an 
elegant formula involving the Kostka numbers and the Vandermonde 
determinant. This formula was proved in [31] and leads here to an explicit 
expression for the coefficient of the term (z,z, . . . z,)~~ in the polynomial 
PL. We state, in sequence, the five properties in question indicating below 
their proofs. 

The d = 0 polynomials: 

Pi(b,O,e;c;z) = fi(c-k-s+l)k(~,+~+b-k 
s=l 

X(Z, + c + e - k - t + l)k. 

Polynomials with d = -c = m, m E N: 

P,l( b, m, e; -m; P) 

t + 1)/c 

(3.15) 

(3.16a) 

for all h, such that 

0 I A, I k, s = 1,2 )...) t. (3.16b) 
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The shifted-parameter polynomials : 

PL+,,,(b, d, e; m; 2) 

= sfil@ - s + l),(d - s + l),(e - s + l)m 

x PL(b + m,d + m,e + m; -m;.z), (3.17) 

where m = -k, -k + l,..., 0,1,2 ,... . 
The specialized variable polynomials : 

PL(b,d,e;c;y+t-l,..., y+l,y) 

= C(,&( -k)lp) fi (c - k - s + l)ps(c + b - k + CL, - s + I&, 
c s=l 

x cc + d - k + p, - s + l)k-p,(c + e - k + CL, - S + l)k-r, 
I 

x Q,(r; Y), (3.18a) 

where Q&r; y) is the polynomial in the single indeterminate y and the 
parameter y defined for each partition /.L by 

Q,(y; y) = Dim psfil (Y - pu, + sjp,( -Y - Y - t - Ps + s + l)ps 

(3.18b) 

with 

y=2c+b+d+e-k-2t+l. 

Highest-term monomial: 

(3.18~) 

Coefficient in Pl of ( zlzz . . . z,)~~ = fp-k- s + l)k. (3.19) 

Proof of Relation (3.15). This is a straightforward application of Eq. 
(1.21b) for AA(a = -k, d = 0) and the definition of PL(d = 0) given by 
Eqs. (3.4), using only the property 

(x> m+n = W& + mL 

of rising factorials. q 
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Proof of Relation (3.16). The proof follows the same steps used in the 
proof above of Eq. (3.15). Now, however, the factor 

slj ( --s + lh-k (3.20a) 

which divides A*(u = -k, d = -c = m) can be zero. To avoid division by 
0 coming from this factor, we impose 

0 I A, I k, s=1,2 t. ,***, (3.2Ob) 

Then the factors 

l/(--s + l)~~-~ = (-A, + k - s + l)k-A, (3.20~) 

are well defined. This leads easily to 

* 
PL(b,m,e; -m;p) = n 

(-k - s + l),(b - s + l)& - s + l)h, 

s=l (b - m - s + l)*,-k(e - m - s + l)*\,-k ’ 
(3.20d) 

In this expression, we use the following identity (and a similar one with b 
replaced by e) to obtain relation (3.16): 

(b - s + l)rs (A, + b - m - k - s + l)k+m 

(b - m - s + 1)*,-k = (b - m - s + l)m 

= (-l)k-“(-hs +’ - b)k+m 

(b - m - s + l)m 
. (3.20e) 

(Note that A, - s = ps - t.) 0 

Remark. Relation (3.16a) seems to contradict the fact that 
PL(b, d, e; c; z) is polynomial in the parameters (b, d, e, c> as well as in the 
variables (zr, . . . , 2,). We discuss this in Section VI and show that, despite 
appearances, relation (3.16a) is indeed a polynomial in the parameters b 
and e. 

Proof of Relation (3.17). This relation is a direct consequence of the 
definition (3.1) of the set of polynomials (PiJk = 0, 1, . . . } in terms of the 
A, and its L-symmetry expressed in Lemma 1.1. 0 

Proof of Relation (3.18). This relation is a direct application of defini- 
tion (3.1) and the identity (1.25) given in Lemma 1.3, the result being 
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extended to an arbitrary indeterminate y (since each side of the relation is 
valid for infinitely many integers A E IV). q 

Remark. The parameter y defined by Eq. (3.18~) occurs naturally in 
the form (3.18a) of Pi. This relation for PL has many of the features of the 
general result (see Theorem 6.1 and definition (4.15)) to be proved. We 
have been unable to prove the general result given in Theorem 6.1 directly 
from relations (3.18), but it is highly suggestive of that form. There 
appears to be no direct way of “lifting” the polynomials Q&r; y) in the 
single variable y to the general symmetric polynomial 7Jy; z) occurring in 
Eq. (4.15). We should point out that the result given in Theorem 6.1 was 
conjectured to be correct prior to the proof above of relations (3.18), this 
conjecture being based on the special cases of PL given below (Eqs. 
(3.22)-(3.27)). 

Proof of Relation (3.19). The coefficient of (z,z, . . . z,)~~ in PL, as 
given by Eqs. (3.4), is 

&%< --k)Id s.l (b - s + lhs(b + c - k + CL, - s + 1)/x 
P 

xo-‘(z)pqp,a)D(z -a). 

a 

The following relation was proved in [31]: 

~K(~,cx)D(z -(Y) = (Dimp)D(z). 
a 

(3.21) 

Using this relation in the above expression gives 

coefficient of ( zlz2 . . . zI) k 

= j(-llk(t - s + l)kC( ,%@)b)( I&( -b - C + t)&) 
P 

= Wk$rlCf - S + l)k( $$( -c + t)lk.. . k) 

= j-$C - k -S + l)k. 

In obtaining this result, we have rearranged various factors and used the 
generalized addition rule, Eq. (1.15). 0 

The properties given above in Eqs. (3.15H3.19) are all for general 
I, k E N, but with specialized parameters and variables. It is also useful 
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(and difficult) to calculate special cases for t and k, but with general 
parameters and variables, using the definition (3.1); that is, Eqs. (3.4). The 
difficulty with this direct procedure (aside from the division by D(z)) is 
that the individual terms, corresponding to partitions p in the summation, 
do not show b +B e symmetry. Accordingly, the terms must be assembled 
in a quite different way than that presented term-wise by Eqs. (3.4). It is 
this feature of the Pi given by Eqs. (3.4) that makes it difficult to work 
with them. The re-assembled result, showing explicitly b @ e symmetry, is 
quite remarkable in its structure, as we now illustrate by examples. 

Examples of the Polynomials PL 

The choice of the normalization given in the definition (3.1) has been 
made explicitly to yield the result: 

PA(b,d,e;c;p) = 1. 

(One may view this result alternatively as defining the function A, for the 
special case a = 0. Note that this result is indeed symmetric in b, d, e, as 
has already been remarked in Section I.) 

We have established (by direct computation) the following explicit 
results as examples of the polynomials PL: 

Example 1. 

PLz: = (c - l)(p,)(p, + Y~,~) + (c + b - l)(c + d - l)(c + e - l), 
(3.22a) 

where we have introduced a more explicit notation -yI,k for the parameter 
y of Eq. (3.18c), 

yt.k = 2c + b + d + e + 1 - 2t - k. (3.22b) 

This definition of yt,k is designed to make apparent a very important, 
empirically discovered, symmetry, which we prove below, namely, the 
involutary (reflection) symmetry called R-symmetry. 

Empirically found symmetry. The polynomial PL is invariant under 
each of the involutions R,, s = 1,2,. . . , t, defined by 

R,: ps c, -(P, + it,,& pr -pry r = LL..., t (r # s). (3.23) 

Note that this substitution affects a single p,, not the entire set (although 
this weaker result is true a posteriori). This symmetry is valid in all the 
examples to follow. 
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It is significant that yt+ can be written much more suggestively (using 
a = -k)intheform: 

7Jt=2c+a+b+d+e+1-2t. (3.24) 

We remark that in this form, the expression yt is totally symmetric in the 
parameters a, b, d, e and is invariant under the substitution L, Eq. (1.18). 

Example 2. 

42 = (c - 2),P,(P, + Y2,1)P2(P2 + Y2,1) 

+(c - l)(c + b - 2)(c + d - 2)(c + e - 2) 

XKP, - l)(P, + 1 + Y2,I) +P*(P2 + YZ,I)l 
+(c + b - 2)2(c + d - 2)*(c + e - 2)2. (3.25) 

Here y2,i has the value: yz, 1 = 2c + b + d + e - 4. This empirically 
found form demonstrates several interesting features: 

l symmetry in b, d, e. 

l symmetry in p1 and pz (but not explicitly!). That is to say, the 
“optimal” way to write the polynomial seemingly breaks p1 ti pz symme- 
try. 

l R-symmetry is explicitly valid. 

We have derived a recursion relation for the polynomials PL= 1 which 
proves these three points to be valid for PL= i for every t = 1,2,. . . . Both 
the recursion relation and the explicit result for PLcl will be given in a 
wider context below. It is surprisingly difficult (even with algebraic com- 
puter software) to obtain further explicit cases! 

Example 3. 

p;I: = (c - 2)2(PI - l),(PI + Y1,2)2 

+ 2(c - 2)(c + b - l)(c + d - l)(c + e - l)p,(p, + Y~,~) 

+ (c + b - 2)*(c + d - 2),(c + e - 2)2. (3.26) 

Here clearly the empirical symmetries noted above are again valid. 
Example 4. The case PLqs was calculated by hand-a very laborious 

task indeed! It was checked on MACSYMA at Los Alamos National 
Laboratory. This case proved to be the “Rosetta stone” of the problem, 
since the explicit result is so contrary to anyone’s reasonable guess that it 
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demanded, and eventually received, explanation: 

I$:; = cc - 2),(c - 3),P,(P, - lXP, + Y*,*XP* + Y2,2 + 1) 

wJl(Pl - ml + Y*,*XP1 + Y2,2 + 1) 

+2(c - 2),(c - 3),(c + b - 2Xc + d - 2Xc + e - 2) 

x[p2(p2 - 1xp, + Y2,2XP2 + Y2,2 + l)Pl(Pl + y2,2) 

+p2(p2 + Y2,2)Pl(PI - 2XPl + Y2,2XP1 + Y2.2 + 31 

+ l(c - l),(c + b - 3),k + d - 3),(c + e - 3)~ 

)([p,(p, - lXP2 + Y2,2XP2 + Y2,2 + l) 

+p2(p2 + Y2,2XPl - 2XPl + y2.2 + 2, 

+(p2 - lXp, - 2xp, + Y2.2 + 1XPl + Y2,2 + 2)1 

+ 3(c - 3),(c + b - 2),(c + d - 2)2(C + e - 2)2 

x[p2(p2 + Y2,2)Pl(Pl + Y2,2)] 

+2(c - 2Xc + b - 3)&c + d - 3)&c + e - 3), X [p2(p2 + Y~,~) 

+(pr - lXP, + Y2,2 + 01 

+(c + b - 2),(c + d - 2),(c + e - 2j2 

X(c + b - 3),(c + d - 3),k + e - 312. 

(3.27) 

Here y2,2 = 2c + b + d + e - 5. (The (Gel’fand-Weyl) patterns in the 
right-hand margin identify terms in the sum, as will be explained below.) 

It will be seen at once that this example validates, once again, the three 
empirical features discussed above. There are two especially curious 
features of Examples 2 and 4, which are the only ones above with two 
variables (t = 2): 

l the peculiar shifts in the variable p1 versus pz, and 
l the unreasonable appearance of the numerical coefficients 2,1,3,2 

in the four middle terms of Example 4. Yet these numerical coefficients 
are indeed correct. 



94 BIEDENHARN, BINCER, LOHE AND LOUCK 

The hints contained in these few examples as to the properties, 
and correct form, of the polynomials Pi all proved to be significant. 
(MACSYMA calculation for the next example PiI: proved to be pro- 
hibitively long.) In particular the involutary symmetry R is the key to our 
proof of the main theorem. We will spare the reader at this point the 
travail (but no little fun as well) of inducing (from these few examples 
essentially) the conjectured form (given in the next section), which we will 
prove to be correct in the remaining sections. 

R-symmetry was discovered empirically, as described above, but we can 
now go back and check its validity for the special cases given by Eqs. 
(3.15), (3.16a), and (3.18). Using (x)~ = (- l)‘( --x - k + l),, we find that 
the monomial (3.15) is indeed invariant under each transformation, 

R,: z, - -2, -2c-b-e-1+2t+k, (3.28) 

2, I+ z,, r= 1,2 7***, t (rls). 

Similarly, relation (3.16a) possesses R-symmetry (using the y-value appro- 
priate to the special variables in that relation). 

Remarkably, relation (3.18a) also possesses a form of R-symmetry. Since 
A = (i) in Eq. (3.18a), there is only a single variable y that occurs and we 
must interpret R-symmetry as the product R = R,R, . . . R,. To prove this 
R-symmetry, we first permute the variables (using the proved permuta- 
tional symmetry) and then apply R: 

(Y + t - l,...,Y + l,Y) 

“, (y,y + l,...,y + t - 1) 

R, (-y - y, -y - 1 - y,. . ., -y - t + 1 - r), (3.29) 

which is the transformation of the original variables given by 

y+-y-y-t+l. 

This is just the symmetry shown explicitly by Q,<r; y). 
One can derive a recurrence relation for the polynomial 

P[(b, d, e; c; zI,. . . , z,) (k = 11, which can be iterated to give the polyno- 
mials P[ for all t = 1,2, . . . . The recurrence relation is 

Pi(b,d,e;c;z, ,..., zl) 

=(c- l)z,(~,+y,,~)P:-‘(b,d,e;c- l;zl ,..., z,-i) 

+(c + b - t)(c + d - t)(c + e - t) 

x P:-‘( b, d, e; c; z1 - 1,. . . , z,-~ - 1). (3.30) 
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This recurrence relation was originally proved directly from the defining 
relations, Eqs. (1.8) and (3.1), but this derivation is tedious and nonillumi- 
nating and will be omitted. 

It suffices here to point out that the correctness of relation (3.30) can be 
verified by using one of the main theorems of this paper, Theorem 6.2. 
Applied to the special case at hand (k = l), Theorem 6.1 asserts that 

P:(b,d,e;c;z) = 9:(b,d,e;c;z) (3.31) 

for all parameters (b, d, e, c), variables (zi, z2,. . . , z,), and all t E N. 
Starting from Pi given by Eq. (3.22a), one can, in fact, iterate relation 
(3.30) to obtain the result for S{ given by Eq. (4.15) for k = 1. 

We have given in this section the principal properties of the polynomials 
PL that suggest-and are needed to establish-a completely new expres- 
sion for the PL. This new form is formally introduced in the next section 
and proved in the remaining two sections. 

IV. THE CONJECTURED POLYNOMIALS 9’#, d, e; c; z) 

We will give in this section a conjectured general form for the polynomi- 
als PL discussed in Section III above. We will prove (in Section VI below) 
that these conjectured polynomials are in fact precisely the original 
polynomials P,& For logical precision, however, we will distinguish these 
two sets of polynomials, using 9’; for the conjectured set and (as before) 
PL for the original set. 

We will show in this section that the conjectured set 9l allows a 
determination of a new form for A,, which is correspondingly also a 
conjectured form distinguished typographically as J@~C,~*~,~). The identity 
of A, and &A is established in Section VI. 

Of particular interest is the fact that for both these new forms (9; and 
&+> symmetry under b * e interchange is fully explicit. Moreover, these 
new forms involve, in a natural way, a new structure: inhomogeneous 
symmetric polynomiuks in the partial hooks, (p,}. We first develop these 
new symmetric functions, and then give the conjectured forms. 

The new symmetric polynomials are defined in terms of the set of 
Gel’fand-Weyl patterns (Cm)} having as their top row of U(n) irrep labels 
p = (pl,pz,. . . , pI) = Cm,,, mzt,. . . , m,,) (see Eq. (2.3a)). The variables 
in these new symmetric functions are the n-tuples z = (zi, .Q, . . . , zI) of 
indeterminates. 
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DEFINITION. With each Gel’fand-Weyl pattern (m), as described by 
Eqs. (2.31, we associate a polynomial t(,,(z>, 

t(,)( z, = fi fi ( zj - mij - i + i + l)mij-mi,j-,? (4.1) 
j=l i=l 

where, by definition, mi, j = 0 for j < i. 

The symmetric polynomials t,(z) are then obtained by summing the 
polynomials tcmJz) over all patterns (m): 

t,(z) = c ‘(m,(Z)* (4.2) 
b&G, 

Here G, denotes the set of all n-rowed Gel’fand-Weyl patterns having 
partition p for their top row. 

Let us now state some of the most important properties of the polyno- 
mials t,(z). (Proofs are given in 1331.) 

THEOREM 4.1. The polynomials t,(z) are symmetric polynomials in the 
variables (zl, z2,. . . , z,) for each partition /.L = (pl, p2,. . . ,pLI). 

This property is not at all obvious from the definitions (4.1) and (4.2) 
because of the curious shifts, -(mij + j - i - 0, in the rising factorials in 
expression (4.1). 

THEOREM 4.2. The set of symmetric polynomials {tl,(z)Ip E pt) forms a 
Z-basis of the ring At of symmetric polynomials. 

THEOREM 4.3. Let A E p* and define p by 

ps = A, + t - s, s = 1,2 9 * . * 7 t. 

Then, for each r = 1,2,. . . , t, we have 

t~(Z1,...,Z~.,Pr+l,...,Pt) = 0, 

unless CL, I A,, s = r + 1,. . . , t. 
Let us give two useful properties of the symmetric polynomials t, 

needed in the sequel: 

First property, 

t(p‘,,* ,..., /L,) ( ZlYZ27..., zt) = 

( ZIZZ.. . zt) t(pI-l&*-l ,..., @,-l) (z,-l,z,-l)...) zt-l), 

(4.3) 

for pt 2 1. 
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Second property. 

Let us proceed now to define the symmetric polynomials T&y; z) of 
direct interest in this paper. These new polynomials are designed not only 
to be symmetric functions but also to exhibit R-symmetry, an involution on 
thepartialhooks:p,+ -(r+p,),withy=2c+a+b+d+e+l- 
2t. Since the parameter y has no significance in this general definition, we 
replace it now by an arbitrary parameter (Y and let the partial hooks ps be 
arbitrary indeterminates z,. 

DEFINITION. The definition of T’,((Y; z) is given directly in terms of the 
polynomials t(,) defined in Eq. (4.1), 

q.b;z) = c t(m,w$?l)(-z - a>, (4Sa) 
(mkG, 

in which 

z + a = (Zl + a, z2 + a,. . .) z, + a). (4Sb) 

It is again not obvious that the polynomials T,(cx; z) are symmetric in 
the variables (zi, . . . , z,). (The proof of this fact is given in [331.) 

One property of the T&U; z) that is obvious from the definition (4.5) is 
the following: Define the involutory transformation R, by 

R,: z, * -z, - a (I = s), 

z, - ZI, r= 1,2 ,...,t(r#s). (4.6) 

Here s may be 1,2,. . . , t; that is, there are t such transformations (4.6) in 
all. Then, TJLY; z) is invariant under the action of each transformation R,: 

R,: Tp(a; z> - T&G z), s= 1,2 ,***, t. (4.7) 

Let us next summarize some important properties of the polynomials 
TpCa; z> given in [33,341. 

THEOREM 4.4. The polynomials TPCa; z) are symmetric polynomials in 
the variables (zl, z2,. . . , z,> for each partition p = &, p2,. . . , ~~1 E Pt. 

The symmetric polynomials TP(cz; z> are, of course, related to Schur 
functions. The simplest expression of this relation is given, however, not in 
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terms of the standard e,(z) (see, for example, [27,35]) but in terms of 
modified Schur functions satisfying the symmetries R, and defined by 

epw u,=z,(-2,--a), s=1,2 t. ,***> (4.8) 

Each variable u, is then an invariant under each of the transformations 
R,, s = 1,2,. . ., t, hence, under the group Ht of transformations gener- 
ated by the R,. These Schur functions are then not only invariants under 
the action of the symmetric group S, but also under the action of the 
group Ht. Clearly, the {e,(u)} are a basis of all polynomials in (Y and z that 
are invariant under 5, and H,. In particular, the symmetric polynomials 
TJLY; z) can be expanded in terms of the basis (e,(u)]. The leading term in 
this expansion is e,(u), since it is easily verified that 

Tp( la; 5~) = lqPl+ “’ +pLr)ep ( u) + (lower order terms in 6). (4.9) 

THEOREM 4.5. The set of symmetric polynomials (TP(a; z)Ij~ E Pt,) fom 
a Z-basis of the ring of polynomials invariant under the groups S, and H,. 

The symmetric polynomials (T,(a; z)} satisfy two important recurrence- 
like relations given by 

= u1u2... ( 4) 
x T~p~-l,pz-l ,&a + 2;z, - 17~2 - ,..., l,...,zc - 11, 

/.Lr 2 1, (4.10) 

T (&L,,jL* ,...) ~.,)(~Y;Zl,Z2,...,Zt-lYO) 

= - - Gp,,&,,CC2 /&,)(a + 2; Zl 1, z2 17 - * -- 3 ,..., Zt-1 1). (4.11) 

These relations are used to establish (see [33,34]) the next result on 
zeros of the symmetric polynomials TMCa; z>: 

THEOREM 4.6. Let z = (zl, z2,. . . , z,> = (ply ~2,. . . , P,), where P, = 
A, + t - s with A = (A,, A,, . . . , A,) E Pt. Then 

Tp(a; P) = 0, unlessp, <A,,s = 1,2,...,t. (4.12) 

The last result we require from [33] is the following expansion: 
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THEOREM 4.7. Let x and y be arbitrary parameters. Then the following 
expansion is valid, 

x + 1 - Z,)k(Y + 1 - Z,)k 

= CL%-k)b) j(x - 
1 

t + s + l&J y - t + S + l)keP, 
Ir. 1 X Tp(a; z), (4.13a) 

where 

a= -x-y-k-l. (4.13b) 

Remark. The coefficient (iFe(- k)lp) in this result is obtained by 
setting a = -k and A = p in Eq. (1.12). It may also be written in the 
following form, which shows that it is integral (see [33]), 

(,Fo( -k)lp) = b-l’ 
‘l+ .” +‘I Dim[ fiOk-pl] for pi I k, 

forpr > k, 
(4.14a) 

where i; is the partition conjugate to CL; specifically, 

fi = [ fh, (t - p-J+,. . . ) p-a] ) (4.14b) 

in which nk = (ri) denotes that integer n is repeated k times. 

We have now given the complete definition of the T,(y; z) which we 
require in defining the new polynomials 9;; we now replace the parame- 
ter (Y in definition (4.5) by the special parameter y = yt,k defined by Eq. 
(3.22b): 

The new polynomials 9/. 

9,f(b, d, e; c; z) 

= &q-k)l~l svl’c - k - s + 1)~s 
P 

f 
x n (c + b - k + pLs - s + l)k-p,(c + d - k + /JL~ - 3 + 1)~p, 

s=l 

x(c + e - k + p, - s + l)k-p, T,(Y; z). (4.15) 1 
Here T,(y; z) are the symmetric polynomials defined in Eq. (4.5) above, 
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with y = 2c - k + b + d + e + 1 - 2t and with general variables z = 
(q, z 2, . . . , z,). Since the hypergeometric coefficient ( iFO( - k)Ip) is zero 
for ps > k, s = 1,2,. . . , t, the summation over partitions p E lPt is auto- 
matically limited to those for which 0 I CL, I k, s = 1,2,. . . , t. 

Remarks. 1. Definition (4.15) reduces correctly to yield all the explicit 
cases discussed in Section III, although in some cases the proof is 
nontrivial, as we discuss in more detail below. In particular, one sees that 
the Gel’fand-Weyl patterns given for Example 4 (PiI;) label exactly the 
terms in the sum for T,, in Eq. (4.5a). Moreover, the dimension factors, 
Dim&@ (see Eq. (4.14a)), easily yield exactly the curious integers 2,1,3,2 
found in this example. 

2. The form of Eq. (4.15) shows that 9’; is actually a group-theoreti- 
cally defined polynomial whose terms correspond one-to-one with every 
Gel’fand-Weyl pattern (m) in U(t) with (6) I p = Cm,,, mzt,. . . , m,,,) I 
(IQ. 

3. Relation (4.13a) extends formally to negative values of k; that is, 
the following expansion is valid as a formal series: 

where now 

each k E N, (4.16a) 

(Y= -x-y+k-1. (4.16b) 

This formal identity is a consequence of the invariance of the function in 
the left-hand side under the actions of the groups S, and H,, and of the 
basis property of the (T,(cw; z)} for all such functions. Observe that the 
summation over p in relation (4.16a) no longer terminates. 

Let us turn next to the definition of the new functions J&C,~,~,~). For 
the values a = -k, all k E N, we use Eq. (3.1) to define L& in terms of 
9;; that is, 

J%(, W.d.e) = M-~(r\)[ fi ( c + b - s + 1)*&c + d - s + l)*,pk 
s=l 

X(C + e -s + l)h,-k LPL(b,c,d;e;p), 1 
allk=0,1,2 ,.... (4.17) 

A problem occurs when one seeks to extend definition (4.17) to 
general values of the parameter a. To resolve this problem, we use 
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Carlson’s theorem (see p. 36 of [28]), which asserts that (under certain 
mild growth conditions) knowledge of a function at all integer points 
{O, 1,2,. . . ) is equivalent to knowledge everywhere. For the case at hand, 
Eq. (4.17), the application of Carlson’s theorem is particularly simple: one 
simply replaces -k in Eq. (4.17) by a. That this is the correct procedure is 
seen by combining the multiplicative factors in Eq. (4.17) with factors 
under the summation in the definition (4.15) of 9; as follows: 

(c + b - k + ps -s + l&(c + b - s + 1)*,-k 

= (c + b - k + p, - s + l)A,-P, 

with similar factors in d and e. One now sees that the dependence of 
Jai- k*b*dPe) on k is, in fact, polynomial in k. Thus, the unique extension 
of relation (4.17) to a polynomial in the parameter a is given by 

x (a + b + c + /.L~ - s + l)r,-PS(u + c + d + /A$ - s + l)h,--ILs 

x(a + c + e + p, -s + l)h,--CLs q(w), 1 (4.18) 

where 

(a) the sum is over all partitions p = (pl, p2,. . . , Pi) E lPt,, 
(b)r=2c+u+b+d+e+l-2t, 

(4 P = (PI, P2, * * * , p,) with ps = A, + t - s. 

The relationship of this general result for a to the polynomials 9; is 
recovered by setting a = -k. 

Remarks. 1. The form given by Eq. (4.18) is obviously symmetric in 
b, d, e. By construction, Eq. (4.18) also shows the symmetry R defined in 
Eq. (3.23). The symmetry of Eq. (4.18) under all permutations of the 
partial hooks {p,} is also valid, but not obviously so (see Theorem 4.1). 

2. One might wonder as to what makes the sum in (4.18) finite. The 
answer is that the symmetric functions T&y; p), according to Theorem 4.6, 
are such that the sum terminates at limits set by the values of the A,. Thus, 
&A is polynomial in a, b, c, d, e. 
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The strategy of the present paper is now to prove our main proposition 
(the symmetry of A, for b +B e) in the form: 

THEOREM 4.8. The polynomials A, defined by Eq. (1.8) and J$ defined 
by Eq. (4.18) are identical. 

Since A, and MA are the unique extensions of the polynomials PL and 
A@;, respectively (as shown above for &A and with a similar result for A,), 
the proof of this theorem is equivalent to proving the lemma: 

LEMMA 4.1. The polynomials PL(b, d, e; c; z) defined by Eqs. (3.4) and 
.9i(b, d, e; c; z) defined by Eq. (4.15) are identical. 

The proof of this lemma is a sizeable task because the expressions for PL 
and 9; are structurally quite dissimilar. This is carried out in Section VI 
below. 

We continue this section by proving the relation A,, = J$ for the 
special cases of A, considered in Section I. 

LEMMA 4.2. The polynomials &A are invariant under the linear transfor- 
mation L defined by Eq. (1.18). 

Proof This is an obvious property of definition (4.18) and the fact that 
y is invariant under L. 0 

LEMMA 4.3. The polynomials A, and J%‘~ are equal if at least one of the 
conditions a = 0, d = 0, c = -a, c = -d holds. 

Proof These are the special cases noted in Lemma 1.2 and Eqs. 
(1.2OM1.21). For a = 0 or c = -a, only the p = (0 ,..., 0) term in the 
summation in Eq. (4.18) is nonzero. Since 

%4...,&; P> = 1, 

one easily verifies the lemma. 
For d = 0 or c = -d, the proof reduces easily to that of proving the 

following equality for arbitrary parameters u, v, a: 

s!$” - s + I)*\,@ - s + I)*, 

= UI%WlcL) sG (u + a + k - s + l)~~-~~ 
CL [ 

X(v+a+p,-~+l)~,-~, 1 
x T@; P), (4.19a) 
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where 
a=a+u+v-2t+l. (4.19b) 

The relation given by Eqs. (4.13) in Theorem 4.7 is the key to the proof of 
relations (4.19): It is used to prove that P#, 0, e; c; p) = .G@@, 0, e; c; p), 
as explicitly shown in Eq. (5.3) of Section V. We will use this result here, 
since its proof is easy to give. It leads in Eq. (4.18) to 

~2?( ,k7b’o’e) =(,&(c - k,c + b,c + e)lh), (4.20a) 

which extends to 

c + a,c + b,c + e)lA). (4.2Ob) 

This result not only agrees directly with Eq. (1.21b) for A,(d = O), but also 
yields Eq. (4.19a) when used in Eq. (4.17). Relation (4.19) is quite 
surprising in that the left-hand side is independent of a. 0 

LEMMA 4.4. The polynomials A, and &A are equal for t = 1. 

Proof For t = 1 in Eq. (4.17), we have 

A, =n, CL~= k, PI = n, K’(n) = l/n!, 

(,%GW) = (a)&!, 

where 

Tk(y; n) = (n - k + l)k( -n - y - k + l)k 

= (-n)dn + T)k, 

y=2c+a+b+d+e-1. 

Making these substitutions in Eq. (4.17), we obtain exactly relation (1.22b) 
for A,. 0 

LEMMA 4.5. The polynomials A, and &A are equal for A = (i). 

Proof. The relations needed here are 

M-‘(a 
M-‘(A) = (Dim p)II:=i( A - CL, + S)P, ’ (4.21) 

T,(a;A + t - l,...,A + l,A) 

= (Dim r)sfil(A - ps + s)~,( -A - a - t + 1 - PL, + ‘)w 

(4.22a) 
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M-‘(i)T,(a;h + t - l,...,A + 1,h) 

=M-i(j&-l)PS(A +a+r - s)ws* (4.22b) 
.T=l 

Using this last relation in Eq. (4.18) with A = (A) and (Y = y gives exactly 
relation (1.25) for Ai. Equation (4.21) is proved straightforwardly from the 
definition (1.6) of M-i(A) and Eq. (1.26b) for M-l(p). The proof of Eq. 
(4.22a) requires more work. 

Equations (4.10) and (4.11) may be used to prove relation (4.22a). We 
first iterate Eq. (4.10) k times to obtain 

Tp(a; z) = sfil(zs - k + l),J -z, - (Y - k + l)k 

x T& ,..., rr-k)(a + 2; z1 - k,. . ., z, - k). (4.23) 

We now choose k = pLt and set z, = A + t - s, where A E N and s = 
1,2,..., t. We obtain 

T,(cr;A + t - l,...,A + 1,A) 

x T,,,-, ,,..., pt-,-cL,,o)(~ + W,;A - CL‘ + t - l,...,A - CL~)- 
(4.24) 

We can prove Eq. (4.22a) by showing that the following relation is true: 

T (/.Q ,...) p,-&y;A + t - l,*.*,A + w 

Dim(~l,...,~r-l,O) 

= Dim(p,,...,p,-,) 

x %I ,.... PLY-Id a + 1; A + t - 2,. . .,A + 1,A). (4.25) 

Note that this relation is implied by Eq. (4.22a). Conversely, relation (4.25) 
implies relation (4.22a). To show this we use induction on t and the 
proved relation (4.24). We begin by noting that Eq. (4.22a) is correct for 
t = 1 (see [33] for tables of special cases of Tp(cx; 2)). We now assume that 
Eq. (4.22a) is correct for t replaced by t - 1 and use this result in the 
right-hand side of Eq. (4.25). In the expression thus obtained for 
T (p, )..., j&*,O)(~;A + t - lY-.*, A + 1, A), we make the parameter shifts 
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h + A - pLt, pL, + pS - pt (S = 1,2,. . . , t - 11, CY + (Y + 2p1, and substi- 
tute the result into the right-hand side of Eq. (4.24). This result obtained 
for T@; A + t - 1,. . . , A + 1, A) from Eq. (4.24) agrees exactly with that 
given by Eq. (4.22a); that is, the induction step from t - 1 to t is 
completed. Thus, the validity of Eq. (4.25) implies that of Eq. (4.22a). 

The above result shows that Eqs. (4.22a) and (4.25) are equivalent; each 
implies the other. We next prove Eq. (4.25) (hence, (4.22a)) by induction 
on t, again using relation (4.24). The validity of Eq- (4.25) for t = 1 is 
established directly from the definition of the T&(Y; 2). We assume (4.25) 
to be valid as given and show it to be valid for t replaced by t + 1. We 
need to prove 

T cw1 ,__., ,+&GA + t,.--,A + l,A) 

Dim(~ll,...~~r,O) 
= Dim(pl,...,wr) 

T + ,,..., ,J’Y + l;A + t - l,...,A + LA). 

(4.26a) 

To prove this relation, we apply relation (4.24) to the right-hand side. We 
then apply Eq. (4.25) (induction hypothesis) to the resulting relation, 
making the appropriate shifts in parameters. The result is 

q,, ,,._,, r,,o~(~; A + t,. . . , A + 1, A) 

D~(PI,-..,P~,O) ’ 
= Dim(pr 

n (A - pt + s),+( -A - ff - t - PLY + s)pt 
,...,Pr-1) s=l 

x Tcwl-, ,,..., F,--I-p,j(~ + 2 + 2~r; A - PI + t - 2,...7A - /-%)a 

(4.26b) 

But we have already proved above that Eq. (4.25) implies relation (4.22) 
for all p E lPt for all t. Accordingly, we can use this explicit result in the 
right-hand side of Eq. (4.26b), after shifting parameters. This gives 

T (PI ,...( p,,O)(O + t,.**7A + w 

= Dim(~,,..., p,,o) fi (A - ps + s)& - Q - t - PL, + s)~s, 
s=l 

(4.26~) 

which, in turn, implies Eq. (4.26a). Thus, the induction loop closes and Eq. 
(4.25) is proved. q 
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The polynomial &‘* possesses some further properties that are useful 
to summarize: 

LEMMA 4.6. The polynomial ~2~ is invariant under all permutations of 
b, d, e. 

Pro05 This is an obvious property of definition (4.18). 0 

LEMMA 4.7. The polynomial J%?++ satisfies 

L&f (* ,,..., h ,-,, o,(;~b~d~e) =4* I,..., *,&b,d,e)* (4.27) 

Proof This important property follows from the definition (4.18) by 
setting pt = A, = 0, using M-%A,, . . . , A,-,, 0) = M-‘(A,, . . . , A,-r), and 
identity (4.11). 0 

We conclude this section by writing the definition (4.18) of JXY~ in 
another form that shows a relationship to generalized hypergeometric 
coefficients. The first form involves a straightforward generalization of the 
hypergeometric coefficients to p numerator parameters and q denomina- 
tor parameters, which we have anticipated in our use of 3F0 earlier. This 
generalization of the hypergeometric coefficients is 

* 
(p%(aly.. . , a,; 4,. . -7b&“+ = M-l(p)s~l 

Ilfzl(aj -s + l),S 
nq= (b, _ s + 1) ’ 

I1 I Ps 1 
(4.28) 

The corresponding (formal) generalized hypergeometric function associ- 
ated with the coefficients is then defined with the aid of Schur functions by 

,,%(a; b; 2) = C(,%(a; b)l&,( 2)) 
P 

(4.29) 

where a = (al,. . . , a& b = (b,, . . . , b,), and z = (zr,. . . , zt). 
Using property (1.10) of rising factorials and the definition of the 

generalized hypergeometric coefficients, we can write -Qz, as defined by 
Eq. (4.18) in the form 

~(~yb7dye) =Ml(A)[fifi(b,-s+ l)~s]z&r(.;b;P). (4.30) 

Here zFsT is defined by 

&‘(a; b; P) = c( &(a; b)b)T,(y; P), 
P 

(4.31a) 
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where 

a = (u1,a2), b = (b,,b,,b,) (4.31b) 

with the parameters defined by 
a, = a, u2=a +c, 

b,=u+b+c, b,=u+c+d, b,=u+c+e, 

ps = A, + t - s, s = 1,2 ,*-*> t. 

y=2c+u+b+d+e-2t+l=b,+b,+b,-a,-a,--2t+l. 
(4.31c) 

For t = 1 [see Eq. (1.22b)], we have, for A, = IZ, the identity 

-n 
9 (4.32) 

where y = b, + b, + b, - a, - u2 - 1 + n. Here the hypergeometric se- 
ries 4F3 of unit argument terminates because of the occurrence of the 
numerator parameter -n. As remarked earlier, the summation over p in 
the general definition of *Y3’ given by Eq. (4.31a) terminates because 
T&y; p) = 0, unless pLs I A,, s = 1,. . . , t (see Theorem 4.6). 

Since T&y; p) is polynomial in the integer-valued variables p = 
(PI, P2,. * * 7 p,), the natural extension of definition (4.31a) is to replace 
these integral variables by arbitrary variables z = (zr, . . . , zt), and define 

2F3T(a;b; z) = ~(,Sr,(a;b)l~)Tp(y; z), (4.33) 
P 

where y is defined in terms of the ui, bj, and t by Eq. (4.31~). 
The (formal) series in the right-hand side of definition (4.33) no longer 

terminates just as the series (4.32) would no longer terminate should we 
replace the integer n by an arbitrary parameter zi. 

From the viewpoint of relation (4.32), one might regard the functions 
2F33T defined by Eq. (4.33) as generalizing the 4Y3 hypergeometric series. 
It is much more natural, however, to regard 2F3T as generalizing 2F3 

defined by Eq. (4.29) in that the Schur functions {e&z>} have been replaced 
by the new class of symmetric polynomials (Tp(cx; z)}. (The notation is 
designed to suggested this.) 

V. PROPERTIES OF THE POLYNOMIALS 9’; 

We have given several properties and special cases of the polynomials 
P,f in Section III: These include relations (3.9) and (3.15)-(3.19), together 
with the four special cases k, t = 1,2 given in Eqs. (3.22)-(3.27). The 
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verification that 9; for k, f = 1,2 agrees with Pi is tedious but direct 
(indeed, these special cases provided the initial motivation for the new 
form). 

The purpose of the present section is to establish the above-mentioned 
properties of the polynomials PL directly for the new polynomials 9;. 
Relation (3.9) for 9; follows easily and directly from the reduction 
property (4.11) of the basis polynomials TJ(Y; z). Thus, we obtain 

= [(u + c + b - t + l)k(a + c + d - t + l)k(u + c + e - t + l)k] 

x 9;-‘(b,c,d;e; .zl - 1,. . ., zt-i - 1). (5-l) 

This relation, in turn, when used in definition (4.17) for &A yields 

LEMMA 5.1. The new polynomial 9; satisfies the same identities, Eqs. 
(3.1%(3.19), as the polynomial PL. 

Proof We prove each of these results, in turn. 
The d = 0 polynomials, For the integer-valued variables z, = pS = 

A, + t - s, the equality gL(b, 0, e; c; p> = P,@, 0, e; c; p) is a conse- 
quence of Lemma 4.3 and the definitions of these polynomials in terms of 
JS’~ and A,, respectively (cf. Eqs. (4.15) and (3.1)). Its validity for arbitrary 
variables z may be proved directly from the definition (4.15) and the 
general result given in Eq. (4.13a). Thus, setting d = 0 in Eq. (4.15), we 
see that the following terms combine and may be brought in front of the 
summation over ~1: 

CC - k - s + l),Jc - k + /.L, - s + l)k-PS = (c - k - s + l)k. 

The summation over p is then exactly that given by the right-hand side of 
Eq. (4.13a) for x = -c - b + t - 1, y = -c - e + t - 1, after using 
(U)l = ( - lY( -U. - 1 + Q. Application of identity (4.13a) now gives ex- 
actly the right-hand side of Eq. (3.15), after using (u), = (- l)‘(-u - 1 + 
11, again; that is, we have demonstrated 

LPL(b,O,e;c;z) = PL(b,O,e;c;z). (5.3) 

The polynomials with d = -c = m, m E N. We set d = -c = m and 
z = p in Eq. (4.15) and combine factors C-k - s + l&$-k + CL, - s + 
l)k-p, = C-k - s + ljk, where the first factor comes from the hypergeo- 
metric coefficient (,&,< -k) 1~). The summation limits over ~1 must now 
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be given explicitly, namely, (6) I p I (k). For each m E N, we can write 

(b - m - k + p, - s + l)k-PLr = 
(-1) k+m-ps( -b + s)k+,,+ 

(b-m-s+l), ’ 

with a similar term in e. We thus obtain 

gL(b,m,e; -m;p) 

= sl$~-k - s + l),/(b - m - s + l),(e - m -s + l)m] 

x C <1%(-k -m)lcL> 
(bkpdk) 

scl ( -b + S)k+m-J -e + S)k+m-ps 1 q(Y’; P), (5.4a) 

where 

y’=b+e-k-m-2t+l. (5.4b) 

Comparing the summation term in Eq. (5.4a) with the right-hand side of 
Eq. (4.13a), we see that they agree for x = -b + t - 1, y = -e + t - 1, 
z, = ps = A, + t - s, and with k replaced by k + m, except that the upper 
limit of the summation is different; it is p = (k) in Eq. (5.4a) and p = 
(k) + (ti) in Eq. (4.13a) for the special case being considered. This is 
where the restriction 0 I A, I k comes in. Because T&y’; p) = 0, unless 
IL, I A,, the summation over p in Eq. (4.13a), for the case being consid- 
ered (having k replaced by k + m) also terminates at the upper limit 
p = (k) (for 0 I A, I k). Thus, under the restriction 0 s A, I k, Eq. 
(5.4a) becomes 

gl(b,m,e; -m;p) 

= Pi( b, m, e; -m; p) (5.5) 

by Eqs. (3.16). 0 



110 BIEDENHARN, BINCER, LOHE AND LOUCK 

The shifted-parameter polynomials. The proof of the relation 

%+,(b, d, e; m; 2) 

s + l),(d -s + l),(e - s + l)m 

XgL(b+m,d+m,e+m;-m;z) (5.6) 

for m = -k, -k + l,..., 0,1,2 ,... is a straightforward application of 
the definition (4.15). Note that the y-parameter is the same for the 
parameters of A@;,, and those of 9; occurring in relation (5.6). q 

The specialized variable polynomials. The proof of 

9L(b, d, e; c; y + t - s,. . . , y + 1, y) 

= PL( b, d, e; c; y + t - 1,. . . , y + 1, y) (5-V 

is a direct consequence of &i = Ai (Lemma 4.5) for all nonnegative 
integer values of y. Since both 9’1 and PL are polynomials in y, identity 
(5.7) is true for arbitrary y. q 

Highest-term polynomial. 
(-1)/q+ ‘.’ +PrZ~‘lZp . . . 

The term of highest degree in T&-y; z) is 
zyPc; hence the term of highest degree in 9’; 

in definition (4.15) occurs (uniquely) for p = (k). Since (1FO(-k)lk> = 
(- l>&‘, we obtain 

coefficient of ( zlzz * * * z,)‘& inLPL= fi(c-k-s+l),. q (5.8) 
s=l 

Remarks. (1) Two properties that as yet we have not proved to be 
shared by the polynomials PL and 9’; is the J-symmetry, JZq. (3.10, of the 
former and the R-symmetry, Eq. (4.6), of the latter. J-symmetry of the 9; 
and R-symmetry of the PL are both nontrivial results, which are estab- 
lished only by the proof (in the next section) that the two polynomials are 
identical: 9; = PL. 

(2) The proof given above in Eq. (5.5) that 9$(b, m, e; -m; p) = 
P$b, m, e; -m; p) (m E k8 shows that the Pk are polynomial in all the 
variables b, m, e, and pS = A, + t - s, this being so despite the form of 
Eq. (3.16a). This is so becawe the denominator divides the numerator in 
Eq. (3.16a), as may be shown by use of R-symmetry of the numerator and 
the integer-valued property of the variables p,. The explicit polynomial 
form of Pi(b, m, e; -m, p) is, of course, 9’L(b, m, e; -m; p), as obtained 
directly from Eq. (4.15). 
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(3) We have given more shared properties of the PL and 9; than 
strictly needed for the proof that Pl and 9; are identical (see Section 
VI). The difficulty in finding this proof led us to enumerate as many 
mutual properties as could be established directly. 

VI. PROOF OF THE MAIN PROPOSITION: A, = .w’* 

Before proceeding to the proof of the identity Pi = .9;, hence of 
A, = LX’*, we require one additional basic result: 

THEOREM 6.1. If Pi(b, d, e; c; z) is invariant under each transformation 
R, defined for each s = 1,2,. . . , t by 

R,: z, - -z, - Y, 

z, h-b z,, r= 1,2 ,..‘, t (s -f r), (6.la) 

then 

PL! b, d, e; c; z) = 9$( b, d, e; c; z) (6.lb) 

for all parameters b, d, e, c and all variables z,. 

Proof. We have earlier referred to invariance under the group of 
transformations generated by R,, s = 1,2,. . . , t, as R-symmetry. We have 
also shown that the symmetric polynomials (T,(y; z)} are a basis for all 
symmetric polynomials in (zi, z2,. . . , z,) that also have R-symmetry. Thus, 
the following expansion is valid under the assumption of the theorem: 

P,Xb,d,e;c;z) = CC:,.(b,d,e,c)T,(y;z). (6.2) 
P 

The proof of the theorem is accordingly reduced to that of showing that 
the coefficients CL,& are exactly those given in Eq. (4.15). 

The main property we need to show is that the coefficients CL,@ factor 
in the following way: 

Ci,,(b, d, e, c) = B&,( b, c)Qi,,(b, c, d, e), (6.3a) 

where Q:,. is defined by 

Q:,,(b,c, d,e) = sfil ( c + b - k + /.L, - s + l)+ 

X(C + d - k + ps - s + l&, 

X(C +- e - k + p, - s + l)k-ILs. (6.3b) 
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The factors Bi,. are to be independent of d, hence, also of e (by the 
known d ++ e symmetry of the I’;). Once the form (6.3a) is established, we 
evaluate BL,. uniquely by setting d = 0, and using identity (5.3). This 
gives 

B:,,(O) = (~~(-k)ld~~(c - k - s + l)p,, (6.4) 

which shows that Bi,. is also independent of b. Thus, Theorem 6.1 is 
proved fully by establishing Eq. (6.3). 

We prove Eq. (6.3) by using the zeros of the symmetric polynomials as 
given by Theorem 4.6 (making the appropriate notational changes) and by 
induction on the (total) ordering of the set Pt of partitions. We assume 
(induction hypothesis) that Ci,,(b, c, d, e) has the form (6.3) for all parti- 
tions p = &,. . . , pI) such that 

(0, * * *, 0) 4/.L IA, (6.5) 

where A = (A,, . . . , A,) is an arbitrary, but fixed partition. We denote by A* 
the smallest partition greater than A, and set p = A* + 6 in Eq. (6.2), as 
well as in the defining relation for PL, Eqs. (3.4). The only terms occurring 
in the summation in Eq. (6.2) for z = p = A* + 6 have pu, I A:, s = 
1,2,..., t, and from the definition of A*, we uniquely split the summation 
into two terms: 

Pl(b,d,e;c;A* + 6) = c CL,,(b,c,d,e)T,(y;A* + 6) 
cL<A 

+ C&(b, c, d, e)T’*(y; A* + 6). (6.6) 

The induction hypothesis applies to each term in the summation with 
Jo I A; hence, this summation contains the factor 

Qi,db, c, d, e), 
since 

Qi,,(b, c, d, e) 

X(C + d - s + l)At:_,S(c + e - s + l)A$--cLS 

for p I A, s A$ By Lemma 3.4, the function P,‘(b, d, e; c; A* + S) also 
contams the factor (6.7). Thus CL ,&I, c, d, e) also contains this factor. 
Equation (6.6) reduces to the polynomial relation in the parameters 
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(b, c, d, e) given by 

Pl(b,d,e;c;A* + 6) = Qi,,*(b,c,d,e)R&(b,c,d,e), 

RL,A*(b, c, d, e) = c &,,(b, ~)T,(Y; A* + 6) 
Fs* 

(6.8a) 

x slI (c + b - s + l)+Jc + d - s + l)+,s 

X(c + e - s + 1),1;-~~ 

+B~,,(b,c,d,e)T,*(y;h* + 6). (6.8b) 

Here we have also put 

C,&(b, c, d, e) = QL,,*(b, c, d, e)&,,*(b, c, d, e). (6.8c) 

We see from Eq. (6.8a) that RL,,* (b, c, d, e) is a polynomial of degree 
n * =A? + -** +A: in d. Each term in the summation part p I A of Eq. 
(6.8b) is also of degree n* in d, since 7$-y; A* + S) is of degree 
El1 + . . - +p, in d. Since the degree of T,*(-y; A* + S> in d is n*, the 
degree in d of Bi,,*(b, c, d, ) e must be zero, for otherwise the degree of 
the last term in relation (6.8~) would exceed that of all other terms. Thus, 
BL,,(b, c, d, e> is independent of d, and by symmetry, also of e: 

Bi,,*(b,c,d,e) =BL,Ab,c). (6.9) 

This result, when used in Eq. (6.8~1, closes the induction loop. The 
theorem is thus proved if it is true for A* = (0,. . . , O>; that is, for the 
variables z = (t - 1,. . . , l,O>. 

To verify the validity of the starting point in the above induction proof, 
we must show that 

PL(b,d,e;c;b) = n(c+b-k-s+l), 
s=l 

X(c + d - k - s + l)k(~ + e - k -s + l)k. 
(6.10) 

This result is proved by a straightforward application of Eqs. (3.7) and 
(3.8) to A = 0, which gives 

FiJc,d,e; t - 1,. . . , LO) = $J, fi (c + d - k - s + l)k 
s=l 

X(c + e - k - s + l)k. (6.11) 

This result, when used in relation (3.4a) for PL, yields the desired identity, 
Eq. (6.10). •I 



114 BIEDENHARN, BINCER, LOHE AND LOUCK 

We have now assembled in Theorem 6.1 and in the previous sections all 
the relations needed to prove that Pl = 9:, hence, that A, = &*. There 
are (at least) two methods of proof. One uses as the starting point, the 
special relation (5.51, 

PL(b,m,e; -m;p) = 9,f(b,m,e; -M,P) (6.12) 

for m E N and 0 I A, I k (p, = h, + t - s); the other uses the d = 0 
identity (5.31, 

PL(b,O,e;c;z) = 9L(b,O,e;c;t). (6.13) 

We give the details of the proof based on identity (6.12), and only outline 
the proof based on (6.13). We first need 

LEMMA 6.1. l%e identity 

Pi(b, -c, e; c; z) = 5bL(b, -c, e; c; z) 

is true for all parameters b, c, e and variables z,. 

(6.14) 

Proof. Roth PL(b, d, e; c; p> and S’L(b, d, e, c; p) are polynomials in 
the parameters b, d, e, c. In particular, P$b, -c, e; c; p) and 
9$b, -c, e; c; p) are both polynomials in c (of finite degree). Therefore, 
the equality (6.12) for all integers m E N implies 

PL(b, -c,e;c;p) = 9kf(b, -c,e;c,p) (6.15) 

for all parameters b, c, e and all integer-valued variables ps = A, + t - s 
for which 0 I A, s k. 

We next extend the result (6.15) to arbitrary variables 2,. For this, 
we observe that each of the polynomials PL(b, -c, e; c; z) and 
9,f(b, -c, e; c; z) is of degree 2k in each variable z, (S = 1,2, . . . , t ). 
Relation (6.151, the proved symmetry of each polynomial under permuta- 
tions of the (pl, pz, . . . , p,), and the R-symmetry implicit in the identity 
(6.15) imply that relation (6.14) is true for all values of the variable z, 
given by 

2, = 0, 1,. . . ) k, -7, -y - l,..., -y -k, (6.16) 

this result being true for each s = 1,2,. . . , t. Accordingly, the difference 
of these polynomials, 

A’,(b,c,e;z) = Pi(b, -c,e;c;z) - 9L(b, -c,e;c;z), (6.17) 

is zero at all 2k + 1 values of z, given in Eq. (6.16), this result being true 
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for each s = 1,2,. . . , t. It follows that the polynomial A\ must contain the 
factor 

(6.18) 

But the degree of Ai is at most 2k in each variable zS; hence, A\ cannot 
have the factor (6.18), which is of degree 2k + 2 in each z,. The only way 
to avoid this contradiction is to have Ai = 0. •I 

We next prove 

LEMMA 6.2. The identity 

PL(b,t,e;c;z)=gi(b,-c,-e-c+t;c;z”), (6.19a) 

in which 

z: = z, + c + e, s=1,2 t, ,***, (6.19b) 

is true for all parameters (b, e, c), all variables (zl, z2,. . . , z,), and all 
t, k E N. 

Proof. From J-symmetry (see Eqs. (3.11)), we have the identity: 

PL(b,d,e;c;z)=PL(b,-c-d+t,-c-e+t;c;z’), (6.20a) 

in which 

z’=z +c+d+e-t s s 7 s = 1,2 ,***, t. (6.2Ob) 

We set d = t in this relation and use Lemma 6.1 to obtain Eqs. (6.19). 0 

Relation (6.19) is valid for all t E N. Let us replace t by II E N so that 
relation (6.19) becomes 

Pkn(b,n,e;c;z,,z,,...,z,) 
= 9;(b, - c,-e-c+n;c;z’;,z; ,..., z:), (6.219) 

zn=z +c+e s s 9 s= 1,2 ,-**, n. (6.21b) 

The idea now is to take n > c in this relation and use relations (3.9) and 
(5.1) to “lower” n down to t. Thus, we set z, = 0 in Eq. (6.21a) and apply 
properties (3.9) and (5.1). The multiplicative factors are nonzero and 
cancel. The variables (zi, z2,. . . , z,- i) are shifted down by one unit, but 
since they are general, we may redefine these variables, shifting them back 
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up by one. The new identity thus obtained is 

P,“-‘(b,n,e;c;z, ,...) Z,-l) 

= 9p(b, -c, -e-c+n;c;z;,z; ,..., ziel). 

We may repeat this process n - t times to obtain 

P,@, n, e; c; 21,. . . , z,) = 9;(b, - c, -e - c + n;c;z’; )...) ZY). 

Since n is an arbitrary integer, with t defined such that 

n=t,t+l ,***9 
and since PL and 9; are polynomials in d, we have proved 

LEMMA 6.3. The following identity is valid for all parameter values 
(b, d, e, c), all variables zS, and all k, t E N, 

PL(b,d,e;c;z)=L@i(b,-c,-e-c+d;c;z”), (6.22a) 

where 

z”=z +c+e s s , s=1,2 t. >--a, (6.22b) 

The variables z: in 9; in the right-hand side of Eq. (6.22a) occur in 
the combination 

(zs + c + e)(z, + b + c + d - k - 2t + l), 

which is invariant under the substitution 

2, + -z, -Y= --z S-2c+k-b-d-e+2t-1. 

Thus, the polynomial PL(b, d, e; c; z) has R-symmetry. This result, together 
with Theorem 6.1, proves 

THEOREM 6.2. The following identity is true for all parameters b, d, e, c, 
all variables zS, and all k, t E N: 

PL( b, d, e; c; z) = 9:( b, d, e; c; z). (6.23) 

This result is one of the major results of the present paper. An 
alternative method of proof of Theorem 6.2 may also be given: It begins 
with Eq. (3.17) for PL+m (b, d, e; m; z) and uses J-symmetry (Eq. (3.11)) to 
transform the right-hand side of Eq. (3.17), after replacing k by k - m, to 
the form 

PL(b,d,e;m;z)= n(b-s+l),(d-s+l),(e-s+l), 
s-1 

X PL-,( b + m, t - d, t - e; -m; z’), (6.24a) 
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where 

z;=z,+m+d+e-t, s=l ,***, t 3 (6.24b) 

m=k,k-1 ,..., 0, -1, -2 ,... . (6.24c) 

We now set d = t in this relation to obtain 

PL(b, t, e; m; z) 

= p - s + l)m(t - s + l),(e - s + l)m 

X I’;-,(b + m,O, t - e; -m; z”), (6.25a) 

where 

zn=z +e+m s s , s=l t ,***, > (6.25b) 

m=k,k- l,..., 0,-l,-2 ,... . (6.25~) 

There seems, at first, to be a difficulty with Eq. (6.25a) because for 
negative values of m the factor 

(6.26) 

is undefined. The correct resolution of this difficulty is obtained from the 
explicit expression for the d = 0 polynomial expanded in terms of the 
basis Z”(y; z). Thus, from Eq. (5.31, we have for the case at hand that 

PL-,( b + m, 0, t - e; -m; z”) 

= iP~-,,,(b + m,O, t - e; -m; z”) 

= c (l~~(-k+m)lp)~~l(-k-s+l),~ 
(6)QL.d) 

f 
n(b+m-k+ us - s + 1),-,-,&-k + CL, - s + l),c-m-, 
s=l 

x(-e - k + p, + t - s + l)k--m--p, 1 T,(y”; z”), (6.27a) 

where 

f’=b-e-k-t+l. (6.27b) 

It is crucial to recognize that in this expression the summation over /.L 
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cannot exceed the term (k) because of the occurrence of the factor 
II:=,(-k - s + l),+, although for m = O,l,. .., k it is limited by the 
factor (i&(-k + m)lp) to p I (k - m, . . . , k - m). Having established 
the correct limits on the summation CL, we can now combine terms 

l--j (-k - s + l),J -k + /A, - s + l),‘-,,-,+ 
s=l 

= fIl( -k - s + l)k+ = sfil( -l)k-“(t + m - s + l)k-m, 

(6.28) 

giving a factor which comes out in front of the summation. 
Returning now to Eq. (6.25a), we see that the factors (6.26) and (6.28) 

also combine: 

fi (t -s + l)J -1)“~“(t + m -s + l)k-m 
S=l 

= z~l(-l)k-m(t -s + l)k. (6.29) 

Relation (6.29) is unambiguously correct for m = 0, 1, . . . , k. It is also 
correct for negative m, since, for an arbitrary complex number (Y, the 
following identity is valid for all integers m (positive, zero, and negative): 

,!+ - s + l)m( -l)+ (a + m - s + l)k-m 

= sf$-l)‘-m(u -s + l)k. (6.30) 

Accordingly, the right-hand side of Eq. (6.29) is also correct for negative 
m, since this is the correct limit of relation (6.30) for (Y + t. 

The b-factor from Eq. (6.25a) may also be combined with the b-factor 
under the summation in Eq. (6.27a) to give 

j,, 
+ m - k + p, - s + l)k-m-cr,(b - 8 + l)m 

= fp + m - k + p, - s + l)k-,+. 

A similar result is true for the e-factors. Putting all these results together, 
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we obtain the following explicit form for the polynomial PL, evaluated at 
d = t and c = m: 

Pl(b,t,e;m;z) 

= fp)*-(t --s + l)k (b)aFs(*) (1% -k + m>ld 

t 
n(b+rn-k+p.,-~+l)~-~~ 
s=l 

x(e + m - k + 1, - s + l)k-P, 7’J-y”; 2”). 
I 

(6.31) 

The right-hand side of Eq. (6.31) is now recognized to be exactly 
9L(b, -m, -e - m + t; m; 2”); that is, we have proved the identity 

P,f(b,t,e;m;z)=gL(b,-m,-e-m+t;m;z”), (6.32a) 

where 

2: = z, + e + m, s=1,2 t, ,***, (6.32b) 

m=O,-l,-2 )... . (6.32~) 

Since Eq. (6.32a) is a polynomial relation that is valid for infinitely many 
values of c = m, it is true for arbitrary parameter c, 

PL(b, t, e; c; z) = 9i(b, -c, -e - c + t;c; z”), (6.33a) 

where now 

2: = z, + e + c, s = 1,2 ,***> t. (6.33b) 

We have thereby regained identity (6.19a) by this alternative method, and 
the remainder of the proof of Theorem 6.2 is completed as before. 
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