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SUMMARY

The discoidin domain receptors, DDR1 and DDR2,
are widely expressed receptor tyrosine kinases that
are activated by triple-helical collagen. They control
important aspects of cell behavior and are dysregu-
lated in several human diseases. The major DDR2-
binding site in collagens I–III is a GVMGFO motif
(O is hydroxyproline) that also binds the matricellular
protein SPARC. We have determined the crystal
structure of the discoidin domain of human DDR2
bound to a triple-helical collagen peptide. The
GVMGFO motifs of two collagen chains are recog-
nized by an amphiphilic pocket delimited by a func-
tionally critical tryptophan residue and a buried
salt bridge. Collagen binding results in structural
changes of DDR2 surface loops that may be linked
to the process of receptor activation. A comparison
of the GVMGFO-binding sites of DDR2 and SPARC
reveals a striking case of convergent evolution in
collagen recognition.

INTRODUCTION

Supramolecular collagen assemblies are crucial for the mechan-

ical stability of animal bodies (Myllyharju and Kivirikko, 2004).

The basic collagen structure is a triple helix of three chains con-

taining multiple Gly-X-X’ repeats; X and X’ are often proline and

4-hydroxyproline (Hyp, O), respectively (Brodsky and Persikov,

2005). Apart from their prominent structural roles, collagens

have fundamental functions in cell adhesion and signaling, by

serving as ligands for a diverse set of cellular receptors (Heino,

2007; Leitinger and Hohenester, 2007). The most widely distrib-

uted collagen receptors are a subclass of b1 integrins and two

homologous receptor tyrosine kinases (RTKs), the discoidin

domain receptors, DDR1 and DDR2. While collagen binding

and signaling by integrins are understood in atomic detail (Ems-

ley et al., 2000; Hynes, 2002), much less is known about the

DDRs. Binding of triple-helical collagen to DDRs results in slow

and sustained receptor phosphorylation (Shrivastava et al.,

1997; Vogel et al., 1997), ultimately regulating many aspects of

cell proliferation, adhesion, and migration, as well as remodeling
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of the extracellular matrix (Vogel et al., 2006). Mice lacking DDR1

exhibit defective mammary gland development (Vogel et al.,

2001), kidney function (Gross et al., 2004), and arterial wound

repair (Hou et al., 2001). Mice lacking DDR2 exhibit dwarfism

resulting from reduced chondrocyte proliferation (Kano et al.,

2008; Labrador et al., 2001); a similar phenotype is observed in

human patients with mutations in the DDR2 gene (Bargal et al.,

2009). Aberrant DDR function in humans is also associated

with osteoarthritis, fibrosis, and cancer (Vogel et al., 2006).

Structurally, the DDRs are characterized by an extracellular

region consisting of a discoidin (DS) domain that is followed by

a domain unique to DDRs, a transmembrane helix, a large cyto-

plamic juxtamembrane region, and, finally, a C-terminal kinase

domain. Several loops within the DS domain have been shown

to be essential for collagen binding (Abdulhussein et al., 2004;

Ichikawa et al., 2007; Leitinger, 2003), but how collagen is recog-

nized has remained unknown. We recently identified a GVMGFO

motif as the major DDR2-binding site in collagens I–III (Konitsio-

tis et al., 2008). Here, we report the crystal structure of the DS

domain of human DDR2 bound to a triple-helical collagen

peptide containing this motif. The structure reveals that the

apolar GVMGFO motifs of two collagen chains are recognized

by an amphiphilic pocket in DDR2, in a manner that is funda-

mentally different from the metal ion-dependent mechanism

employed by integrins.

RESULTS

Crystal Structure of a DDR2 DS Domain-Collagen
Peptide Complex
During the course of our previous study (Konitsiotis et al., 2008),

we discovered that substitution of methionine in GVMGFO by the

isosteric amino acid norleucine (Nle) increases DDR2 binding in

a solid-phase assay �10-fold (Figure 1A). We synthesized a

number of short triple-helical peptides for co-crystallization with

the DDR2 DS domain. The peptides contained the DDR2-binding

sequence, GPRGQOGVNleGFO, flanked by 2–3 GPO repeats at

either end; the GPRGQO sequence was included because it is

required for DDR2 activation in cells (Konitsiotis et al., 2008).

Since we obtained crystals with the first peptide tested,

Ac-GPOGPOGPOGPRGQOGVNleGFOGPOGPOG-NH2, we did

not perform a systematic analysis of the remaining peptides.

We used analytical size exclusion chromatography to demon-

strate peptide binding to the DDR2 DS domain in solution
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(Figure 1B). The free DS domain (molecular mass, 20.1 kDa)

eluted as a single peak at 12.7 ml, corresponding to a monomer.

When the triple-helical collagen peptide Ac-GPOGPOGPOG

PRGQOGVNleGFOGPOGPOG-NH2 (molecular mass, 7.9 kDa)

was added in a two-fold molar excess, a protein-peptide com-

plex was formed that eluted at 12.0 ml (note that the peptide

does not contribute to the absorption at 280 nm). This elution

volume is consistent with a complex of 1:1 stoichiometry. Unlike

the free DS domain, which is not very soluble, the DS-collagen

peptide complex could be concentrated to 10 mg/ml and crys-

tallized. Diffraction data to 1.6 Å resolution were collected using

synchrotron radiation and the structure of the DDR2 DS-collagen

peptide complex was solved by molecular replacement (Figure 2;

Table 1).

The DDR2 DS domain is an eight-stranded b-barrel arranged

in two antiparallel b sheets, as described previously (Ichikawa

et al., 2007). The N and C termini are located at the flat bottom

of the barrel, connected by the disulfide bridge between Cys30

and Cys185. At the top of the barrel, five protruding loops

(L1–L3 connecting b1 to b2, L4 connecting b3 to b4, and L6

connecting b7 to b8) create a trench that accommodates the

Figure 1. Collagen Peptide Binding by the DDR2 DS Domain

(A) Solid-phase binding assay with recombinant DS2-Fc protein (Leitinger,

2003) added to 96-well plates coated with triple-helical collagen peptides at

10 mg/ml: GPC-(GPP)5-GPRGQOGVXGFO-(GPP)5-GPC-NH2, where X is

either methionine or norleucine. Shown is a representative of three indepen-

dent experiments, each performed in duplicate.

(B) Analytical size exclusion chromatograms of the free DDR2 DS domain and

its complex with the triple-helical collagen peptide Ac-GPOGPOGPOGPR-

GQOGVNleGFOGPOGPOG-NH2. The DS domain and peptide were mixed in

the indicated molar ratios. A globular molecular mass standard of 29 kDa,

carbonic anhydrase, elutes at 12.3 ml from this column.
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collagen peptide; the disulfide bridge between Cys73 and

Cys177 lies at the bottom of this trench. The location of the

collagen binding site at the top of the DDR2 DS domain is in

agreement with results from previous mapping studies (Ichikawa

et al., 2007; Leitinger, 2003).

The DDR2 DS domain interacts with two of the three

GVNleGFO motifs in the C-terminal part of the 80 Å–long

collagen peptide, burying 530 Å2 of solvent-accessible collagen

surface with good shape complementarity (surface complemen-

tarity score, 0.71; program SC) (CCP4, 1994). The three chains of

a collagen triple helix are arranged with a characteristic one-

residue stagger (Brodsky and Persikov, 2005). In the DDR2

DS-collagen structure, the leading and middle chains of the

collagen peptide (for a definition, see Emsley et al., 2000)

account for 40% and 60% of the interface, respectively; the

trailing chain is not involved in DDR2 binding.

All the major DDR2-peptide contacts are made with the

GVNleGFO motifs of the leading and middle chains, but the

following GPO triplet of the middle chain (GPK in native collagens

I–III) is also within van der Waals distance of DDR2. The central

feature of the DDR2-collagen interface is an amphiphilic pocket

at the top of the DS domain that accommodates Nle21 (leading

chain) and Phe23 (middle chain) (Figure 2C; for consistency we

use the same numbering scheme for the collagen peptide as in

our previous work on SPARC; Hohenester et al., 2008). One wall

and the floor of the pocket are essentially apolar (Trp52, Thr56,

and Cys73-Cys177 disulfide bridge), whereas the other wall is

dominated by three charged residues (Asp69, Arg105, and

Glu113) interacting with a string of water molecules. A salt bridge

between Arg105 and Glu113 forms two hydrogen bonds with the

hydroxyl group of Hyp24 (leading chain) and contacts one edge of

the phenyl ring of Phe23 (middle chain), suggestive of a C-H/p

hydrogen bond (Brandl et al., 2001). The pocket is completed

by Asp69, which hydrogen bonds with the collagen backbone,

and Asn175. At one rim of the pocket, His110 and Ile112 interact

with Phe23 and Hyp24 of the leading chain, respectively.

The collagen peptide in the DDR2 DS-collagen complex is

completely straight (Figure 2B), and the helical parameters of

the three collagen chains are therefore essentially identical.

The GPO-rich N-terminal region is close to a 7/2 helical sym-

metry, whereas the GVNleGFO motif approximates a more

relaxed 10/3 symmetry (Figure 3). A relaxation of the helical twist

in regions lacking imino acids has been observed in several

model peptide structures (Kramer et al., 1999; Okuyama et al.,

2006). The observed transition in helix parameters is thus likely

to be an inherent feature of the collagen peptide itself, rather

than a consequence of DDR2 binding.

The details of collagen binding revealed by our structure are in

excellent agreement with biochemical results showing that M, F,

and O of the GVMGFO motif are critical for DDR2 binding (Konit-

siotis et al., 2008). Why the substitution of methionine by norleu-

cine enhances DDR2 binding is not evident from the structure, as

the slightly longer methionine side chain is readily modeled into

the amphiphilic pocket without steric clashes (not shown). It

may be significant, however, that there is a close (3.5 Å) contact

between Cd of Nle21 (leading chain) and Phe23 (middle chain).

This contact may be less favorable when the corresponding

atom is sulfur, as it is in methionine. In any case, the effect is

subtle, and we think that it is highly unlikely that methionine is
d All rights reserved
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Figure 2. Crystal Structure of the DDR2 DS Domain-Collagen Complex

(A) Cartoon representation of the DS domain (cyan) and the collagen peptide (yellow, leading chain; orange, middle chain; red, trailing chain). The b strands of the

DS domain are numbered sequentially. Disulfide bonds are in green. The side chains of the collagen GVMGFO motif are shown as sticks. Selected residues are

labeled. X denotes norleucine.

(B) Orthogonal view of the complex, related to (A) by a 90� rotation about a vertical axis. The collagen peptide is viewed from N to C terminus. Loops at the top of

the DS domain are labeled as follows: L1-3, b1-b2; L4, b3-b4; L5, b5-b6; and L6, b7-b8.

(C) Stereo view of the DDR2-collagen interface. Selected DDR2 and collagen residues are shown as sticks, in the same colors as in (A). The trailing collagen chain

is shown as a semitransparent coil. Water molecules are shown as red spheres. Dashed lines indicate hydrogen bonds.
recognized in a radically different manner. We will therefore

make no distinction between norleucine and methionine in the

following discussion.

An arginine four residues upstream of the GVMGFO motif has

been shown to contribute to DDR2 binding, and the GPR triplet

containing this arginine is strictly required for signaling (Konitsio-

tis et al., 2008). In our structure, the side chain of Arg15 (trailing

chain) points toward an acidic patch on the DS domain formed

by Glu66, Glu67, and Asp69, but it is too distant (8 Å) to form

any specific interactions (not shown). This long-range electro-

static interaction may explain why Arg15 contributes to DDR2

binding. However, further studies are required to understand

the apparently critical role of this arginine in receptor activation

(Konitsiotis et al., 2008).

Comparison with the Solution Structure
of the Free DDR2 DS Domain
The solution structure of the free DDR2 DS domain has been

determined, and the collagen-binding site has been identified

by transferred cross-saturation experiments and mutagenesis

(Ichikawa et al., 2007). Although there is good general agreement

with our DS-collagen complex structure regarding the identity

of the major collagen-binding residues (Figures 4A and 4B), the
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mode of collagen binding was not predicted correctly. The pres-

ence of Arg105 and Glu113 in the collagen-binding site of DDR2

led Ichikawa et al. (2007) to predict that complementary charges

must exist in collagen. However, the GVMGFO motif is notably

apolar, and charge compensation in the DDR2-collagen com-

plex is, in fact, achieved by a buried salt bridge between

Arg105 and Glu113 (Figure 2C). A comparison of our complex

structure with the NMR ensemble of the free DS domain shows

that collagen binding leads to a restructuring of loops L1 (bearing

the critical Trp52) and L4 (bearing at its base Arg105 and

Glu113). L1 and L4 appear to move in a concerted manner to

clamp down on Phe23 of the collagen middle chain (Figure 4C).

The movement of L4 is followed by L5 at the side of the DS

domain b-barrel (not shown). A caveat of this comparison is

that there are very few long range NOEs that determine the

conformations of L1 and L4 in the NMR ensemble. Nevertheless,

it is likely that collagen binding leads to a freezing of the mobile

loops surrounding the collagen-binding trench.

Conservation of Collagen-Binding Residues
in DDR1 and DDR2
The central collagen-binding residues of DDR2 delineated by

our structure (Trp52, Thr56, Asp69, Arg105, Glu113, and
581, December 9, 2009 ª2009 Elsevier Ltd All rights reserved 1575
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Cys73-Cys177 disulfide bridge) are strictly conserved in DDR1,

consistent with the binding of both receptors to fibrillar collagens

(Shrivastava et al., 1997; Vogel et al., 1997) and to GVMGFO-

containing peptides (authors’ unpublished data). Notably,

however, several collagen-binding residues outside of the

amphiphilic pocket are not conserved: DDR2 residues His110,

Ile112, and Asn175 are replaced in DDR1 by Leu110, Lys112,

and Ser175, respectively (Figure 5). These substitutions may

be responsible for the distinct specificities of the two homolo-

gous receptors, such as the exclusive binding of DDR1 to

basement membrane collagen IV (Shrivastava et al., 1997; Vogel

et al., 1997) and of DDR2 to collagen X (Leitinger and Kwan,

2006).

Abdulhussein et al. (2004) examined a number of DDR1 point

mutants for receptor activation by collagen I. They found that

mutation of Arg105 or Ser175 to alanine abolished DDR1 activa-

tion, in agreement with our structure. Intriguingly, however,

mutation of Trp53 (corresponding to Trp52 in DDR2) did not

have an effect on DDR1 activation, and deletion of several resi-

dues in loop L1 was required to abolish DDR1 activation by

collagen I (Abdulhussein et al., 2004). These findings are difficult

to reconcile with the critical role of Trp52 in collagen recognition

by DDR2 (Figure 2C). To support our interpretation of the struc-

ture, we tested DDR2 W52A mutant constructs for collagen I

binding and receptor activation. A soluble ectodomain construct

with the W52A mutation was secreted at similar levels as the cor-

responding wild-type protein, but failed to bind to collagen in an

established solid-phase assay (Figure 6A). Likewise, full-length

DDR2 W52A expressed in 293 cells could not be activated by

collagen (Figure 6B). We conclude that Trp52 is indispensable

for collagen recognition and signaling by DDR2. Given that the

GVMGFO motif is also the major binding site for DDR1 (authors’

Table 1. Crystallographic Statistics of the DDR2 DS-Collagen

Complex

Data collection

Space group P1

Unit cell dimensions

a, b, c (Å) 33.40, 40.86, 48.92

a, b, g (�) 66.19, 88.90, 76.92

Complexes/asymmetric unit 1

Solvent content (%) 42

Resolution (Å) 20�1.6 (1.69�1.60)a

Rmerge 0.046 (0.281)

<I/s(I)> 16.8 (4.3)

Completeness (%) 90.2 (67.4)

Multiplicity 3.8 (3.8)

Refinement

Resolution (Å) 20�1.6

Reflections 27359

Protein atoms 1293 (DS domain) + 552 (collagen)

Solvent atoms 166

Rwork/Rfree 0.204/0.230

Rmsd bonds (Å) 0.005

Rmsd angles (�) 1.5
a Values in parentheses are for the highest resolution shell.
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unpublished data), we find it difficult to believe that the corre-

sponding tryptophan in DDR1, Trp53, is not required for receptor

activation.

Convergent Evolution of GVMGFO-Binding Sites
The GVMGFO motif is a recently defined hotspot in collagens I–III

that binds not only DDR2, but also von Willebrand factor (vWF)

(Lisman et al., 2006) and the matricellular protein SPARC (Giudici

et al., 2008). A comparison of the collagen complexes of DDR2

and SPARC (Hohenester et al., 2008) (a complex of vWF does

not exist) reveals a remarkable case of convergent evolution.

The GVMGFO-binding site of SPARC is created by a long a helix

and an adjacent helical hairpin, in sharp contrast to the irregular

loops that make up the binding site of DDR2 (Figure 7). Despite

their different structures, however, both proteins feature similar

amphiphilic specificity pockets, sandwiching the critical Phe23

side chain (middle chain in DDR2, trailing chain in SPARC)

between a tryptophan and a salt bridge between arginine and

glutamic acid, with the latter also mediating recognition of

Hyp24. Another interesting parallel is that the Phe23 phenyl

ring does not form any stacking interactions in either structure

but is bound in a manner favoring the formation of C-H/p

hydrogen bonds (Hohenester et al., 2008).

DISCUSSION

Cell-collagen interactions are critical for tissue stability and func-

tion, but structural studies are difficult because of the large size

and structural complexity of collagens. Comprehensive sets of

synthetic triple-helical peptides (‘‘Collagen Toolkits’’) have

been invaluable in defining specific receptor-binding sites in

collagens (Farndale et al., 2008) and have made possible crystal-

lographic studies of receptor-collagen complexes. However, to

date, a2 integrin has been the only collagen receptor for which

the mode of collagen binding was understood in atomic detail

(Emsley et al., 2000).

We have determined a high-resolution crystal structure of the

DDR2 DS domain in complex with a 28-residue collagen peptide,

revealing how DDR2 recognizes a conserved GVMGFO motif

present in the fibrillar collagens I–III (note that in our peptide

methionine is replaced by norleucine; see above). The two

large apolar residues of this motif, M and F, are inserted into a

Figure 3. Helix Parameters of the Collagen Peptide

Residues [i–1 (leading), i (middle), i+1 (trailing)] were fitted to residues

[i (leading), i+1 (middle), i+2 (trailing)], and the associated rotation was taken

as the helical twist at position i. The sequence of the collagen peptide is indi-

cated at the bottom. X denotes norleucine. The twists of ideal left-handed 7/2

and 10/3 helices are �103� and �108�, respectively (Okuyama et al., 2006).
All rights reserved
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Figure 4. Structural Changes in the DDR2 DS Domain upon Collagen Binding

(A) Surface representation of the free DDR2 DS domain in solution (Ichikawa et al., 2007). The collagen-binding residues identified by this study are in green

(disulfide) and blue (all other residues). Selected residues are labeled.

(B) Surface representation of the DS domain in complex with the collagen peptide (yellow, leading chain; orange, middle chain; red, trailing chain). The side chains

of the GVMGFO motif are shown as sticks. The view direction and coloring of the DS domain surface are the same as in (A).

(C) Superposition of the NMR ensemble of the free DDR2 DS domain (Ichikawa et al., 2007) (gray Ca traces; Trp52, Arg105, and Glu113 side chains in pink) and the

crystal structure of the DDR2 DS-collagen (green, DS domain; orange, Phe23 of the collagen middle chain). The structures were superimposed using 43 Ca atoms

of the DS domain b-barrel (rmsd 0.82 Å). Model 5 of the NMR ensemble is most similar overall to the crystal structure (rmsd 1.8 Å) and was taken as the reference.

Selected residues and loops are labeled.
specificity pocket at the top of the DDR2 DS domain. This

pocket is surprisingly polar on one side, allowing multiple

hydrogen-bonding interactions with the O of the GVMGFO motif.

An important feature of the DDR2-collagen interaction, correctly

predicted from modeling (Konitsiotis et al., 2008), is that the key

collagen residues are not provided by the same chain, explaining

why a triple-helical conformation is required for binding (Lei-

tinger, 2003; Vogel et al., 1997).

Most remarkably, an essentially identical collagen-binding

mode to DDR2 is employed by SPARC, an a-helical matricellular

protein unrelated to DDR2 that also recognizes the GVMGFO

motif in collagen (Giudici et al., 2008; Hohenester et al., 2008).

The convergence of binding mechanisms suggests that the

GVMGFO motif may have been selected as a binding site

because of its unique properties: the presence of two large apo-

lar residues separated by a glycine is rare in collagens and results

in pronounced hydrophobic knobs on the triple helix surface.

Apart from the GVMGFO motif, which is present in Collagen II

Toolkit peptides 22 and 23, additional DDR2-binding sites have

been observed (but not yet characterized) in peptides 13 and

44 (Konitsiotis et al., 2008). A GIVGLO motif in peptide 44 may

bind DDR2 in a similar way as the GVMGFO motif, but there

are no analogous candidate motifs in peptide 13. Thus, alterna-

tive modes of collagen recognition by DDR2 may exist.

The major binding site in collagens I–III for a1b1 and a2b1

integrins is a GFOGER motif (Knight et al., 2000; Xu et al.,

2000). In contrast to the situation with DDR2 and SPARC, all three

phenylalanine side chains of the triple-helical GFOGER peptide

remain substantially solvent-accessible in the complex with the

integrin a2 I domain (Emsley et al., 2000), consistent with the

finding that the requirement for phenylalanine is not strict (Kim

et al., 2005; Raynal et al., 2006). The invariant residue of all integ-

rin-binding sites in collagen is a glutamic acid, which coordinates

the magnesium ion bound to the integrin I domain (Emsley et al.,

2000).Thus, the twomajorclassesofcollagen receptors inanimals,

integrins and DDRs, have evolved to bind collagen by very different

mechanisms despite their shared affinity for GFO triplets.
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Is the GVMGFO motif also the major DDR2-binding site in

collagen fibrils? In this regard, it is worth noting that DDR2

binding to fibrillar collagen has yet to be demonstrated by direct

observation. However, fibrillar and nonfibrillar collagen have

been shown to act differently on cells in a DDR2-dependent

manner (Wall et al., 2005). A low-resolution structure of the

collagen I microfibril has been reported recently (Orgel et al.,

2006). Two alternative models of a collagen fibril have been

generated from this structure (Herr and Farndale, 2009; Perumal

et al., 2008), with the GVMGFO motif being surface-exposed

only in the model of Herr and Farndale (2009). However, the

binding mode observed in our DDR2 DS-collagen peptide struc-

ture is not compatible with the crystalline structure of Orgel et al.

(2006). It is possible that DDR2 binds to the more disordered,

fluid-like regions that are known to exist in collagen fibrils

(Hulmes et al., 1995).

How does collagen binding to the DDR2 DS domain lead to

receptor activation? Many RTKs are believed to be dimerized

by their ligands, which brings the cytosolic kinase domains into

close proximity and facilitates the autophosphorylation reaction

that is the first step in RTK signaling (Schlessinger, 2000). Certain

RTKs, such as the epidermal growth factor (EGF) receptor,

appear to become activated by structural rearrangements within

a preformed dimer (Jura et al., 2009). The DDRs are constitutive

dimers at the cell surface (Abdulhussein et al., 2008; Mihai et al.,

2009; Noordeen et al., 2006). Furthermore, collagen peptides

containing the GVMGFO motif activate DDR2 with the same

slow kinetics as native collagen, suggesting that receptor clus-

tering is unlikely to be the main mechanism of DDR activation

(Konitsiotis et al., 2008). We envisage an activation mechanism

that involves collagen-induced changes within a DDR dimer. It

should be noted that our discussion only refers to the first step

of transmembrane signaling, not the slow process by which full

DDR phosphorylation eventually is achieved (which minimally

also involves Src kinase) (Ikeda et al., 2002; Yang et al., 2005).

We can think of two ways in which collagen binding could acti-

vate DDR (Figure 8). A single collagen triple helix could interact
81, December 9, 2009 ª2009 Elsevier Ltd All rights reserved 1577
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with both DS domains in the DDR dimer (‘‘composite binding

site’’) and thereby activate the receptor, similar to the situation

exemplified by the growth hormone-growth hormone receptor

complex (de Vos et al., 1992). The key collagen residues in our

crystal structure are Nle21 and Hyp24 of the leading chain and

Phe23 of the middle chain. Because of the helical symmetry of

the homotrimeric collagen peptide, an equivalent constellation

of residues occurs again on the middle and trailing chains

(Figure 1B). However, it is impossible to replicate the interactions

of the first DS domain at this second, vacant, site without causing

major steric clashes between the two DS domains (data not

shown). Thus, the complex would have to be asymmetric with

two distinct receptor-ligand interfaces. The high-affinity DS-

collagen interface would correspond to the interaction seen in

our crystal structure, whereas the second interface may be

weaker and only form when the two DS domains are joined

in a stable DDR dimer.

In the alternative scenario, collagen binding to two indepen-

dent sites would trigger the transition from the inactive to the

Figure 5. Sequence Conservation of the Collagen-Binding Site

(A) Sequence alignment of the DS domains of human DDR1 and DDR2. The

sequence numbering and secondary structure elements of the DDR2 DS

domain are indicated above the alignment. Conserved residues and cysteines

are highlighted in magenta and green, respectively. Residues that lose R5 Å2

of their solvent-accessible surface upon collagen binding are indicated by

purple stars.

(B) Mapping of conserved residues onto the molecular surface of the DDR2 DS

domain. Residues that are identical in DDR1 and DDR2 are in magenta. The

Cys73-Cys177 disulfide bridge is in green. Selected conserved residues and

nonconserved substitutions in DDR1 are indicated. The collagen peptide is

in purple, and the side chains of the GVMGFO motifs of the leading and middle

chains are shown as sticks.
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active DDR dimer, conceivably by amplifying the small changes

in the collagen-binding loops of the DS domain (Figure 3). This

situation would be more akin to the EGF-EGF receptor complex,

in which two EGF molecules bind to equivalent sites on the

outside of an active receptor dimer (Burgess et al., 2003). It

should be noted that there is no formal requirement for both

DS domains to be occupied by ligand in the active DDR complex:

binding of collagen to one DDR DS domain may be sufficient to

‘‘unlock’’ the inactive dimer. Structures of the full-length receptor

will now be required to gain further insight into the mechanism of

DDR activation. Our structure of a DDR2 DS-collagen complex

provides the foundation for such future studies.

EXPERIMENTAL PROCEDURES

Peptide Synthesis

Peptides were synthesized as C-terminal amides by the solid-phase method

on a 9050 Plus PepSynthesizer (Perseptive Biosystems). The peptides were

prepared on a 0.1 mmol scale, using Fmoc (9-fluorenylmethoycarbonyl)

chemistry and TentaGel R RAM (Rapp Polymere) resin (0.18 mmol/g).

Fmoc deprotection was performed using 2% (v/v) piperidine and 2% (v/v)

Figure 6. Essential Role of Trp52 in DDR2 Function

(A) Solid-phase binding assay with recombinant wild-type or W52A DDR2-Fc

proteins added for 3 hr at room temperature to 96-well plates coated with

either collagen I or BSA. Shown is a representative of three independent exper-

iments, each performed in duplicate.

(B) Full-length wild-type or W52A DDR2 was transiently expressed in HEK293

cells. After stimulation for 90 min with collagen I (Coll), aliquots of cell lysates

were analyzed by SDS-PAGE and Western blotting. The blots were probed

with anti-phosphotyrosine (anti-PY) monoclonal antibody 4G10 (upper blot)

or polyclonal anti-DDR2 antibodies (lower panel). The positions of molecular

markers (in kilodaltons) are indicated. Collagen I was used at different concen-

trations as indicated (in mg/ml). The experiment was performed three times

with very similar results.
d All rights reserved



Structure

Structure of a DDR2-collagen complex
1,8-diazabicyclo-[5,4,0]undec-7-ene in dimethylformamide (DMF). Coupling

of Fmoc-amino acids (0.4 mmol) was performed in DMF using HCTU (2-(6-

Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophos-

phate) (0.4 mmol) with N,N-diisopropylethylamine (0.8 mmol). Cleavage of the

peptides from the resin and simultaneous side-chain deprotection was done

by treatment of the peptide-resin with a trifluoroacetic acid (TFA), water, and

triisopropylsilane mixture (95:2.5:2.5 v/v, 10 ml) containing DL-dithiothreitol

(0.25 g), for 3 hr. The resin was filtered, and the filtrate was concentrated under

reduced pressure to �1 ml volume, after which the crude peptides were

precipitated with ice-cold ether. The filtered crude peptides were ether-

washed (twice), dissolved in 5% acetonitrile in water containing 0.1% TFA,

and then lyophilized. Crude peptides were purified by reverse-phase high-

performance liquid chromatography (PerkinElmer Life Sciences LC200) using

ACE diphenyl columns (Hichrom Ltd) and a linear gradient of 5–45% acetoni-

trile in water containing 0.1% TFA. The pure peptides were characterized by

matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass

spectrometry and then lyophilized.

Acetylation of the peptide GPOGPOGPOGPRGQOGVNleGFOGPOGPOG-

NH2 (Nle, norleucine) was performedmanually. Following solid-phase synthesis

and removal of the final Na-Fmoc protecting group, the prewashed resin was

treated for 45 min with acetic anhydride (10 ml) and N,N-diisopropylethylamine

(3 ml) in dichloromethane (10 ml). The filtered peptide resin was then washed

with ether (four times). Cleavage from the resin, simultaneous side chain depro-

tection, isolation, and purification were performed as for the other peptides.

Protein Expression Vectors

DNA coding for the DS domain of human DDR2 was obtained by PCR using the

His-DDR2 vector (Leitinger, 2003) as a template. The DS domain boundaries

used were NPAICR.CVWLDG, corresponding to residues 26–190 of Swiss-

Prot entry Q16832. The PCR product was cloned into a modified pCEP-Pu

vector (Kohfeldt et al., 1997), which adds a His-tag (APLVHHHHHHALA) at

the N terminus. The expression vector for the Fc-tagged DS domain (DS2-

Fc) has been described elsewhere (Leitinger, 2003). The W52A mutation in

full-length DDR2 was introduced by strand overlap extension PCR as

described elsewhere (Leitinger, 2003); the PCR product containing the muta-

tion was inserted into pcDDR2 using EcoRI and NarI. To create wild-type and

W52A ectodomain constructs tagged with human Fc, cDNAs encoding the

respective DDR2 ectodomains (Lys22-Thr398) were obtained by PCR amplifi-

cation and cloned into a modified pCEP-Pu vector containing a human Fc

sequence (Hussain et al., 2006). All expression vectors were verified by DNA

sequencing.

Protein Expression and Purification

All soluble DDR2 constructs were purified from the conditioned serum-free

medium of episomally transfected 293-EBNA cells. Cells were cultured in

Dulbecco’s modified Eagle medium containing 10% fetal calf serum, (Invitro-

gen), transfected using Fugene reagent (Roche Applied Science), and selected

Figure 7. Comparison of Collagen Recognition by DDR2 and SPARC

DDR2 (A) (this work) and SPARC (B) (Hohenester et al., 2008) are in cyan and

shown as cartoons with semitransparent surfaces. The leading, middle, and

trailing chains of the collagen peptides are in yellow, orange, and red, respec-

tively. Selected residues are shown as sticks. X denotes norleucine. Dashed

lines indicate hydrogen bonds.
Structure 17, 1573–1
with 1 mg/ml of puromycin (Sigma). Proteins were purified by a combination of

affinity and size exclusion chromatography on an Äkta platform (GE Health-

care). The Fc-tagged proteins were purified using 1 ml rProtein A FF HiTrap

columns according to the manufacturer’s instructions (GE Healthcare) and

were dialyzed into phosphate-buffered saline (PBS) buffer (140 mM NaCl,

10 mM Na2PO4, and 3 mM KCl [pH 7.45]). The conditioned medium containing

the His-tagged DS domain was loaded onto a 5 ml HisTrap column (GE Health-

care) was equilibrated in PBS, and the DS domain was eluted with 500 mM

imidazole in PBS. The eluate was concentrated using a Vivaspin centrifugal

device (Sartorius AG), and the DS domain was further purified by size exclusion

chromatography on a 24 ml Superdex 75 size-exclusion chromatography

column (GE Healthcare) with 20 mM MES and 100 mM NaCl (pH 6.5) as the

running buffer. The final yield from one liter of cell culture medium was 5 mg

of DDR2 DS domain. The protein was only moderately soluble in PBS and

a number of other buffers tested (%1 mg/ml).

Collagen Binding and Activation Assays

The solid-phase assay with immobilized collagen (peptides) and the DDR2

activation assay were performed as described elsewhere (Konitsiotis et al.,

2008; Leitinger, 2003). For analytical size exclusion chromatography (column

and running buffer as above), 16 nmol of purified DDR2 DS domain in PBS

was mixed with varying amounts of collagen peptide, diluted from a concen-

trated stock solution, and incubated for 30 min in a total volume of 0.5 ml.

Complex Formation and Crystallization

The DDR2 DS-collagen complex for crystallization was formed by dissolving

the lyophilized peptide Ac-GPOGPOGPOGPRGQOGVNleGFOGPOGPOG-

NH2 in 6 ml of a diluted protein solution (0.5 mg/ml protein; molar peptide:pro-

tein ratio�1.5:1). After incubation for 30 min, the solution was concentrated to

a volume of 0.5 ml and subjected to size exclusion chromatography (column

and running buffer as above). The DDR2 DS-collagen complex eluted as

a single peak and was concentrated to 10 mg/ml. Crystals were obtained by

hanging drop vapor diffusion at room temperature using 0.1 M PCB (pH 7.0)

and 25% PEG1500 as precipitant. The PCB buffer system was produced

by mixing sodium propionate (40 mM), sodium cacodylate (20 mM), and

bis-Tris propane (40 mM) in a molar ratio of 2:1:2. Crystals grew as clusters

that could be dissected into single crystals.

Data Collection and Structure Determination

Crystals were flash-frozen in liquid nitrogen after a brief soak in mother liquor

supplemented with 25% glycerol. Diffraction data were collected at 100 K

on station I-02 at the Diamond Light Source (Oxfordshire, UK) at a wavelength

of 0.980 Å, and processed with MOSFLM (www.mrc-lmb.cam.ac.uk/harry/

mosflm) and programs of the CCP4 suite (CCP4, 1994). The DDR2

Figure 8. Possible mechanisms of DDR activation

DDR1 and DDR2 are dimeric in the absence of collagen (Noordeen et al.,

2006). The mechanism of autoinhibition in the inactive dimer is unknown,

but is likely to involve the second domain of the ectodomain and/or the large

cytosolic juxtamembrane domain. DDR activation may result from the simulta-

neous binding of both DS domains in the dimer to a single collagen triple helix

(‘‘composite binding site’’), or the DS domains may bind collagen indepen-

dently (‘‘independent binding sites’’). In any case, collagen binding is proposed

to release the autoinhibition, resulting in activation of the cytoplasmic tyrosine

kinase domains.
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DS-collagen structure was solved by molecular replacement with PHASER

(McCoy et al., 2005; Storoni et al., 2004) using the first DS domain (b1 domain)

of neuropilin-2 (pdb 2qqj) (Appleton et al., 2007) and a truncated collagen

peptide from the SPARC-collagen complex (pdb 2v53) (Hohenester et al.,

2008) as search models. Completion of the model was aided by the solution

structure of the free DDR2 DS domain (pdb 2z4f) (Ichikawa et al., 2007).

Multiple rounds of rebuilding with O (Jones et al., 1991) and refinement with

CNS (Brunger et al., 1998) resulted in a R-factor of 0.204 (Rfree 0.230). The final

model comprises DDR2 residues 27 to 187, all collagen residues except for

Gly31 of the trailing chain, and 166 water molecules. Analysis with MOLPRO-

BITY (Davis et al., 2004) shows that 98% of residues are in favored regions

of the Ramachandran plot and that there are no outliers. Crystallographic

statistics are summarized in Table 1. The figures were made with PyMOL

(www.pymol.org).
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