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Abstract 

Annotated logics were proposed by Subrahmanian as a unified paradigm for representing a 
wide variety of reasoning tasks including reasoning with uncertainty within a single theoretical 
framework. Subsequently, Marek, Nerode and Remmel have shown how to provide nonmono- 
tonic extensions of arbitrary languages through their notion of a nonmonotonic rule systems. 
The primary aim of this paper is to define annotated nonmonotonic rule systems which merge 

these two frameworks into a general purpose nonmonotonic reasoning framework over arbitrary 
multiple-valued logics. We then show how Reiter’s normal default theories may be generalized 
to the framework of annotated nonmonotonic rule systems. 

1. Introduction 

Many sophisticated applications require the ability to draw conclusions in the pres- 

ence of uncertain information about the world. Furthermore, uncertainty in the real 

world arises for a number of reasons: first, even though all facts are either true or 

false in the current state of the world, our knowledge of those facts is uncertain. As 

reasoning is based on our beliefs about the world, we are forced to reason with our 

uncertain beliefs. Second, uncertainty may arise because we wish to make decisions 

IZOW about events whose outcomes will only be known in the future. This involves 

uncertainty due to temporal reasons. The purpose of this paper is to present a unified 

framework for reasoning in the presence of uncertainty as well as incomplete beliefs. 

Some sample scenarios where such problems arise are the following: 
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1. Consider a battlefield commander who is relying on sensor information in order 

to draw conclusions about what offensive actions he must take. Sensors are notoriously 

unreliable, so in all likelihood, the battlefield commander will use a set of sensors to 

make his decisions. He may reason thus: I will take action ai if I can conclude that 

Ar is true with certainty at least cl and A2 is true with at least certainty ~2. However, 

if it cannot be established that Ai is true with certainty at least cl, but A2 is true with 

at least certainty ~2, then I will take action C/Z. If neither of these cases hold, I will 

undertake course of action ~(3. 

In this example, uncertainty is derived from the inherent unreliability of the sen- 

sors. Furthermore, nonmonotonicity is involved as the commander must rely on the 

inability to establish that certain atoms are true with a given certainty. The commander 

therefore must use a mix of nonmonotonicity and uncertainty in order to draw various 

conclusions. 

2. Another simple example is in the case of visual reasoning. Suppose we have a 

face-recognition system coupled to an airport surveillance system. The face-recognition 

system attempts to match the faces of travellers using the airport to known terrorists. As 

most face recognition algorithms specify a certainty of match between a surveillance 

image and an image on file, there could be considerable uncertainty in whether a match 

has been indeed found. As the security officials do not wish to unnecessarily harrass 

innocent travelers, they must use some policy of deciding what actions must be taken. 

Such actions could include: 

(a) If the probability of the match is over 90%, then send an armed official to keep 

close tabs on the suspect. 

(b) If the probability of the match is at least 80% and there is no evidence to confirm 

that the suspect is in the country, then maintain careful human-assisted surveillance. 

(c) If the probability of the match is at least 80% and there is evidence to confirm 

that the suspect is in the country, then send an armed official to keep close tabs on 

the suspect. 

As in the previous case, this example too requires a mix of reasoning with uncertainty 

and reasoning in the absence of evidence (e.g. case 2(b) above). 

Annotated logics were proposed by Subrahmanian [30] as a uniform theoretical 

framework for reasoning with multiple valued logics. They form the basis for rea- 

soning with uncertainty in applications such as those listed above. In addition, Marek 

et al. [ 151 proposed the concept of nonmonotonic rule systems which provide a host of 

techniques for reasoning in the presence of incomplete beliefs. In this paper, we show 

how these two powerful frameworks may be unified to provide a single theoretical 

framework within which problems such as the ones posed above can be articulated 

and solved. In particular, we develop a general theory of annotated nonmonotonic 

rule systems which gives a theory and algorithms for annotations in an abstract form 

applying equally to default logic, truth maintenance systems, stable models of logic 

programs, and even a full system of nonmonotonic predicate logic. Annotated non- 

monotonic rule systems are intended to provide a general framework for annotations 

arising from such concerns as credibility measures, probabilities, timestamps, place of 
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origin stamps, assessments of quality of data, synchronization and timing data, etc. This 

work may be viewed as a smooth theoretical integration of two important reasoning 

paradigms that have been introduced during the last decade. 

Annotated 1ogics:Assessment of the significance of conclusions deduced from rule bases 

in AI often depends on adroit use of annotations. Such annotations record items such 

as degree of credibility, probability, quality of data, timestamps, ownership, or any 

other items that may be used to draw conclusions. An army general deciding where 

to commit troops or an investor deciding where to commit funds, relies on annota- 

tions. Similarly. religious congregations rely on statements as annotated by authority 

and age. 

As an alternative to our approach, an obvious way to enlarge logic to include an- 

notations would be to add new places in predicates for variables ranging over anno- 

tations. This would put the domain of annotations on the same footing as the domain 

over which the rule variables range. Unfortunately this approach gives rise to an un- 

necessarily intractable many sorted theory. In 1987 Subrahmanian introduced a more 

tractable theory of unnotuted loyic proyrumnzing [30]. This was further developed by 

Kifer and Subrahmanian in Generalized Annotated Programs (GAP) [I 1, 121. These 

programs provide a unifying framework for reasoning about uncertainty and time in 

logic databases. 

Nonmonotonic reasoning:Al is replete with reasoning about beliefs as well as reasoning 

about rules and facts. The beliefs have to be revised occasionally based on new facts. 

The mathematical logic of beliefs, rules and facts has been modelled by extensions 

in the default logic of Reiter [28], by stable models of logic programs by Gelfond 

and Lifshitz [6], and by extensions in truth maintenance systems by MacDermott and 

Doyle [23]. To get a birdseye view of the state of these subjects, see the workshop 

volumes on logic programming and nonmonotonic reasoning [24,27,2 I]. 

Marek-Nerode-Remmel in 1990 introduced a logic-free algebraic generalization of 

these systems, nonmonotonic rule systems [ 151. Nonmonotonic rule systems (NMRS) 

capture all the essential mathematical and computational common features of many non- 

monotonic reasoning formalisms including general logic programming, default logic& 

and truth maintenance systems. Indeed, there are simple translations between nonmono- 

tonic rule systems and the systems of these formalisms which allow one to immediately 

transfer theorems about nonmonotonic rule systems into theorems about general logic 

programs, default logics, and truth maintenance systems. 

A very rich theory of nonmonotonic rule systems has been developed by Marek, 

Nerode, and Remmel in a whole series of papers [ 155191. For example, they gave 

a complete recursion theoretic analysis of the complexity of the set of extensions of 

a NMRS which immediately applies to stable models of general logic programs, ex- 

tensions of default theories, and extensions of truth maintenance systems. In addition. 

Marek, Nerode, and Remmel gave a far reaching generalization of Reiter‘s normal 

default theories called X-normal NRS which are especially appropriate for belief 
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revision and they gave a forward chaining rule processing algorithm which is an effi- 

cient way for computing extensions in a variety of settings and which allows one to 

extract a maximally consistent set N’ C N and an extension for the nonmonotonic rule 

system (U, N’) even when the original nonmonotonic rule system (U, N) is inconsistent 

in the sense that it has no extensions. 

Annotated nonmonotonic rule systems:The beliefs, facts, and rules of nonmonotonic 

reasoning need the same kind of essentially non-logical annotations as monotonic sys- 

tems. Subrahmanian made the first attempt to unify annotations and nonmonotonic 

reasoning in [31], which integrates annotated logics, stable model semantics, and the 

well-founded semantics of logic programs. Also, Nerode and Subrahmanian [25, 131 

based on ideas from the newly emerging area of hybrid systems proposed a concept 

of hybrid knowledge base. Lu et al. [14] added constraints to this formalism. 

Our purpose here in introducing annotated nonmonotonic rule systems is to provide 

a single unifying framework which extends such results to all the nonmonotonic rea- 

soning systems listed above equally, and has a unified set of theorems, algorithms, and 

complexity results. 

Finally, one can easily incorporate constraints as annotations, of the form found in 

the constraint logic programming (CLP) of Jaffar and Lassez [8,9]. We will not focus 

on this aspect in this paper; the addition of constraints has been carried out in the logic 

programming setting in [13, 141. The more general constraint logic paradigm of [20] 

can also easily be integrated into annotated nonmonotonic rule systems. 

The outline of this paper is as follows. In Sections 2 and 3, we shall briefly 

review the theory of nonmonotonic rule systems and describe how one can easily 

translate some standard nonmonotonic reasoning formalisms such logic programming 

with negation as failure, default logic, logic programming with classical negation, truth 

maintenance systems, and nonmonotonic modal logics into nonmonotonic rule systems. 

Then in Section 4, we shall give the basic definitions of annotated nonmonotonic rule 

systems. The entire theory of nonmonotonic rule systems as developed by Marek et 

al. [15-191 can then be lifted to the setting of annotated nonmonotonic rule systems. 

This fact is not too surprising because, as we shall indicate when we formally define 

annotated nonmonotonic rule systems, for each annotated nonmonotonic rule system 

&Y, one can define an essentially equivalent nonmonotonic rule system Y. The dif- 

ference between .F9Y and Y is that we have to add potentially infinitely many new 

rules to the system to produce effect of the annotation directly in a nonmonotonic rule 

system. Adding many additional rules is undesirable however since the complexity of 

most algorithms in nonmonotonic rule systems such as algorithms for finding exten- 

sions, determining whether an element lies in an extension, etc., is directly dependent 

on the number of rules. Thus just from complexity considerations, developing a proper 

theory of annotated rules systems is essential. However, while it not surprising that 

the theory of nonmonontonic rule systems can be lifted to the annotated setting, it 

requires a fair amount of care to seamlessly incorporate annotation into nonmonotonic 

rule systems so that the entire theory can be lifted. Such a program is much too long 
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to be carried out in a single paper. However we will carry out one part of this pro- 

gram in this paper. Namely, we shall show how to extend FC-normal nonmonotonic 

rule systems to the setting of annotated nonmonotonic rule systems. Thus in Section 5. 

we shall review the basic properties of normal default theories which were proved by 

Reiter in [28] . Then in Section 6, we shall give the definitions and basic properties 

of annotated K-normal rule systems. Essentially, all the desirable properties that are 

possessed by normal default theories are possessed by annotated K-normal rule sys- 

tems. The proofs of the basic properties of annotated FC-normal rule systems will be 

given in Section 7. 

2. Nonmonotonic rule systems 

In this section we shall very briefly review the key definitions of nonmonotonic rule 

systems of Marek, Nerode, and Remmel. 

Inspired by Reiter [28] and Apt [l], Marek, Nerode, and Remmel introduced the 

notion of a nonmonotonic rule system in [ 15, 161. A nonmonotonic rule of’ inference 

is a triple (P, G, q), where P = {al,. . , x,}, G = {PI,. . ,/$,,} are finite lists of objects 

from a set U and (D E U. Each such rule is written in the form 

r= XI 1...1 %I:/& >‘..> Pm 
(1) 

(9 

Here {xl,. , x,} are called the premises of rule Y, {/31,. . ,fim} are called the con- 

straints of rule r, and cp is called the conclusion of Y and will be denoted by prem(r). 

cons(r), and &z(v), respectively. A rule Y E N as in (1) is called tnonofonit. if 

cons(r) = 0 and r is called strictly nonmonotonic otherwise. We say that r is an 

uxiom if prem(r) = 0. 

A nonmonotonic jbrmal system 9 is a pair (U, N), where U is a nonempty set and 

N is a set of nonmonotonic rules over U. We let mon(.Y) denote the set of monotonic 

rules of .Y and let nmon(Y) denote the set of strictly nonmonotonic rules of >f. 

A subset S C U is called deductively closed if for every rule r of N, if all the 

premises of Y are in S and all the constraints of r are not in S, i.e. prem(r) C S and 

cons(r) n S = 0, then the conclusion of r belongs to S. Similarly, a subset 5’ C L; is 

called monotonically closed if for every monotonic rule r of N, if all the premises of 

r are in S, i.e. prem(r) C S, then the conclusion of Y belongs to S. 

Next we introduce two closure operators for Y. The first is the monotonic closure 

operator which is defined in the usual way by restricting our attention to the monotonic 

rules of Y. That is, for every I & U there is the least set clmon(l), called the monotonic 

closure of I, such that I C elmon and cl,,,(f) IS monotonically closed. Our second 

closure operator is a nonmonotonic operator which depends on a subset S of U and 

which we call the S-consequence operator, es(l). Given a set S and an I C U, an 

S-deduction of 47 from I in (U, N) is a finite sequence (cp, , , qk) such that (PA = (p 



116 A. Nerode et al. I Theoretical Computer Science 171 (1997) Ill-146 

and, for all id k, either 

(i) (pi is in I, or 

(ii) vi is the conclusion of an axiom r such that cons(r) n S = 0, or 

(iii) vi is the conclusion of a rule Y E N such that all the premises of r are included 

in {vi,. . . , qi-1) and cons(r) n S = 0. 
An S-consequence of I is an element of U occurring in some S-deduction from I. 

Let C’s(l) denote the set of all S-consequences of I in (U, N). Note that S enters 

solely as a restraint on the use of the rules that can be used in an S-deduction. A 

single constraint in a rule in N may be in S and therefore prevent the rule from ever 

being applied in an S-deduction from I, even though all the premises of that rule occur 

earlier in the deduction. Thus S contributes no members directly to Cs(l), although 

members of S may turn up in Cs(1) by an application of a rule which happens to have 

its conclusion in S. For a fixed S, the operator Cs(.) is monotonic. That is, if Z C J, 

then C’s(1) C C’s(J). Also, Cs(Cs(1)) = Cs(Z). However Cs(1) is antimonotonic as a 

function of S, i.e. if S C S’, then Cs/(I) C Cs(1). 

Generally, C’s(Z) is not deductively closed in (U,N). It is perfectly possible that all 

the premises of a rule be in Cs(Z), the constraints of that rule are outside Cs(Z), but 

a constraint of that rule be in S, preventing the conclusion from being put into Cs(1). 

Example 1. Let U = {a,b,c}, N = {?}, and S = {b}. Then it easy to see that 

Cs(a) = {a} since the rule $ cannot be used in an S-deduction. However, clearly 

{u} is not deductively closed. 

Next we come to a fundamental notion in nonmonotonic rule systems which is the 

notion of extension. We say that S C U is grounded in I if S & Cs(I). We say that 

SC U is an extension of I if G(I) = S. The notion of groundedness is related to 

the phenomenon of “reconstruction”. S is grounded in I if all elements of S are S- 

deducible from I (remember that S influences only the negative sides of rules). S 

is an extension of I if two things happen. First, every element of S is S-deducible 

from I, that is, S is grounded in I (this is an analogue of the adequacy property in 

logical calculi). Second, the converse holds, i.e. all the S-consequences of I belong 

to S (this is the analogue of completeness). Thus extensions are analogues for a non- 

monotonic rule system of the set of all consequences of a monotonic rule system. The 

best way to think of extensions is to consider the model of common sense reasoning. 

We can then think of the rules of our nonmonotonic rule system as certain rules of 

thumb that we believe. Then a reasonable or justifiable set of beliefs S is a set where 

we can justify all our beliefs by appealing to the rules, i.e. S should be grounded, 

and we can derive no other conclusions from rules that are consistent with our set 

of beliefs. Moreover, the concept of an extension is a generalization of stable models 

of logic programs, extensions of default logics, and extensions of truth maintenance 

systems. 

The notion of an extension is also related to that of a minimal deductively closed 

set. The following propositions were proved in [ 151. 
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Proposition 1. If S is an extension of I, then: 

(1) S is a minimal deductively closed superset qf’ I. 

(2) For every I’ such thut I 2 I’ C S: Cs(Z’) = S. 

Proposition 2. The set of extensions of I forms un antichain. That is. 41’ SI ,S, ure 

extensions of I and SI C S2, then S1 = Sl. 

With each rule Y of form (1 ), we associate a monotonic rule 

)“’ = 
tiyI....,x, : 

(2) 
cp 

obtained from r by dropping all the constraints. Rule r’ is called the projection of rule V. 

Let NG(S, .Y) be the collection of all S-applicable rules. That is, a rule r belongs to 

NG(S,.Y) if all the premises of Y belong to S and all constraints of r are outside of S. 

We write IV(S) for the collection of all projections of all rules from NG(S, 9’). The 

projection (U, N) 1 s is the monotonic system (U,M(S)). Thus (0: N) /S is obtained as 

follows: First, non-S-applicable rules are eliminated. Then, the constraints are dropped 

altogether. The following characterization theorem is proven in [ 151: 

Theorem 1. A subset S C U is an extension of I in (U, N) if and only if’ S i.y the 

deductive closure of I in (U, N) Is. 

There is yet another characterization of extensions which will be useful for our 

purposes. For this we need the concept of a proof scheme. A proof scheme for cp is a 

finite sequence 

P = ((cpo,ro,Go),...,(cp,,r,,G,)) (3) 

such that qrn = cp and 

(1) If m = 0 then ro is an axiom with conclusion cpo, that is, 

:h,,...,b, 
t-0 = 

* 

and Go = cons(r). 

(2) Ifm > 0, ((cp I, ri, Gi))y=<’ is a proof scheme of length m and pm is a conclusion of 

r,,,, that is, r,, = (pie,. . . , CP,~: bl,. . , b,lcp,, where io,. , i, < m and G, = G,_ I~Jcon.s(r ). 

The formula qrn is called the conclusion of p and is written cln( p). The set Gm is 

called the support of p and is written supp(p). 

The idea behind this concept is as follows. An S-deduction in the system (C;, N), say 

D, uses some negative information about S to ensure that the constraints of rules that 

were used are outside of S. But this negative information is finite, that is, it involves 

a finite subset of the complement of S. Thus, there exists a finite subset G of the 

complement of S such that as long as G n S1 = 0, D is an Sl-deduction as well. Our 

notion of proof scheme captures this finitary character of S-deduction. 
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We can then characterize extensions of (U,N) as follows. 

Theorem 2. Let 9’ = (U, N) be a nonmonotonic rule system and let S c U. Then S 
is an extension of Y tf and only if 

(i) for each cp E S, there is a proof scheme p such that &t(p) = cp and supp(p) n 

S = @ and 

(ii) for each cp $ S, there is a no proof scheme p such that cm(p) = 40 and 

supp(p) n s = 0. 

We close this section by defining another useful concept in the theory of nonmono- 

tonic rule systems which is closely related with the fixpoints of the operator Tp in 

logic programming and Clark’s completion, see [I]. Given collection of rules R &N, 
let c(R) = {&z(r): r E R}. Th en we say that S is a weak extension of I iff S = 

Cs(1 U c(NG(S, 5“))). The idea behind the concept of weak extension is the follow- 

ing. In the process of constructing Cs(Z), S is used only negatively as a restraint. But 

we can relax our requirements and allow deductions that use S also on the positive 

side. However for weak extensions, the elements of S are not treated as “axioms”, but 

are used to generate objects from U by also testing the positive side of a rule for 

membership in S. 

For the rest of this paper, we shall only consider extensions of 0 unless explicitly 

stated otherwise. We say that T is an extension of Y if T is an extension of 8 in 9’. 

3. Nonmonotonic rule systems and other nonmonotonic reasoning formalisms 

In this section, we shall briefly describe the translations of general logic programs, 

default logic, truth maintenance systems, and nonmonotonic modal logics into non- 

monotonic rule systems. This will show not only how nonmonotonic rule systems 

generalize these types of nonmonotonic reasoning formalisms but it will also show 

how our annotated nonmonotonic rules systems, once they are defined, can easily be 

translated back into these types of formalisms. 

3.1. Logic programming, general case 

A general program clause is an expression of the form 

C = p + qj,..., qn,-rl ,..., v-, (4) 

where p,ql,...,q,l,rI , . . . , r,,, are atomic formulas possibly with variables in some first 

order language 9. A program is a set of clauses of the form (4). A clause C is 

called a Horn clause if m = 0. We let H(P) denote the set of all Horn clauses of P. 
Zp is the Herbrand base of P, that is, the set of all ground atomic formulas of the 

language of P. Let ground(P) be the set of ground Herbrand substitutions of clauses 

in P. Given a set MC &?p, the Gelfond-Lifschitz [6] reduct of P, PM is the set of 

ground Horn clauses p +- 41,. . .,qn such that for some rl,. . ,r, $ M, the clause 
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I’ + qIr...rqn,~Yl,-..,~~,~I E ground(P). A4 is called a stable model of P if M 

coincides with the least model of PM. 

Assign to a ground clause p + 41,. ,qn, 1~. ,T~ E gvound(P) the rule 

r(C) = ql.. .,qn : f-1,. .,rm 

P 
(5) 

Let Y(P) = (Xp, {r(C) : C E ground(P) }). The following proposition was proved ([ 15 J ). 

Proposition 3. h4 is a stable model of‘ P if and only $ M is un extensiof~ of Y(P). 

3.2. D&fult logic, 

Let U be the collection of all formulas of a propositional logic .Y’. Recall that a 

default theory (D, W) is a pair where D is a collection of default rules, i.e. rules of 

the form 

where a, 81,. , Pm, and $ are formulas of 9 and W a set of formulas of Y. Let 2Y 

denote the set of all subsets of formulas of 6p. We associate an operator, r mapping 

2Y into 2Y by stipulating: 

T(S) = T if T is the least theory in 2 such that W C T, T is closed under propositional 

consequence and T satisfies the following condition: 

whenever d = x: MPI 9.. > Mhn 
* 

E D, ;( E T, 

l/j’, @ S,. .,-/& $ S,thenJI E T. 

Then a theory SC 2 is called an extension of (D, W) if T(S) = S. 

We can represent a default theory as a nonmonotonic rule system (U,S) where U 

is the set of all formulas of _Y and S consists of all rules of the following three types: 

(i) Elements 7 E W are represented as rules: :!:r. 

(ii) Rules of form (6) are represented as x: -81,. . , ~~m/y. 

(That is, the constraints of the rule representing a default rule Y have an additional 

negation in front). 

(iii) Processing rules of logic. That is, all the monotonic rules of the system of 

classical logic, e.g. modus ponens would be a set of rules of the form a --t h,a : ,‘h. 

We then have the following proposition from [ 151: 

Proposition 4. A collection SC I/ is an extension of a system consisting of’ ruie.v of’ 
i?ppe (i)-(iii) [fund only iJ’S is a dtlfault extension qf (D, W). 

3.3. Truth maintenance systems 

Our description takes care of both truth maintenance systems as defined by Doyle [4] 

and De Kleer [3], with subsequent contributions of Reinfrank et al. [29]. 
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Let At be a collection of atoms. By a rule over At we mean a object of the form 

r = (AIB) + c where A,B C At, c E At. A truth maintenance system (TMS) is a 

collection of rules. 

Let S be a TMS. Given M &At, an M-derivation of an atom a E At is a finite 

sequence (~1,. . , a,) satisfying the conditions: 

(1) a, = a. 

(2) For every j<n, either a rule (010) -+ aj belongs to S or there is a rule (AIB) + aj 

in S such that AC{ul,..., aj_l}, BnM = 0. 
We call A4 a TMS-extension of S if and only if M has the property that M consists 

of precisely these atoms that possess an M-derivation. 

We translate a rule Y = (AIB) -+ c as the rule 

t(r) = 
al ,..., a,,, : bl,..., b, 

c 

where A = (al,. ..,a,} and B = {bl, . . . , b,}. Then M C At is an extension of the 

truth maintenance system iff A4 is an extension of the nonmonotonic rule system 

(A&N) where N the set of translations of rules of the truth maintenance system. In 

this fashion, TMS-extensions become extensions of corresponding nonmonotonic rule 

systems. 

3.4. Logic programming with classical negation 

We now discuss the so-called “logic programming with classical negation” of [7] as 

a chapter in the theory of nonmonotonic rule systems. 

Recall the basic notions introduced in [7]. The collection of objects appearing in 

heads or bodies of clauses is the set of all literals, that is, atoms or negated atoms. In 

particular, a negated atom may appear in the head of a clause. Consider first “general 

Horn” clauses in which literals may appear in arbitrary places. To each set P of such 

clauses assign its ansizier set, the least collection A of literals satisfying the following 

two conditions: 

(1) If a + bl,... , b, is in P and bl,. . . , b, E A, then a E A. 

(2) If for some atom p, p and up are both in A, then A is the whole collection Lit 

of all literals. 

Introduce a collection Str of structural processing rules over the set U = Lit. These 

are all monotonic rules of the form: 

p, ‘PI 

a 

for all atoms p and literals a. 

Translate the clause: a + bl, . . , b, as rule: 

b,,...,b,: 

a 
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and let tr(P) be the collection of translations of clauses in P plus the structural rules 

Str. Then we have 

Proposition 5. A subset A 2 Lit is an answer set ,jor P if and only zf A is an extension 

of tr(P). Since tr(P) is a set of monotonic rules. such an answer set is the least 

fixpoint of the (monotonic) operator associated with the translation. 

Gelfond and Lifschitz also introduced general rules in this setting. Since, the negation 

used in literals is not the “negation-as-failure” of general logic programming, Gelfond 

and Lifschitz introduce another negation symbol “not” and a general logic clause with 

classical negation in the form: 

0 + hi.. , h,, not(cl ), . , not(c,7, ) 

They define the answer set for a program with classical negation as follows: 

Let M C Lit and P be a general program. Define P/M as a collection of clauses lacking 

not obtained as follows: 

(1) If a clause C contains a substring not(a) where a E M, then eliminate C alto- 

gether. 

(2) In remaining clauses eliminate all substrings of the form not(a). 

The resulting program P/M lacks the symbol not. so the answer set is well-defined. 

Let M’ be the answer set for P/M. We call M an answer set for P precisely when 

M’ = M. 

Gelfond and Lifschitz gave a computational procedure for finding such answer 

sets, and subsequently reduced computing them to computing default logic extensions. 

In [ 151, Marek, Nerode, and Remmel gave a general result showing that the construc- 

tion of Gelfond and Lifschitz can also be faithfully represented within nonmonotonic 

rule systems; Define U to be Lit, and translate the clause: 

a + hi,. . b,,not(q ), . . , not(c,) 

as the rule: 

h ,,..., b, : cl ,..., c, 

a 

The translation of the program P then consists of the translations of individual clauses 

C of P, incremented by the structural rules Str. The following result was proved in [ 151. 

Proposition 6. Let P be a general logic program with classical negation and Np he 

the translation described above. Then a collection M is an answer set ,for P if and 

onlv if M is an extension for the rule system (U,Np). 

3.5. McDermott and Doyle systems 

McDermott and Doyle [23] and McDermott [22] investigated another system of 

nonmonotonic reasoning. This system is based on modal logic. We now give a brief 
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description of the approach of McDermott and Doyle and a description of how it fits 

into nonmonotonic rule systems. Let 9~ be the propositional modal language based on 

one modal operator L (expressing the necessity operator). We consider a strong notion 

of proof based on the application of the necessitation rule to all formulas, not just all 

theorems, of the logic under consideration. That is, this notion of proof from a set of 

formulas I allows one to apply necessitation to all formulas previously proved. 

Let Y be a modal logic. Examples of such a logic includes the familiar S4, S5, 

K, or even a logic that does not includes the schemes of K. We associate with Y 

its consequence operation based on the above strong notion of proof. We denote it 

by Cn,y(.). We now introduce the notion of Y-expansion. Given a set of formulas 

I s _FL, we say that a theory T 2 2’~ is a Y-expansion of I if 

T = CnY(Z u { ‘Lq : q @ T}) (7) 

Notice that the role of the logic Y here is slightly different than in the usual appli- 

cations of modal logic. Y serves as means of reconstruction of T from the initial 

assumptions I and the negative introspection with respect to T. It should be clear 

that regardless of what Y is (it does not even need to be included in S’S) that an 

expansion of any theory is closed under SS-consequence. It is the discipline of recon- 

struction that makes the difference. Note the weaker the logic, the more difficult it is to 

reconstruct. 

Marek et al. [18] showed how this formalism can be faithfully represented as a 

nonmonotonic rule system. Let 9 be a fixed modal logic, axiomatized by a set of 

axioms AX. We define a rule system (&,NY) as follows. The universe U.Y of our 

system is 9~. The set NY consists of the following five groups of rules: 

1. : /q, where cp ranges over all the axioms of propositional logic in the language 

_YL, treating every formula of the form L$ as an atom. 

2. :/q, where cp ranges over all the axioms of the logic Y. 

3. cp : /Lq for all the formulas cp E 9~. 

4. cp, cp I$: /$ for all the formulas q, $ E 9~. 

5. : q/~Lq for all cp E 9~. 

Notice that the groups (l)-(4) of rules are monotonic, only the group (5) consists of 

nonmonotonic rules. 

Theorem 3. Let Y be a modal logic. Let I C Yi. Then T is an Y-expansion of I ij” 
and only if T is an extension of I in the nonmonotonic rule system (lJ~,N~yj. 

4. Annotated nonmonotonic rule systems 

We now come to the main results of the paper. In this section, we describe our theory 

of annotated nonmonotonic rule systems which can be viewed as a natural amalgama- 

tion of the theory of nonmonotonic rule systems and Kifer’s and Subrahmanian’s work 

on annotated logic programs. We let 9’ = (P, <,q) be any partially ordered set or 
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preordered set. The kind of statements that we will consider will be of the form (4, p) 

where 4 is an element of some universe U and p E P. Here are some examples of 

the sorts of things one might express by picking the appropriate ordering Y. 

1. .d = ([0, 11, d ). Then (4,l) would assert that 4 is true for certain, ($,0.9) would 

assert that 4 is true with at least 90% confidence or at least 90% probability and ((1,, 0) 

would assert that we do not know anything about the truth of 4. 

2. One can reverse the ordering in example (1) so that ($,0.2) would now mean 

that our confidence in the truth of 4 is less than equal to 0.2. 

3. We can achieve confidence intervals by letting P be the set of all closed intervals 

contained in [0, l] and by defining < + by declaring that [a, h] d y[c, d] iff u <c and 

h <d. Thus a statement (4, [0.2,0.8]) would mean that our confidence in the truth of 

(b is between 0.2 and 0.8. 

4. .Y = ([0, l] x 2T, 6 x C) where T is a set of times and 2T denotes the set of 

all subsets of T. Here < .p is just the usual product ordering of < and C. Thus a 

statement ($, ( p, S)) would mean that ~b is true with confidence at least p at all times 

t E s. 

5. One can extend example (4) to have more coordinates. For example, we can let 

.Y = ([0, 11 x 2 x 2’, < x C x &) where P is a set of places. In this case we could 

have statements like (rains, (0.9, {Friday, Saturday}, {Ithaca, Cortland})) which would 

mean that there is a 90% probability that it will rain in Ithaca and Cortland on Friday 

and Saturday. 

In this setting our rules will be of the form 

(8) 

If we let :/P be as in example 1 above, then the rule means that if LX~ has been established 

with confidence 3 a, for i = 1,. , n and no fl] can be established with confidence 3 h, 

for j = I,. . , m, then we may conclude that cp holds with confidence at least c. 

A unnotated nonmonotonic rule system .Y consists of a triple (U,Y,N) where U 

is a set called the universe of Y, 3 = (P, <.#) is preordered set, and N is a set 

of rules as in (8) where ai,P, and cp are in U for all i and j and ai, h,, and c 

are in P for all i and j. Here {(xr,ar) ,..., (~~,a~)} are called the premises of rule 

r, {(Bl,~l),...,(Pm,~n)> are called the construints of rule Y, and (cp,c) is called the 

conclusion of r and will be denoted by prem(r), cons(v), and &z(r), respectively. 

A rule Y E N as in (8) is called monotonic if cons(r) = 0 and r is called .strictl>. 

nonmonotonic otherwise. We say that r is an axiom if prem(r) = 0. We let mon(.‘Y) 

denote the set of monotonic rules of ,Y’ and we let nmon(.V) denote the set of strictly 

nonmonotonic rules of 9 

We note that a nonmonotonic rule system (U,N) can be thought of as an annotated 

nonmonotonic rule system (U, 9,N) where d is the one element poset ({ l}, < ). 

For the rest of this paper, we shall assume that 9 = (P, < p). However we shall 

normally write < for <.p when there is no possibility for confusion. 
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Definition 1. (1) A subset W C U x P is called deductively closed if for every rule 

of N, whenever there exists (cc, ,dl ), . ..,(an,d,) in W such that diaai for all i and 

there is no (/?j,ej) in W with ej 3 bj for any j, then (cp,c) E W. 

(2) A subset SC U x P is called monotonically closed if for every monotonic rule 

of N, whenever there exists (SC,, dl ), . . . , (cc,, d,) in S such that di 3 aj for all i, then 

(qo,c) E S. 

Now it is easy to see that if Wi 2 U x P are monotonically closed for all i in some 

index set I, then ni,, W, is monotonically closed. Thus for any set V & U x P, we 

can define the monotonic closure of V, denoted elmon( by 

clmon( V) = n { W & U x P: V 5 W & W is monotonically closed} 

Next we define the S-consequences operator Cs for any set S C I/ x P. Given a 

set I C U x P, an S-deduction of (40, c) from I in (U, Y, N) is a finite sequence 

(((Pl,CI>,...,(~k,Ck)) such that ((ok, ck) = (cp, c) and, for all i b/c, either 

(i) there is some (Cpi, ei) E I such that ei >ci, or 

(ii) there is an axiom 

y = : (Pl>bl)>...>(Bmbm) 
(cpi>f,) 

of N such that there is no (p,,dj) E S with dj>bj for any j = l,...,m and fi>Ci, or 

(iii) there is a rule 

of N, where j,,...,J',, < i, Ujy, IA xc. for all s = 1,. . . , n, there is no (/?j, dj) E S with 

dj>b, for any j = l,..., m, and fi2Ci. 

An S-consequence of I is an element of U x P occurring in some S-deduction from 

1. Let Cs(1) denote the set of all S-consequences of I in (U, 9, N). It is then easy to 

see that Cs(1) is monotonic in 1, i.e., 

I c I’ =+ Cs(Z) c Cs(1’) (9) 

and that Cs(1) is antimonotonic in S, i.e., 

s c s’ =+ CSl(Z) c Cs(l). (10) 

We note that clauses (i)-(iii) in our definition of S-deduction ensure that when we 

have derived ((Pi,ci), then we can also derive (cp;,d,) for any di <ci. Now we could 



A. Nerode et al. I Theoretical Computer Science 171 (1997) Ill-146 125 

also ensure this property by explicitly adding rules of the form 

(y,c) : 

r=<;:,d) (11) 

into N whenever d 6 c. That is, given the annotated nonmonotonic rule system .Y = 

(U, 9, N). we could form a new nonmonotonic rule system ,Y = (U x P, N) where 

N consists of N plus all rules of the form (11). Then one can show that for any 

sets Z,S C U x P, the set S-consequences of I relative to .Y is equal to the set of 

S-consequences of I relative to ??‘. However as mentioned in the introduction, the 

extra rules of ?? has many undesirable consequences with regard to the complexity 

of the algorithms needed to reason in such systems since the complexity of almost 

all reasoning tasks in the system are directly dependent on the sum of lengths of the 

rules. Moreover, if we go back to our first example where .V = ([0, 11, < ) and [0, l] is 

the real interval, there would be uncountably many rules of the form (1 1) so that the 

number of rules would become uncountable even if U is finite. However in the case 

where .9 = ([0, 11, d ) and U is finite, we can often specify the set of S-consequences 

of I relative to .Y by simply giving the set {(u, pl,): u E U and pL1 = mux( { p: (u. p) t 

C’s(Z)}} so that we can still carry out reasoning tasks based on finitary information. 

Our formulation of annotated nonmonotonic rule systems is designed explicity to allow 

us to carry out such reasoning tasks in a finitary manner whenever possible with ease. 

We say that S C U x P is downwurd closed is whenever (7, c) E S, then (y,d) E S 

for all d < c. In fact, it will be useful to define another closure operator, called the 

downward closure operator, defined for each A 2 U by 

&own(A) = {(a,q) E u: g(%p) E A(p>yq)} 

We note that our definitions of the closure operators, clmon and cl&,wn imply the fol- 

lowing propostion. 

Proposition 7. Let (U,Y, N) be an annotated nonmonotonic rule system. Then ,fi)r 

any S c U x P, Cldown(Clm,“(Cld,,“(s))) = C~doun(&on(~)) 

Proof. Clearly, the operators c/down and cl,,, are monotonic so that 

Cldown(Clmon(Crd,,,(s))) 2 C~down(Ckmn(~>>. 

For the reverse inclusion note that any monotonic rule Y = (xi, al ), , (x,, a, ) : /( cp. c) 

which is c/d,,,(S)-applicable is also S-applicable. That is, if there exists (~1, bl ), , 

(‘xn, b,) in Cl&w”(S) with b, 3 a, for i = 1,. , n, then there must exist (LX,, cl ), , (a,, c,) 

in S with ci>,b,>,a, for i = 1,. . . , n. It is then easy to prove by induction of the length 

of a deduction that Cl,O,(C/d,,,,(S)) - Cl&n(S) = clmon(S) - cl&wn(S) so that 

Cldown(C1,,,(Cldown(S))) 2 C~down(Chnon(~)). 0 

This given, we then have the following. 

Proposition 8. For all S,I C: U x P, Cs(Z) is downward closed. 
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Because nonmonotonic rule systems can be viewed as special cases of annotated 

nonmonotonic rule systems when 9 = ({l}, d ), Cs(Z) will not, in general, be deduc- 

tively closed in (U, P,N). Of course, it is easy to construct examples where Cs(Z) is 

not dedecutively closed when Y is nontrivial as well. That is, say a rule 

of N is S-applicable if there exists (xl, dr ), . . . , (LX,, d,) in S such that di aai for all i 

and there is no (/?j,ej) in S with ej > bj for any j. Then it is perfectly possible, that a 

rule Y is Cs(Z)-applicable but cons(r) fl S # 0 so that it cannot be used to put elements 

in Cs(Z). We also note that while Cs is downward closed, it is not closed under limits 

in 9. 

Example 2. Suppose that 9 is just the rational 

Let (U, P’,N) be the following rule system. 

following set of rules. 

interval [0, l] under the usual ordering. 

U = {a, b,c} and N consists of the 

1. (a,1 - ;) : 
ca,l_hj forn=Z%.... 

2. (a,;> 
3 (b,l):(c>l) 

a: 1 
Then let I = {(b,l)} and S = {(c, 1)). Th en it is easy to see that Cs(Z) = {(a,q) : 

q < l} U ((6, I)}. Note that rule (3) is C’s(Z)-applicable but it is not S-applicable so 

that Cs(Z) is not deductively closed. 

We note that the failure of Cs(Z) being closed under limits in 9’ is not something 

that can be easily remedied in our setting because requiring that Cs(Z) is closed under 

limits in 9 would require an infinitary type rule of the form 

r = {(a,q): 4 E TI; 

(4 P> 

where p = sup(T) if 9 is an infinite poset like the rational interval [0, I] under the 

usual ordering. However in any real applications, we never actually deal with infinite 

posets since we can use only finitely many rules and hence we can restrict ourselves 

to the poset consisting of those elements which are actually mentioned in the rules. 

The analogue of extension is now straightforward. Namely, we say that SC U x P 

is an extension of Z if Cs(Z) = S. We also can prove the obvious analogues of 

Propositions 1 and 2. 

Proposition 9. Zf S is an extension of Z, then: 

(1) S is a minimal deductively and downward closed superset of 1. 

(2) For every I’ such that Z 2 I’ C S, Cs(Z’) = S. 
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Proof. Suppose S = Cs(I). Clearly, I c Cs(l) by clause (i) of the definition of S- 

deduction. CT(~) is always downward closed by Proposition 8. To see that S = C’s(l) 

is deductively closed suppose we have a rule 

of N such that there exists (al,d I), . , (r,, d,) in S such that d, Bai for all i and there 

is no (fl,, e, ) in S with ej 3 bj for any j. Then there are S-deductions D, of (pi, d, ) 
from I for i = 1,. . ,n. It is then easy to see that we can construct a S-deduction of 

(cp, c) by concatenating the sequences DI,. , D,, ((9, c)) so that (cp,c) E c’s(I) = S. 

Thus, S is a deductively and downward closed superset of I. 

Next suppose that 7’ is a deductively and downward closed superset of I such that 

T c S. Then let ((ok, ck ) E S - T and (( cp 1, cl ), , (cpk, CA )) be a S-deduction of (cp~, ck ). 

Then let i be the least j such that ((p,,c,) $8 T. But then either: 

(i) there is some (cp,, e,) E I such that e, &c, and hence (cp,, c,) E T since I C r 

and T is downward closed. 

(ii) there is an axiom 

: (~l~bi),...>(Bmbm) 
I’= 

(Y!> .A) 

of N such that there is no (/?,, dj) c S with dj 3 b, for any j = 1,. . . m and ,f; 3 L’, 

in which case there is certainly no (Pi, d,) E T with di 3 6, for any j = I,. . m and 

hence (yi,c,) E T since T is deductively closed. 

(iii) there is a rule 

r = (cp,I,al),...,(cpj,,a,):(B1,bl),..-,(Brn,brn) 

(% fi) 

of N where jl,. . . , j, < i, ajs <c,i% for all s = 1,. ,I?, there is no (fi,,,d,) E S with 

djab, for any j = l,..., m, and fi>c;. But then {(qj,,at) )..., (q,,,,a,)}CT by OUT 

choice of i and there is no (fli,dj) E T with d, 2 bj for any j = 1,. ,m. Hence, 

(cp;,c,) E T since T is deductively closed. 

Thus there can be no such i and hence there can be no such T c S. Thus, S is a 

minimally deductively and downward closed superset of I. 

For part (2), observe that every S-deduction from I’ can be expanded to an S- 

deduction from I. That is, if D = (( cp,, cl ), . . . , (cpk, Ck )) be an S-deduction of ((pk, q ) 

from I’, then the only reason that D is not an S-deduction of ((P~,cx_) from I comes 

from the fact that in an application of clause (i) in the definition of an S-deduction 

from I’, it may be the case that for some i, there is some (cp,, e,) E I’ such that e, >c, 

rather than there is some (cp,, e,) E I such that e, 3c,. But since (cp;, e,) E I’ C S, there 

is an S-deduction of (cpi,e,) from I, D, = ((6’ l,et),...,(Hi,er)) where (Q/,e/) = ((pi,‘,). 
If whenever there is such an i, we replace ( cpI, e, ) in D by the sequence II,, then we 

can easily expand D to an S-deduction of (qX_, Ck) from I. Thus, Cs(1’) C S. On the 

other hand, since Cs(J) is monotonic in J, S = C’s(l) C Cs(l’) and hence Cs(l’) 

= C,s(I). J 
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Proposition 10. The set of extensions of I forms an antichain. That is, if S,, S2 are 

extensions of I and S1 C S2, then S1 = S2. 

Proof. Suppose St,& are extensions of I and St C &. Since C’s(I) is antimonotonic 

in S, we S2 = C,>(Z) 5 C&(I) = Si. Thus St = S2. 0 

Next we shall extend the notion of proof scheme to annotated nonmonotonic rule 

systems which will allow us to give another characterization of extensions. A proof 

scheme for (q,c) is a finite sequence 

P = (((c~o,co)>ro>GoL.. ., ((cpm,c,),r,,G,)) 

such that ((P~,c,) = (q,c) and 

(1) Ifm=O, then 

(12) 

t-0 = 
: u.4,h>,...,@m,M 

(rpo,fo) 

where fo 3 CO and Go = cons(r). 

(2) If m > 0, then ((9 ,,~i, Gi))y=i’ is a proof scheme of length m and 

r in= 
(cp/,,at),..., (~~*,a,):(pl,bl),...,(P,,bm) 

((Prn>frn) 

where jt ,..., j,, cm, aj?<Cj, for all s = l,..., n, fm>c,, and G,,, = {(P,d) E G,_l U 

cons(r) : 7 3 (/?,e) E G,_, U cons(r) with e <d}. The pair (pm,cm) is called the 

conclusion of p and is written &z(p). The set G, is called the support of p and is 

written supp( p). 

The idea behind this concept is as follows. An S-deduction in the system (U, 9, N, ), 

say D, uses some negative information about cldown (S) to ensure that the constraints of 

rules that were used are outside of cldown(S). But this negative information is finite, that 

is, it involves a finite subset of the complement of cl&wn(S). Thus, there exists a finite 

subset G of the complement of Cl&,wn(S) such that as long as G fl C&wn(St ) = 0, D 

is an Sr-deduction as well. Our notion of proof scheme captures this finitary character 

of S-deduction. 

We can then characterize extensions of (U, 9, N) as follows. 

Theorem 4. Let Y = (U, 9, N) be 

S c U x P. Then S is an extension 

(i) S is downward closed, 

(ii) for each (cp, c) E S, there is 

supp(p) n S = 0 and 

an annotated nonmonotonic rule system and bt 

of Y if and only if 

a proof scheme p such that cln(p) = (cp, c) and 

(iii) for each (q, c) 4 S, there is a no proof scheme p such that &z(p) = (cp,c) 

andsupp(p)nS=e). 

Proof. It is straightforward to prove by induction on the length of a proof scheme p 

that if S is a downward closed set, then &z(p) E Cs(0) if S nsupp(p) = 0. Similarly, 
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it is straightforward to take an S-deduction of (cp, c) from 0 and turn it into a proof 

scheme p such that &r(p) = (cp, c) and supp( p) n S = 0. Thus for downward closed 

sets S, Cs(0) equals the set of all (cp, c.) E U x P such that there is a proof scheme 

p such that cln( p) = (cp, c) and supp(p) fl S = 0. Hence for downward closed S, 

conditions (ii) and (iii) are equivalent to saying that C,(B) = S, i.e. that S is an 

extension. 7 

We can also characterize extensions in (U,P, N) via an analogue of the Gelfondd 

Lifschitz transform. Recall that a rule 

of N is S-upplicahle if there exists (xi, d 1 ), _, (x,,d,) in S such that di >ai for all i 

and there is no (/I,, e, ) in S with ej 2 b, for any j. Let NG(S, Y) denote the set of all 

S-applicable rules in N. Then with each rule Y of form (S), we associate a monotonic 

rule 

/ = (~l,al) >...> (%,a,): 

(%C) . 
(13) 

obtained from Y by dropping all the constraints. Rule r’ is called the projection of rule r. 

M(S) for the collection of all projections of all rules from NG(S,Y). The projection 

(U, 9. N)~s is the monotonic system (U, 9,&I(S)). Thus, (U, 9, N)ls is obtained as 

follows: First, non-S-applicable rules are eliminated. Then, the constraints are dropped 

altogether. We then have the following analogue of Theorem 1. 

Theorem 5. A subset S C U is un extension OJ’ I in (U, .Y, N) [f and onl~~ if’ S = 

~.h~~~(&,~(~)) in (U,.Y,N)Is. 

Proof. It is straightforward to prove by induction on a length of a sequence, that a 

sequence ((as, ao), . . , (a,, a,)) is an S-deduction from I in (U, .Y, N) iff the same se- 

quence represents a deduction which shows that (~,,a,) E cldown(clmon(Z)) in (U,N)ls. 
That is, Cs(I) in (U,.9, N) equals ~l~~,,,,,(cl~~~(l)) in (U, 9, Nj1.s. Thus, S is an ex- 

tension of I in (lJ,Y, N) if and only if S = Cs(I) in (U, 9, N) if and only if S = 

cldown(clmon(f)) in (U,9’, N)Is. 3 

We can also define the analogue of weak extensions for annotated nonmontonic rule 

systems (0: .‘P, N). Given a collection of rules R 2 N, let 

c(R) = {&z(r): Y E R}. 

Then we say that S is a weak extension of I iff S = Cs(l U c(NG(S,Y))). 

Once again for the rest of this paper, we shall only consider extensions of 0 in an 

annotated nonmontonic rule systems Y = (U, 9, N) unless explicitly stated otherwise. 

Thus, we shall say that S is an extension of Y if S is an extension of 0 in Y. 

As pointed out in the introduction, it is possible to adapt the entire machinery of ex- 

tensions, proof schemes, forward chaining rule processing, and EC-normal rule systems 



130 A. Nerode et al. I Theoretical Computer Science 171 (1997) 111-146 

as developed by Marek, Nerode, and Remmel for nonmonotonic rule systems to the 

setting of annotated nonmonotonic rule systems. In particular, we shall show how one 

can extend Reiter’s normal default theories to annotated nonmonotonic rule systems by 

providing an analogue of K-normal rule systems as in [18]. To motivate our results, 

we shall recall the main properties of normal default theories in our next section. 

5. Normal default theories 

In this section we shall recall Reiter’s definitions of normal default theories and state 

some of the basic theorems about normal default theories as proved in [28]. 

Recall a default rule is a rule of proof of the form 

where CP,V~,...,~~,Y are formulas of a propositional language 9. A default rheory 

is a pair (0, IV), where D is a set of default rules and WC 9. For any subset of 

formulas S c 9, we let Cn(S) denote the set of all logical consequences of S. Also if 

D is a set of default rules, let 

Given a subset S C 9, define T(S) as the least set T (under inclusion) satisfying these 

conditions: 

1. WCT; 

2. h(T) = T; 

3. Whenever Y E D is a default rule of the form (14) and cp E T and for all j <m, 

1 $j $ S, then y E T. 

It is easy to see that T(S) always exists. We say that SC 9 is an extension of 

(0, W) if T(S) = 5‘. A default rule of the form (14) is called generating for S if 

cp E s, 7 $1,. . ., 7 I),,, $! S. Let S G 9. Then we define NG(D, S) to be the set of all 

generating rules for S in D and c(NG(D,S)) to be the set of their conclusions. S is 

called a weak extension of (D, W) if S = Cn( W U c(NG(D,S))). 

A rule r is normal if it is of the form 

V: MIcl 

* . 
(15) 

A default theory (D, W) is normal if every Y E D is a normal default rule. Reiter [28] 

proved the following theorems about normal default theories. 

Theorem 6. Every normal default theory possesses an extension. 

Theorem 7 (Semi-monotonicity). Suppose that D and D’ are sets of normal defaults 

with D’ CD. Let E’ be an extension of the normal default theory A’ = (D’, W) and 
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let A = (D, W). Then A has an extension E such that 

1. E’C_E and 

2. NG(E’. A’) C NG(E, A). 

Theorem 8 (Orthogonality of extensions). If a normal default theory (D, W) has dis- 

tinct extensions E and F. then E U F is inconsistent. 

Theorem 9. Suppose that A = (D, W) is a normal default theory and W U c(D) is 

consistent. Then A has a unique extension. 

Theorem 10. Suppose that A = (D, W) is a normal default theory and that D’ CD. 

Suppose further that Ei and Ei are distinct extensions of (D’, W). Then A has distinct 

extensions El and Ez such that Ei C: El and Ei C E2. 

6. FC-normal nonmonotonic rule systems 

In [ 181, Marek, Remmel, and Nerode defined a generalization of Reiter’s normal 

default theories [28] for nonmonotonic rule systems called FC-normal default theories. 

This allows one to define analogues of normal default theories in all the nonmonotonic 

reasoning formalisms mentioned in Section 3. Indeed, when FC-normal rule systems 

are translated back to default logic, one obtains a larger class of default theories, called 

extended normal default theories, which strictly contains the class of normal default 

theories but still has all the desirable properties of default theories. 

In this section we shall define FC-normal annotated nonmonotonic rule systems and 

state the analogues of the results about such systems proved in [18]. We shall delay 

the proofs of our results until Section 7. 

Definition 2. Let (U, P,iV) be a nonmonotonic rule system. We say that a subset 

Con C 9’( U x P) (where P(lJ x P) is the power set of U x P) is a consistency 

property over Y = (U,P, N) if 

1. a) E Con, 

2. (b’A,B C U)(A LB & Con(B) + Con(A)), 

3. (VA 2 U)(Con(A) * Con(cld,,,(A))) 

4. (VA 2 U)(Con(A) + Con(cl,,,(A))), and 

5. whenever d C Con has the property that (VA, B E &) (3C E &)(A C CAB C C), 

then Con( U ~2). 

Condition (1) says that the empty set is consistent. Condition (2) requires that a 

subset of a consistent set is also consistent. Condition (3) says that the downward 

closure of a consistent set is consistent. Condition (4) postulates that the closure of 

a consistent set under monotonic rules is consistent. Finally, the last condition says 

that the union of a directed family of consistent sets is also consistent. We note that 

conditions ( 1 ), (2) and (5) are Scott’s conditions for information systems. Condition (4) 
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connects “consistent” sets to the monotonic part of the rule system; if A is consistent, 

then adding elements derivable from A via monotonic rules preserves “consistency”. 

Definition 3. Let Y = (U, P,N) be an annotated nonmonotonic rule system and let 

Con be a consistency property over (U, 9, N). 

1. A rule 

r = (al> Pl)>...>(amPn): (h,‘& 1,. .>(bk,qk) E nmon(Y) 

(c, r> 
is FC-normal (with respect to Con) if Con( V U {(c,~)}) and not Con( V U {(c,Y), 

(bi,qI)}) for all i 6 k whenever V C U x P is such that 

(a) Con(V), (b) C/down(V) = K (c) &o,(V) = K 

(4 (al,m),...,(a,,p,) E K and 

(e) (c, r), (h ,4i ), . . , (k qk > Ff V. 

2. Y = (U, 9, N) is an FC-normal (with respect to Con) nonmonotonic rule system 

if all r E n~non(~Y) are FC-normal with respect to Cola. 

3. (U, Y,N) is an FC-normal annotated nonmonotonic rule system if for some 

consistency property Con & g(U), (U, 9, N) is FC-normal with respect to Con. 

Example 3. Let 9 consists of P = (0, 0.1,0.2,. . . , 0.9,1} under the usual ordering and 

let U x P = {(x, p) : x E {a, 6, c, d, e, f} & p E P}. Let the consistency property be 

defined by the following condition: 

A $! Con if and only if either {(c,0.7),(d,0.8)} c cldown(A) or {(e,0.7), (f,0.8)} 2 

&&A ). 
Now consider the following set of rules, N: 

(l) (a, 0.9, 

(2) (~0.8) : 
(b, 0.9) 

(3) (b,O.8) : 

cc, 0.9) 

(4) (a,O.8) : (40.8) 

cc, 0.9) 

(5) (c,O.8) : (J’,O.8) 
(e, 0.7) 

Then for the annotated nonmonotonic rule system 9 = (U,?, N), rules (l)-(3) form 

the monotonic part of Y and rules (4) and (5) form the nonmonotonic part of ,Y. First 

it is easy to check that Con is a consistency property over Y. One can also easily 

check that rules (4) and (5) are FC-normal with respect to Con. For example, for rule 

(4), suppose that V c U x P is in Con and cl &wn(c/m,,n(V)) = V and (a,0.8) E V 

but (d,0.8) and (qO.7) are not in V. It is then easy to see that adding (c,O.9) to 

V can not cause both (qO.7) and (d,0.8) to appear in cldown( V U ((qO.9))) unless 

(d,0.8) was already contained in V which we are explicitly assuming is not the case. 
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Similarly adding (c,O.9) to V can not cause both (e,0.7) and (f,0.8) to appear in 

&own(V U ((GO.9))) 1 un ess they were both in V which is not the case since V is 

consistent. Thus, V U {(c,O.9)} IS in Con but V U {(c,0.9),(d,0.8)} is not in Con so 

that rule (4) is K-normal with respect to Con. Thus, .Y is K-normal annotated rule 

system with respect to Con. 

One can easily check that Y does have an extension, in fact, it has only one extension 

M, where 

A4 = {(u, p): pGO.9) U {(b, p): pdO.9) U {(c,p): pdO.9) U {(e, p): pbO.7). 

If we add to N the rule (c, 0.7): /(d, 0.9) to get a set of rules N’, then Con is no longer 

a consistency property over Y’ = (U, .?, N’) because {(c, p) : p < 0.7) E Con but the 

downward and monotonic closure of {(c, p) : p<O.7} relative to Y’ = (U,.a, N’) 

contains both (c,O.7) and (d,0.8) and hence is not in Con. 

If we add the rule (e, 0.7): (f‘, 0.9)/(d,0.9) to N to form a new NRS :5” = 

(U, ;Y, N”), Con will still be a consistency property over Y” = (U, .P, N”) because 

the property of being a consistency property depends only on the monotonic part of 

the rule system. However, Y ” is not FC-normal with respect to Con because I’ = 

(e, 0.7): (,f‘, 0.9)/(d, 0.9) is not FC-normal with respect to Con. That is, for the down- 

ward and monotonically closed set C = {(x, p) : x E {a, b, c, e} & p 6 0.9}, we have 

pvem(u) C C, cons(r)rl C = 8, but c~~,~,,,~(&,~({c(T)} U C)) contains both ((,,0.7) and 

(d, 0.8) and hence is not in Con. 

FC-normal annotated nonmonotonic rule systems have all the desirable properties 

that are possessed by normal default theories as defined by Reiter in [28]. We next 

shall state the basic results about FC-normal annotated nonmonotonic rule systems. 

Theorem 11. Let .Y = (U,Y,N) be an FC-normal annotated nonmonotonic 

rule system wlith respect to consistency property Con, then there exists un extension 

of ,‘/‘. 

Theorem 12. Let ,Y = (U, 9, N) b e an FC-normal annotated nonmonotonic rule 

.system with respect to consistency property Con und let I be a subset qf U such that 

I E Con. Then there exists an extension I’ qf’ .Y such that I C: I’. 

In fact, all extensions of FC-normal annotated nonmonotonic rule systems can be 

constructed via a forward chaining type construction which we shall call the normal 

forward chaining construction. The more general forward chaining construction of [19] 

can also be adapted to annotated nonmonotonic rule systems but we do not have the 

space to give the details in this paper. To this end, let .Y = (U, 3’, N) be an FC-normal 

annotated nonmonotonic rule system and fix some well-ordering + of nmon(Y). That 

is, the well-ordering -: determines some listing of the rules of nmon(.Y’), {rl : x E ;J} 
where ; is some ordinal. Let 0, be the least cardinal such that ?/ GO;,. In what follows, 

we shall assume that the ordering among ordinals is given by E. Our normal forward 
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chaining construction will define an increasing sequence of sets {E~}zE~,. We will 

then define E+ to be the downward closure of lJIEO,, E,‘. 

The normal forward chaining construction of E+. 

Case 0: Let E: = &,on(0). 

Case 1: x = r/ + 1 is a successor ordinal. 

Given E:, let 6(x) be the least 1, E y such that 

where (al,pl),..., (%,Pn) E &w,n(E;) and (h>ql),. .,(bk>qk), (C,s) $ &own(E;). 
If there is no such k’(a), then let E;+, = E: = E:. Otherwise, let 

Case 2: a is a limit ordinal. Then let E: = UDEa E;. 

This given, we have the following: 

Theorem 13. IJ’Y = (U,Y,N) 1s an FC-normal annotated nonmonotonic rule system 

and + is any well-ordering oJ’nmon(Y), then 

1. E< is an extension of Y. 

2. (Completeness of the construction). Every extension of’9 is @the j&m E4 for 

a suitably chosen ordering < of nmon(Y). 

It is quite straightforward to prove by induction that if Y = (U, 9, N) is FC-normal 

with respect to consistency property Con, then E: E Con for all CI and hence E* E 

Con. Thus the following is an immediate consequence of part 2 of Theorem 13. 

Corollary 1. Let Y = tU,P,N) be an FC-normal annotated nonmonotonic rule sys- 

tem with respect to consistency property Con, then every extension qf Y is in Con. 

We should also point out that if we restrict ourselves to countable FC-normal anno- 

tated nonmonotonic rules systems Y = (U,P, N), i.e. if U and N are countable, and 

9’ is countable, then we can restrict ourselves to orderings of order type w where o 

is the order type of the natural numbers. That is, suppose we fix some well-ordering 

+ of nmon(9) of order type w. Thus, the well-ordering -X determines some listing of 

the rules of nmon(Y), {r ,, : n E o}. Our normal forward chaining construction can be 

presented in an even more straightforward manner in this case. Our construction again 

will define an increasing sequence of sets {E:}nrc,I in stages. This given, we will then 

define E4 = c/down(U,,_,, E:). 

The countable normal forward chaining construction of E+. 

Stage 0: Let E: = cl,,,(B). 
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Stage Iz + I : Let P(n + 1) be the least s E w such that 

~ = (~~l~Pl~> . . . . (%>P,). (h,q1) >.... (kqx-1 

13s 

where (01, PI ), . , (a,,, pn 1 E &own(E~ 1 

If there is no such [(n + l), then let f?$ 

E:+, = &on (EZ u {cMr/(,,+I,))). 

This given, we then have the following: 

and (h,ql),...,(bk,qk), (c,t) @ L.LI,,,, W; ). 
, = E:. Otherwise, let 

Theorem 14. q .Y = (U,.V,N) is u countuble FC-normul annotated nonmonotonic 

rule system inhere Y is countable, then 

1. E* is un extension of .Y if E+ is constructed viu the countuble normul ,fiw\~*urd 

chaining ulgorithm with respect to -x. where 4 is any well-ordering of’ nmon(.Y) o,f 

order type trj. 

2. (Completeness of the construction.) Every extension qf’ .‘Y is of the ,f&m E’ 

,fkr II suitabl?, chosen well-ordering 4 of nmon(.iP) of order type w t1here E < is 

constructed viu the countable normal ,fi,rward chaining algorithm. 

Example 4. Consider the K-normal annotated nonmonotonic rule system ,(/’ = (U,.P, 

N) of Example I where we order nmon(5“) by declaring that (4) + (5). Then the 

stages of the countable normal forward chaining algorithm for ,‘y are the following. 

Stage 0: Ed = clmo,,(0) = ((q0.9)). 

Stuge 1: 1’1 = (4) and ET = cl,,,(E: U {(c,O.9)}) = {(u,O.9),(c,O.9),(b,0.9)}. 

Stuge 2: r2 = (5) and E: = cf,,,,(ET U {(e,0.7)}) = {(u.O.9).(~,0.9),(b,O.9). 

(e,0.7)}. 
Stuge 3: r3 is undefined so the construction stops. 

Thus E’ =cldown(E;)= {(a,~): p<0.9}u{(b,p): p<0.9}u{(c,p): p<O.9}u 

{(e, p): pGO.7). 

It is easy to check that if -x’ is the ordering where (5) -? (4), the countable normal 

foward chaining algorithm would give the same result. However suppose we form a 

new annotated rule system .Y’ = (U, .y, N’) by adding the two rules listed below. 

(6) (c,O.7) : (e,0.7) 

(.f’> 0.9) 

(7) (&0.7) : (GO.7) 

(d> 1) 
Again it is not difficult to check that Y’ is K-normal with respect to Con. However in 

this case, there is more than one extension of ,Y’ so that order will make a difference 

in the foward chaining construction. For example. suppose that we order the rules by 

(4) + (5) -X (6) + (7). 

Then the stages of the foward chaining construction are exactly the same. That is, at 

stage (3), rule (6) is blocked because (e, 0.7) E cfdown(E2) and rule (7) is blocked 
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because (c,O.7) E cldown(E:). However if we order the rules by 

(7) +’ (6) +’ (5) +’ (4) 

then we have the following stages. 

Stage 0: E,,+’ = clmon(0) = {(a,0.9)}. 

Stage 1: ~1 = (7) and E:’ = cl,,&!@ U {(d, 1))) = {(a,0.9),(d, 1)). 

Stage 2: r2 is undefined so the construction stops. 

Thus, E <’ = cldown(E~‘) = {(a, p): pGO.9) U {(d, p): p< 1). However if use the 

ordering 

(4) 3” (6) -?’ (5) <” (7), 

then we have the following stages. 

Stage 0: E;” = cl,,,(O) = {(a,O.9)}. 

Stage 1: r1 = (4) and E:” = cl m&E:” u {(c, 0.9))) = {(a, 0.9) (c, 0.9), (b, 0.9)). 
Stage 2: r-2 = (6) and E$’ = cl mon(q” u {(f, 0.9))) = {(a, 0.9), (c,O.9), (b, 0.9), 

(f 2 0.9)). 
Stage 3: r3 is undefined so the construction stops. 

Thus E’ =cldow,,(E;)= {(a,~): pd0.9}u{(b,p): p<O.9}u{(c,p): pdO.9)~ 

{(f, P): PdO.9). 

One can check that these are the only three extensions in this case. 

We note that in the case where Y is finite, we can show that the Countable Normal 

Forward Chaining algorithm for Y runs in polynomial time w.r.t. the sum of the lengths 

of the rules in N where the length of a rule is the length of the string that codes the 

rule in some finite alphabet. 

FC-normal NRS’s also possesses what Reiter terms the “semi-monotonicity” prop- 

erty. 

Theorem 15. Let 91 = (U,Y,Nl) and 92 = (U, P,N2) be two FC-normal annotated 

NRS such that Nl s N2 but mon(Yl) = mon(Y2). Assume, in addition, that both are 

FC-normal with respect to the same consistency property. Then for every extension 

El of 91, there is an extension E2 of 92 such that El C E2. 

FC-normal NRS’s also satisfy the orthogonality of extensions property with respect 

to their consistency property. 

Theorem 16. Let 9 = (U, 9, N) b e an FC-normal annotated NRS with respect to 

a consistency property Con. Then if El and E2 are two distinct extensions of 9, 

El U E2 4 Con. 

Our next theorem gives a sufficient condition for when an FC-normal annotated rule 

systems has a unique extension. 



A. Nerode et al. I Theoretical Computer Science 171 (1997) I II-146 137 

Theorem 17. Let Y = (U,Y,N) he an FC-normal annotated NRS with respect to LI 

consistency property Con. Suppose that 

cldoan(clmon({cln(r): r E nmon(Y)})) 

is in Con. Then 9 has a unique extension. 

We end this section with two more results which are also analogues of the results of 

Reiter’s [28]. We say that (cp, c) E U x P has a consistent proof scheme with respect to 

a consistency property Con over .Y = (lJ,?,N) if and only if there is a proof scheme 

p = ((((~o,ao),ro,Go),...,((cp,,a,),r,,G,)) (16) 

such that (~,,a,) = (cp,c) and {((po,u~),...,((p~~,um)) E Con. We then have the 

following. 

Theorem 18. Let Y = (U,.Y,N) be un FC-normal annotuted NRS with respect to LI 

consistency property Con. Then (cp, c) E U x P is an element of’ some extension c!f’ 
,Y if and only iJ’ (cp, c) has a consistent proof scheme with respect to Con. 

Theorem 19. Suppose Y = (U, .Y,iV) is an FC-normal annotuted NRS and 

thut D &nmon(Y). Suppose further that Ef und Ei ure distinct extensions of 
(U,.Y, DUmon(,Y)). Then ,4p has distinct extensions El und E2 such that E[ 2 El and 

E; c: El. 

7. Proofs of general results on FC-normal nonmonotonic rule systems 

In this section, we shall give the proof of the results stated in Section 6. From now 

on we assume all FC-normal nonmonotonic rule systems have the consistency property 

given by Con. 

Theorem 11. Every FC-normal annotated nonmonotonic rule system has un rxten- 

sion. 

Proof. We shall show that our forward chaining construction will always produce an 

extension. Thus fix some well-ordering 4 of nmon(.Y). Our well-ordering < determines 

some listing of the rules of nmon(Y), {rr : c( E y}, where 1) is some ordinal. Let O:, be 

the least cardinal such that y < 0,. In what follows, we shall assume that the ordering 

among ordinals is given by E. Recall that our forward chaining construction defines 

an increasing sequence of sets {E2}sEe as follows. 

The normal forward chaining construction of E+. 

Case 0: Let E’ = clmon(0). 0 
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Case 1: 2 = ye + 1 is a successor ordinal. Given E:, let e(a) be the least 3, E y such 

that 

T;. = (a1,Ja) >...> (%Pn) : (b,q1), . ..> (bk,cIk) 

(c,s) 

where (~I,PI),..., (%, Pn) E Cldown(E;) and (h> 411,. . . , (bk,qk), (C>s) ‘$ Cldown(E;). 

If there is no such d’(a), then let E:+, = E,’ = E;. Otherwise, let 

EI;‘,t = E: = c&&E; U {~WY(,,)}). 

Case 2: a is a limit ordinal. Then let E: = UBEa Ep’. Then, we let E< = cldown 

(UrEB.; E: ). 
It is straightforward to prove by (transfinite) induction that Con(E2) holds for all 

CI E 0, and hence Con(E+) holds. Next we want to prove by (transfinite) induction that 

E: C COW for all CI E 0,. If u = 0, then clearly E: = dmon(0) 2 CE+(~). Suppose 

CI is a successor ordinal and q + 1 = a. Assume by induction that E,’ C CE<(~). Then 

if E: # E,&,, there exists one rule 

yl”(~+,) = (al>Pl),.‘.,(%Prl): (h,q1) >...2 (bk,qk) 

(C>S) 

where (a~ > !‘I>, . . . > (nn> Pn) E &own(E; ) and (h > ql)> . . . > (h, qk >, (c, s> @ &om(E; >> 

and E&, = cl,,, (E, u {(c,s))). B u since Y~(~+I) is K-normal, we know that E: U t 

{(C,S),(bi,qi)} IS not consistent for all i< k. Since E+ is consistent, it must be the 

case that E: U {(c,s), (bi,q,)} $ZE4 for all id k since subsets of consistent sets are 

consistent. Thus for all i 6 k, (bi, qi) 6 E+. Hence, YQ~+~) shows that (c,s) E C,+ (0). 

But then E:U{(c,s)} C CE+(~) f rom which it easily follows that clmon(E~U{(c,s)}) = 

E:+, C C,+(0). For z a limit, we can assume by induction that E; C C,+(Q) for all 

p E LX and so E: = UBEa E; C CF (0). Th us we have shown Ep’ 2 CE+ (0) for all 

p E 0, and hence E+ = ddown(UpEO, E:) G CE+(~). 

To prove that C,+ (0) C E+, we proceed by induction on the length of minimal proof 

schemes. That is, suppose that if p is a minimal proof scheme of length <rn such 

that supp(p) n E” = 0, then c/n(p) E E4. Now suppose q = (((~,ao),r,,,G~),. ., 

((c~~),rqm>Gm)) is a minimal proof scheme of length mf 1 where G,,, IIE+ = 0. Note 

that since E+ is downward closed it follows that G, ~I&,~~(E:) = 0 for all LX. More- 

over, by induction (a~, a~), . . . , (a,,_ I,u,_I) E E+ and hence (ro,uo),...,(am_~,um_~) E 

cldown(E2) for some c( E 0,. Suppose 

r%, = 
(Mio,eO),...,(cc,,e,): (h5fl>2...,(~kjfk) 

(% clllm > 

where io < . . < iJ < m, for all j<s, aj3ej, and (fii,ft) ,..., (fik,fk) $! E+, and 

grl, >a,. Now it is easy to see that our construction ensures that if rt(?+l) is defined, 

then cZn(r~(,+l)) $! E,:. Hence if 3. # ye and t-f(i) and re(q) are defined, then re(;,) # rf(o). 

Thus, the function /(.) is one-to-one on its domain. Now suppose that (LYE, gq, ) 6 E+. 

Then for all 2 + 1 greater than CI, rvm is a candidate to be rl(n+l) at stage 3, + 1. Hence, 
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it must be the case that y/(,.+1) is defined and /(A + 1) E qm. But this is impossible. 

That is, if 0;. is infinite, then the cardinality of {r/(;.+,) : qm E i E O:} is equal to 

the cardinality of 0:. which is strictly greater than the cardinality of {ii : A E I/~~}. 

Similary if 0:. is finite, then the fact that I ,(;.I is defined for all /, < 0;. and i( ) is one- 

to-one would mean that the cardinality of {rtc;.,: i. E O:.} is equal to the cardinality 

of nmon(,V’) so that every rule r E nmon(,Y) must be equal to r/(i) for some i.. Thus 

in either case we have shown that if (~,~,y,,,:) 4 E4, then for some p E 0 , r,?,, is the 

least rule 

suchthat((j~.d~),...,(6.s,d,)ECldown(Ei;:)and(~l,(~l),...,(;~,,c,),(~,f)~~~,~,,,,(E~). 

But then by construction (anI, yV,,,) E E,,+, _ ’ CE+. Thus (xm,gri,,,) must be in E’. But 

since Ei is downward closed, then (a,,,~,,) E E4. Hence CE+(@) C E’ and E+ is an 

extension as claimed. 0 

Note that the proof of Theorem 11. remains unchanged if instead of starting with 

c/,,,,(0) at stage 0, we start with c/,,,,(I), h w ere I E Con. Thus we also have the 

following. 

Theorem 12. Let 9 = (U,.“P,N) he un FC-normal unnotated nonmonotonic rule 

s)‘stem with respect to consistency property Con. Let I he a subset of U .rucli that 

1 E Con. Then there exists un extension I’ of’Y such thut I C I’. 

Next we want to show that every extension of an FC-normal NRS .C/ = (U,.Y.A’) 

can be constructed by our forward chaining construction relative to an appropriate 

ordering of the nmon(.Y’). 

Theorem 13. [f’.CY = (U,.Y,N) is an FC-normal annotuted NRS and + is any \~~ell- 

ordcuing of‘ nmon(.Y), then: 

( I ) E’ is an e.ytension of 9. 

(2) (completeness of the construction). Ecery extension of .V is of the ,flwm E’ 

fiv N .suitah/~~ chosen ordering < oJ’ nmon(Y). 

Proof. (I ) Follows from our proof of Theorem Il. 

(2) We prove the following fact: 

Let F be an extension of an FC-normal annotated NRS .Y = (U, Y, N). Let 11 = 

card (NG(F..Y’)) and let 4 be some well-ordering of muon(Y) such that the listing of 

rzmon(.‘V) determined by +, {rr : a E y}, is such that I[<; and NG(F, 9”) = {r,: x E 

11). Then 

(i) F = L.ldo,“n(clmon({cln(r): r E NG(F,.Y)})) and 

(ii) F = E+ where E’ is constructed by our forward chaining construction. 
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For (i), note that for each 

r= 
(MO, ao>, . . . > (%I,%): (Pl,h) >..., uLl~brn> ENG(FY) 

(%C> 
3 9 

cZn(r) E F. Moreover for any set W C C&J), ~f~~~~(cZ~,,( W)) C C&0) so that cfdown 

(cZ,,,({cZn(r) : Y E NG(F,Y)}))C G(0). Th en a straightforward induction on the 

length of a minimal proof scheme p will show that if supp (p) fl F = 0, then 

&t(p) E ~l~~~~(cZ,~,,({cln(r) : r E NG(F,Y)})). It then follows that CF(~) = 

Cldown(Cz,,,({CI~(Y): y E NG(F,9’)})). 

For (ii), let {E,’ : a E 0,) be constructed by the forward chaining construction 

relative to the well-ordering of rules {Ye: CI E y}. Then we claim cZ&,wn(E:) = F and 

E,’ = E,’ for c( > ,u. First it is easy to show by induction that cZ,,,(E~) = E,’ for 

all CL Next we claim that if LX E ,u, then E: C: F and moreover if E: # E:+,, then 

e(a + 1) E ZA. That is, E: = d,,, (0) C: F. Next suppose by induction that E; C F 

for all /I E a. Then if CI is a limit ordinal, E: = UBEa Ep’ CF. If a is a successor 

ordinal, we can assume by induction that E,’ C F where y + 1 = CL Now consider E,‘. 

If cZdown(E:) = F, then for any rule 

in nmon(Y), it must be the case that either (cp, c) E cZdown(E: ), {(/?I, bl ), . . . , (pm, b,)}n 

&own(E;) # ‘& or {(cYo,uo),.. .(&,,a,,)} gcZdown(E:) since F is an extension. That 

is, if cZdown(E: ) = F, then e(q + 1) must be undefined and hence E,’ = E:+, . If 

cZdown(E:) # F, then consider some (cp, c) E F - cZdown(E: ). Since (cp, c) E F, there 

is some minimal proof scheme 

P = (((~(o,ao),ro,Go),...,((a,,a,),r,,G,)j 

where (a,, a,) = (q, c) and G, nF = 0 which witnesses that (q, c) E F. Since (q, c) $ 

cZdown(E:), there must be some k <m such that (~o,uo),...,(ak_l,ak_1) E cZdown(E:) 

and (CQ, Uk ) $! cZdow,,(E: ). But then Q must be of the form 

rk = (Niorei,), . ,(cG,,G,> : (Pl,h),. . . ,(Pt,bt) 

(ak>fk) 

where io < ... < ij < k, for all h<j, et, <ai*, and fk >ak. Now it cannot be that 

{(Pl, bi )> . . . , (fit, b,)} = 0 since otherwise (&,fk) E cZ,,,(E:) = E: which would im- 

ply that (gk, ak) E &,wn(E~ >. Thus {(PI, 6 1,. . . , (PI, 6,)) # 8. But since {(PI, h >, . . . , 

(/It, b,)} C G, and G, n F = 0, it must be the case that {(fi,,bl) ,..., (j&b,)} n 
cZdown(E:) = 0 and {(pi, bl),.. .,(& b,)} n F = 0. Hence rk E NG(F,Y) and & 

is a candidate to be rfor+l). But this means that if ?k = YP in our ordering of rules 

in nmon(Y), then a(~ + 1) </I < P. But for any 6 E p, cZn(ra) E F by our choice 

of our well-ordering. Thus ~Zn(re(~+i)) E F so that E: U {cln(r~~,+~~)} c F and hence 

4,&E; U {cZ@-~(~+,))}) = E;+, = E,’ 2 F. 
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It follows that E,;’ C F since E,, = UIElc E: and E: C F for all x E p. We claim that 

it must be the case that cldown(E:) = F for otherwise c/down(E~ ) c F and hence for 

all x E 1-1, (.fdo1Vn(E2) c F. But our argument above shows that if cldown(E: ) ,C F. then 

E; c E-]IT, and /(x+ 1) E I*. This fact, in turn, will allow us to prove, by induction on 

the length of a minimal proof scheme, that for all Y E NG(F, 55 ). c/n(r) E cldowrn(Ei: ). 

That is, suppose (q,c) = c/n(r) for some r E NG(F. J/‘). Now ((p.c) = cln( I?) for some 

minimal proof scheme p = (((aa,aa), 10, GO), . , ((x,, II,,,), r ,,,, G,)) where Gn, n F = ti 

and (cY,,~, (I,,, ) = (cp, c). Now assume by induction that all ($. d) such that ($. d) y=~ 

dn(r-) for some I’ E NG(F, .Y) and (tb, d) is the conclusion of some minimal proof 

scheme q such that supp (4) n F = 0 and length of q < m are in E,;. Note that each I’A 

for k <m is in NG(F, 9) since p shows (xa, 00). , (x,~, (I,,,) t F and ~YMZ.S(Y~ ) C G,,, 

where G,,, n F = 0. It follows that each (xi,u,) for i < m is in L?~~~~(E,; ) by our 

induction hypothesis. But then { (aa, LIO), , (xx,_ 1. LZ,_ 1 )} C (.ldoNn( E,;’ ). So consider 

I’,,,. Now if I;,, t nzon(.Y’), then I’, is of the form 

wherei()<...i,<m,a,,,3e,,~ forh= l,..., jandd~~..Butsince(x,,u,)~c.ld,~~,,(E~:) 

for i < m, it follows that for each i < m there is a (I,, J;) E E,;’ with ,f; >a,. But then I’,,, 

shows that (cp,d) E cf,,,(E,~) = El;’ and hence (q,c) e ~ld~.+,,(E~y). If r;, t NG(F..‘/‘), 

then I;,, = I’: in our orderings of rules where < < ~1 and r,, is of the form 

(%,,%) . . . . .(%;,eii) : (Bl,h),...,(ljk>h) 

Ccp,d) 

whereio<.,.i,<m,u,,3e,, forh=l,..., j,(flt.ht) ,..., (ljk,hk)~F,andd3c.Thus 

there is some i. E ,U such that {@a, aa), , ( xm- 1, a,_ I)} is contained in E,:. But then 

for any iL<66/1, if (cp,c) $6 cldown(E,:), then r< is a possible candidate to be ~/(;i_. I ,. 

Hence it must be that case that Y ,r(j+t) is defined and lo(S+l) E <. But this is impossible. 

That is, if ~1 is infinite, then the cardinality of { Y,(~+I) : i E 6 E p} is equal to the 

cardinality of p which is strictly greater than the cardinality of {‘x : IX E 2}. Similar-y if 

/l is finite, then the fact that Y((;,) is defined for all 2 6~ and t() is one-to-one would 

mean that the cardinality of {r/(i): ;.<,LL} is equal to the cardinality of p so that every 

rule ~(5 with (5 <p must be equal to r/c>,) for some 1, <p. Thus in either case we have 

shown that if (cp, c) $! E,;‘, then for some a<~, YC = p/,6). But then by construction 

(cp,d) E EC: C E;. Thus (9, c) must be in cldown(E~ ). Thus we have shown that 

{ (‘k(~.) : Y E NG(F, 9)) C ddown (E,:) if E: c F. But this is a contradiction since 

by (i). F = cl~own(cl,,,({ch(~) : I’ E NG(F,.Y)}))C: c’ldown(cl,,,(~ldoMn(E~))) = 
c~~~,+.,,(cI,,,(E~)) = cldown(El;:). Thus it must be the case that cl~,,,(E~~ ) = F. 

Note we have already shown that if ~ld,,~~(E:) = F, then E: = “5,. Thus since 

cldown(EI~) = F, it easily follows that Ej. 4 = E,: for all ,LL<;,< O;.. Hence, Ei = 

~.ld~,~~(U,~(.) E,) = cldown(E:) = F as claimed. I 

Since every E4 IS in Con, we immediately get the following corollary. 
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Corollary 1. Let Y = (U,P,N) be an FC-normal annotated nonmonotonic rule sys- 

tem with respect to consistency property Con, then every extension of Y is in Con. 

Next we show that if our FC-normal annotated nomnonotonic rule system (U,Y,N) 
is countable, i.e. if U and P are countable which automatically implies that N is 

countable, then every extension of (U,.Y’, N) can be constructed via the countable 

forward chaining construction relative to some well-ordering 4 of nmon( (U, 9, N)) of 

the order type of o. 

Theorem 14. rf 9’ = (U, 9, N) is a countable FC-normal annotated nonmonotonic 
rule system, then 

1. E4 constructed via the countable forward chaining construction with respect to 

4, where + is any any well-ordering of nmon(Y) of order type o, is an extension 

of 9. 
2. (completeness of the construction). Every extension of Y is of the form E+ for 

a suitably chosen ordering + of nmon(Y) of order type w where E< is constructed 
via the countable forward chaining construction. 

Proof. We note that if + is a well-ordering of nmon(Y) of order type o, the countable 

forward chaining algorithm is just the first w steps of the forward chaining algorithm. 

Thus to prove (1 ), we must show that if we construct E+ with respect to the forward 

chaining algorithm, then E,’ = E> f or all A >w. In fact, we need only show that 

E,’ = E;+,. Now suppose that 

r,+l = (ai,pl),...,(a,,p,): (h,ql),...,(bk,qk) 

($TC> 

is defined. Thus (al, pl), . . ., (a,,~,) E c&&~) and (bl,ql),...,(bk,q,t), (c,s) $ 

&own(E~ ) Moreover, rl(m+ 1) = r4 for some q where {rn}nEw is the ordering of 

rules determined by 4. But since E,’ = UnEwE2, there must be some s such that 

(~I,Po),...,(&,P,) E c&dE~). Hence for all t3s, (81,bl),...,(Pk,bk),(~,~) ?i 

ddown(El+) so that rq is candidate to be rtct) for all t > s. Since the function t!(t) 

is one-to-one, it easily follows that there would have to be some finite t such that 

rs = T-Q~). Thus, re(w+t) must not be defined and hence E: = E+. 
Next we consider the proof of (2). Note that if we apply the proof of Theorem 13 

to F in this case the most natural thing to do is to order the rules of NG(F, 9) first, 

say NG(F,Y) = { SO, ~1,. . .}, and then follow this ordering by listing all the rules of 

nmon(Y)-NG(F,Y) = {to,tl , . . .}. Now if NG(F, 9) is finite, then our listing of rules 

determines a well-ordering + of order type o in which case the proof of Theorem 13 

shows that F = E+. If NG(F, Y) is infinite, then our listing of rules determines a 

well-ordering + of order type w + o. It then follows from the proof of Theorem 13 

that 



A. Nerode et al. ITheoretical Computer Science I71 ilY97) Ill-146 143 

and that cldown(E:) = F. The key point to note is that for any 

I’= (al>pl) ,...I (%pn):(h,ql) ,...> (bqk) 

(*?C) 

which is not in NG(F,Y), it must be the case that {(b,,ql), ,(bk,qk)} n F # a or 

{(al, pi ), , (a,, p,)} gF. But since F = cZdown(Uito E:), it also follows that either 

(a) for some i, {(be, 4i), . . . , (h, qk )> n Cldown(E,+ ) # 0 or 

(b) for all j, {(al, PI ), . , (a,, P,)} @b&$~ ). 

In case (a) if we insert Y between so and sh(i)-i where h(i) = max({lC(j): j<i}), 

then this change will have no affect on the construction of the E,~‘s. That is, the 

construction of Ei up to stage i can depend only on so,. . ,sh(,, and hence we will get 

the same sets, Ej+ for j < i, for any ordering which starts out SO,. ,S&). Thus if we 

take the ordering SO,. . . ,sh(i), r,sl+h(i), . . , then because {(by, q1 ), . , (bk, qk )} nE: # (il, 

r is not a candidate to be r!(k) for any k > i and hence the insertion of Y does not 

effect the rest of the construction of E+. In case (b), we can insert r anywhere in the 

initial w part of the list and it will have no effect on the construction of the Eli’s for 

i E (11 because the premises of Y are never contained in any C/&wn(Er5). In this way. 

we can see that it is possible to interweave all the Y’S in nmon(~5) - NG(F, .Y’) into 

the basic ordering so,si,. . so as to create an ordering of order type w but with out 

changing the sequence E: , ET, . . . . Thus it will still be the case that F = L.idown( E: ) 

so that E+ = E+ tr, <<)+I = .. Hence it will still be the case that F = Ei 0 

Theorem 15 follows immediately from the following result: 

Theorem 15 (Semi-monotonicity). Suppose Y = (U, 9, N) is an FC-normal anno- 

tated NRS. Let D 2 nmon(Y). Then 

1. Y’ = (U,P, man(Y) U D) is FC-normal annotated NRS and 

2. if E’ is an extension of 9, then there is an extension E of Y such that 

(a) E’ C E and 

(b) NG(E’, 9”) C NG(E, 9’) 

Proof. The fact that Y’ is an FC-normal annotated NRS is an immediate consequence 

of our definitions. For part (ii), let p equal the cardinality of NG(E’,Y’) and choose 

a well-ordering of NG(E’, 9’), {rx : x E p}. Then extend this well-ordering to a well- 

ordering {Y,: SI E y} of nmon(S). It follows that if E4 is constructed via our forward 

chaining algorithm with respect to the well ordering 4 determined by {Y, : a E y}, 

then proof of Theorem 13 shows E’ = Cldown(E: ) so that E’ C E+. 

It remains to prove that NG(E’,y’)c NG(E’,:Y’). Now suppose 

Then {(ul,p~) ,..., (u,,p,)}!ZE’CE+ and {(bl,ql) ,..., (bk,qk)} nE’ = 0. But note 

that Con(E’) holds since E’ = c/down(E;). By Theorem 13 E’ = c/dOwn(c&,( {c/n(r) : r 

E NG(E’,.Y’)})). Thus ($,c) E E’ and hence by the FC-normality of r, E’ U {($,c), 



144 A. Nerode et al. I Theoretical Computer Science 171 (1997) Ill-146 

(pi,&)} is not consistent for any i = 1,. . ., k. But since E4 is consistent, E’ U 

{($,c),(fii,bi)} gE+ for any i = l,..., k. Hence (/!?i,bi) @ E* for all i = 1,. ..,k 

and r E NG(E+,Y). 0 

We prove now the result on the orthogonality of extensions, 

Theorem 16 (Orthogonality of extensions). Let Y = (U, 9, N) he un FC-normal an- 

notated NRS with respect to a consistency property Con. Then if E and F are two 

distinct extensions of Y, E u F @ Con. 

Proof. By Theorem 13, E = ~ld~~,,(lJ,~~, 152) where {E:},,e is the sequence con- 

structed by the forward chaining construction relative to some well ordering _; of 

nmon(S). Let CI be the least ordinal such that cldown(Ez) CF but cldown(E>+,) PF. 

Note there must be such an E since otherwise E &F and then by the minimality of 

extensions, E = F. Thus the rule 

is such that {(a~, PI ), . . . , (a,, pn I> G Cldown @:I, 0 # ((bl,ql),...,(bk,qk>}, {(h,q~), 

. . , (~hqk)}~~C~down(~~ > = 8 and E:+, = cI,,,@~ U{($, c>>>. Since Cidown(E>+l > LX 

it must be that ($,c) 6 F. But this means that (/3,,bi) E F for some i since otherwise 

rt(z+1) E NG(F,Y) which would imply that ($,c) E F because F is an extension. By 

the FC-normality of rt(X+l)r cldown(E:) U {($,c), (/$,!I,)} is not consistent. But since 

Cl&wn(E:) U {($, c), (Ii, bi)} C E U F, E U F is also not consistent. a 

Theorem 17. Suppose 9 = (U,Y,N) is an FC-normal annotated NRS with respect 

to consistency property Con such that cfmon( {&z(r): r E nmon(Y)}) is in Con. Then 

9 has a unique extension. 

Proof. For a contradiction, assume Y has two distinct extensions, El and E2. Then by 

our proof of Theorem 13 , E, = cldown(clmo”({cln(r): r E NG(Ei,Y)})) for i = 1,2. 

But then for i = 1,2, .Ei C: c/dOWn(c&n( {c/n(r) : r E nmon(Y)})). Thus El U EZ is 

contained in a consistent set so that El U E2 is consistent, contradicting Theorem 16. 

q 

Theorem 18. Let Y = (U,Y,N) be an FC-normal annotated NRS with respect to a 

consistency property Con. Then (cp,c) E U x P is an element of some extension of 

Y if and only if (qo,c) has a consistent proof scheme with respect to Con. 

Proof. Clearly if (cp,c) E E where E is an extension, then Con(E) by Corollary 1. 

Thus, since (40,~) E C,(g), there is a consistent minimal proof scheme for (q,c). 

Conversely assume that p = (((90, a~), ro, Go), . . , ((cpm, a,), r,,, GM)) is a consistent 

minimal proof scheme for (cp, c). Let 0 < il < . . < ik <m be set of all i <m such that 

ri E nmon(Y). Now well-order nmon(Y) so that ri, . . . , lk r. are the first k elements in 
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the list. Then if we construct an extension via our forward chaining construction, it is 

easy to show by induction on k that (cp,c) E E:. Hence (q, c) E c/down(P) which is 

an extension. E 

Theorem 19. Suppose .Y = (U,.Y,N) is an FC-normal annotated NRS and that 

D C nmon(.Y). Suppose further that E{ and l$ are distinct extensions qf (U,.‘P, D U 

mon(.Y)). Then .‘Y has distinct extensions El and E2 such that E;’ c El and Ei C E?. 

Proof. By Theorem 18, we know that there are extensions of Y, El and Ez, such that 

Ei 2 El and Ei C Ez. But then the orthogonality of extensions for (I/, .Y, D U mon( .Y)j 
ensures Ei U Ei is not consistent. Hence El U E? is not consistent so that El # El. L 

8. Conclusion 

In this paper, we introduced the theory of annotated nonmonotonic rule systems 

which forms a common generalization of the nonmonotonic rule systems of Marek [ 15- 

191 and annotated logic programming paradigm of Subrahmanian [30,31]. Annotated 

nonmontonic rules system provide a general framework for nonmonotonic reasoning 

systems which include probabilistic reasoning, uncertainty measurements, and time, 

place, origin or quality dependencies. We also introduced a generalization of Reiter’s 

normal default theories in the setting of annotated nonmontonic rule systems called 

K-normal annotated nonmontonic rule systems. We showed that FC-normal annotated 

nonmontonic rule systems have all the desirable properties that are possessed by normal 

default theories. Finally we introduced a forward chaining type construction to construct 

all extensions of an IX-normal annnotated nonmontonic rule system. 
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