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Staphylococci are commensal bacteria living on the epithelial surfaces of humans and other mammals. Many
staphylococci, including the dangerous pathogen Staphylococcus aureus, can cause severe disease when they
breach the epithelial barrier. Both during their commensal life and during infection, staphylococci need to
evade mechanisms of innate host defense, of which antimicrobial peptides (AMPs) play a key role in particular
on the skin. Mechanisms that staphylococci have developed to evade the bactericidal activity of AMPs are
manifold, comprising repulsion of AMPs via alteration of cell wall and membrane surface charges, proteolytic
inactivation, sequestration, and secretion. Furthermore, many staphylococci form biofilms, which represents
an additional way of protection from antimicrobial agents, including AMPs. Finally, staphylococci can sense the
presence of AMPs by sensor/regulator systems that control many of those resistance mechanisms. This article
is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
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1. Introduction

Staphylococci are a major cause of infections in both health care
and community settings [1]. Antibiotic resistance is widespread in
ial Resistance to Antimicrobial
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2.
staphylococci, significantly complicating treatment. Methicillin-
resistant Staphylococcus aureus (MRSA) in particular has been esti-
mated to cause nearly 20,000 deaths every year in the Unites States,
which is more than reported for HIV/AIDS [2].

Staphylococcal infections mostly originate from colonizing strains.
S. aureus and the coagulase-negative Staphylococcus epidermidis are
the most common commensal bacteria colonizing the human nose
and skin [3,4]. Approximately 30% of the population carry S. aureus
and 20% are persistent carriers [5,6]. Importantly, it has been demon-
strated that colonization with S. aureus poses a risk for subsequent
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infection [7]. When the protective layer of the human epithelium is
breached and mechanisms of host immunity fail, staphylococcal
infections such as bacteremia or pneumonia can become extremely
dangerous and life-threatening [8].

The innate immune system plays a major role in fighting off
staphylococcal infections. Antimicrobial peptides (AMPs) represent
the first line of innate immune defenses on the human skin and
also form part of the mechanisms by which bacteria are eliminated
in the neutrophil phagosome after phagocytosis. Many different
organisms, including humans, produce AMPs; and many human
AMPs have been discovered that are active against staphylococci.
AMPs in humans belong to two major groups: defensins and
cathelicidins. All of these have a positive net charge and are therefore
collectively called cationic antimicrobial peptides (CAMPs). There is
one exception in humans with a negative net charge, namely
dermcidin, an anionic AMP originally isolated from human sweat [9].

As human AMPs have evolved to play a pivotal role in innate
immunity, staphylococci as human colonizers have developed versa-
tile strategies to evade AMP activity during both colonization and
infection [10]. This includes, for example, surface charge alteration,
extracellular proteases, exopolymers, and efflux pump proteins,
mechanisms that are regulated by specific sensor/regulator systems
(see Table 1). This review will give an overview on staphylococcal
mechanisms of AMP sensing and strategies of AMP resistance.
2. Staphylococcal sensing of antimicrobial peptides

Staphylococci have a three-component antimicrobial peptide
sensor (aps) system, which was the first Gram-positive bacterial
AMP sensing system to be discovered by studies on S. epidermidis
[11]. It is composed of a classical two-component system with a
sensor histidine kinase (ApsS) and a DNA-binding response regula-
tor (ApsR) in addition to a third component (ApsX), which appears
only in staphylococci and whose exact function is still unclear [11].
ApsRS is also known as GraRS, based on earlier studies, in which
this two-component system was described to provide resistance
against glycopeptide antibiotics [12,13]. ApsS is a membrane protein
with an AMP-sensing extracellular loop consisting of 9 amino acids
with negative net charge [11]. Direct interaction of that loop with
AMPs was shown in the original publication on the S. epidermidis
Aps system with specific antibodies that blocked induction, and
was further confirmed more recently in S. aureus [14]. The S. aureus
Aps system appears to be more limited regarding the spectrum of
AMPs to which it reacts, whereas S. epidermidis responds to a larger
variety of peptides. For example, the Aps systems in both species
Table 1
Staphylococcal resistance mechanisms that target AMPs.

Resistance
mechanism

Gene Target AMPs

AMP sensing apsSRX Most cationic AMPs with some selectivity
for S. aureus [11,15]

vraFG (+ apsSRX) Colistin, polymyxin B, HNP1, RP-1 [16,18]
braSR/braDE/vraDE Bacitracin, nisin [96]

PG lysylation mprF Most cationic AMPs [23]
TA alanylation dltABCD Most cationic AMPs [44]
Exopolymers icaADBC (PIA) HBD3, LL-37, DCD-1 [68]

capBCAD (PGA) HBD3, LL-37, DCD-1 [67]
Extracellular
proteases

aur/sepA LL-37 [73,75]

sspA/esp LL-37a[72]
Staphylokinase sak HNP1, HNP2, LL-37b[81,84]
ABC
transporters

vraFG Vancomycin, polymyxin B, colistin [12,18]

braSR/braDE/vraDE Bacitracin, nisin [96]

a Degraded but still active.
b Bound to activate fibrinolysis.
recognize LL-37 and indolicidin, while only the S. epidermidis system
recognizes the important AMP human beta-defensin 3 (HBD-3),
which provides anti-staphylococcal activity on human skin. Using
genetically engineered strains expressing hybrid ApsS proteins,
these differences in AMP inducibility between the S. aureus and
S. epidermidis Aps systems have been shown to be due to the amino
acid sequence difference within the short loop region of ApsS [15].
AMP selectivity of the S. aureus Aps system was also further studied
in MRSA strains [16]. Clearly, the intriguing nature of the AMP selec-
tivity of ApsS still needs more investigation, in particular regarding
its biological significance.

There have been multiple studies in S. aureus attempting to eluci-
date the mechanism of the Aps sensing/regulation system in more
detail. Although the precise function of ApsX is yet to be determined,
genome/transcriptome analyses and protein–protein interaction
studies have revealed that it plays a key role in signal transduction,
connecting the two parts of a sensor/regulator complex comprised
of the VraFG ABC transporter, a target of Aps-dependent regulation,
in addition to ApsRSX itself [17,18]. In particular, it could be demon-
strated that the expression of apsRS and the sensing of AMPs by
Aps appear to be dependent on VraFG [16,18]. Thus, according to
those recent studies, VraFG may play a more active role in the Aps
sensing/regulation system than previously expected.

While many genes appear to be regulated by the Aps system based
on the analysis of gene deletion strains, induction experiments
with AMPs revealed what appears to be the most important feature
of Aps-dependent gene regulation, namely that the Aps system
up-regulates expression of genes encoding major AMP resistance
mechanisms in staphylococci [15]: AMP-activated Aps induces expres-
sion of (i) the dlt operon that incorporates D-alanine into teichoic
acids, which contributes to neutralizing the negative net charge of
the staphylococcal cell wall, (ii) the mprF gene that forms lysyl-
phosphatidylglycerol (Lys-PG), which reduces the negative net charge
of the cellular membrane, and (iii) the vraFG ABC transporter genes
(Fig. 1). Increased expression of the Dlt and MprF systems confer resis-
tance to CAMPs by altering the cell surface charge, as discussed further
below, while VraFG has been proposed to be involved in AMP export, a
notion based on the fact that a vraFG deletionmutant showeddecreased
resistance to several AMPs [15]. However, the more recent findings
indicating a role for VraFG as part of the Aps/VraFG sensing complex
suggest that this may only be a secondary activity of VraFG.

As the Aps system governs the expression of the main AMP resis-
tance toolbox in staphylococci, it is considered a pivotal regulatory
system of staphylococcal resistance to AMPs. The importance of Aps
for bacterial survival is reflected by the finding that it significantly
impacts resistance to killing by human neutrophils, which use AMPs
as one of two key mechanisms to eliminate bacteria after phagocytosis
(the other being reactive oxygen species), based on experimental data
from both S. aureus and S. epidermidis [19]. Furthermore, an apsS
deletion mutant of strain S. aureus MW2 showed a significantly lower
bacterial burden in kidneys in a murine infection model, indicating an
important role of AMP sensing during S. aureus infection [15]. However,
other staphylococcal regulatory systems, such as the global regulators
Agr, SarA and SaeRS, also regulate AMP resistance,mainly by controlling
expression of secreted proteases with low substrate specificities that
degrade AMPs [20]. For example, the S. epidermidis exoprotease SepA
(a homologue of S. aureus aureolysin) significantly contributes to
the evasion of killing by human neutrophils [19]. The activation of
proteolytic defense mechanisms via Agr, SarA, and SaeRS can be stimu-
lated byAMPs regardless of their charge and likely is a result of a general
disturbance of membrane function and thus resembles a general stress
response [20]. Finally, it is also noted that the Aps system has been
reported to be involved with providing resistance to environmental
stresses such as high temperature or oxidative stress [17].

Recently, there have also been reports on AMP resistance-related
novel regulatory systems in staphylococci, with or without a relation



Fig. 1.Overviewover AMP resistancemechanisms in staphylococci. Host cells produce CAMPs (positively charged, in green) or, rarely, anionic, negatively charged AMPs such as dermcidin
(in red). CAMPs induce the Aps/VraFG regulatory system, leading to increased expression of the Dlt system, which D-alanylates TA, andMprF, whichmodifies PGwith lysyl residues. Both
mechanisms contribute to repulsion, or decreased attraction, of CAMPs. Aps/VraFG also induces the expression of VraFG,which itselfmay be involved inAMPexport. Export pumps such as
the Pmt PSMABC transporter expelmembrane-active AMPs such as the staphylococcal PSM toxins, but also possibly host-producedAMPs, from the cytoplasmicmembrane (CM). Secreted
proteases with commonly low substrate specificity degrade AMPs (both anionic AMPs and CAMPs) and are regulated by global regulators such as Agr, SarA, and SaeRS. Staphylokinase
inactivates CAMPs by sequestration, a mechanism also seen with AMPs and oppositely charged surface polymers (sequestration of an anionic AMP by the cationic exopolysaccharide
PIA is shown as example). The formation of biofilms contributes to AMP resistance by a multitude of mechanisms that include decreased penetration. In addition, the cationic biofilm
polymer PIA may repel CAMPs.
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to Aps. For instance, Stk1, a serine/threonine kinase, which has previ-
ously been known as a methicillin resistance factor in MRSA, was re-
ported to phosphorylate ApsR, thereby impacting the expression of
the Aps regulon [21]. Furthermore, in another recent study a transmem-
brane potential (Δψ) sensor/regulator, the two-component system
LytSR, was described to control resistance to AMPs in a manner that is
unrelated to Aps-dependent gene regulation [22].

3. Staphylococcal strategies to evade killing by antimicrobial
peptides

3.1. Aminoacylation of phosphatidylglycerol by MprF

The phospholipids phosphatidylglycerol (PG) and cardiolipin are
major lipid components of the bacterial cytoplasmic membrane; as
they are both anionic, the membrane has a negative surface charge,
attracting cationic AMPs. Staphylococci and several other bacteria
have a gene called mprF (for multiple peptide resistance factor),
whose protein product is responsible for the aminoacylation of PG via
ester bond formation between the glycerol moiety of PG and the
carboxyl group of lysine or alanine, which results in a reduction of the
negative charge of the bacterial membrane, diminishing attraction of
CAMPs [23,24]. While MprF in staphylococci only produces lysyl-PG
(Lys-PG), other bacteria generate alanyl-PG (Ala-PG) or both Lys-PG
and Ala-PG via the enzymatic activity of MprF [24,25].

MprF is a membrane protein consisting of 14 transmembrane
domains (TMDs). The C-terminal 6 TMDs of MprF produce Lys-PG by
recruiting PG and lysyl-tRNA as substrates. The N-terminal 8 TMDs
translocate Lys-PG from the inner leaflet to the outer leaflet, an activity
representing the first described bacterial phospholipid flippase [26].
Both domains are required for AMP resistance. By heterologous
co-expression of an Ala-PG synthase domain and a Lys-PG flippase do-
main, the flippase domain has recently been shown to be responsible
for the substrate specificity of MprF [27]. Importantly, it has been
reported that point mutations in a specific region of mprF lead to resis-
tance toward daptomycin, a lipopeptide antibiotic of last-resort for
multi-drug resistant bacteria [28]; and multiple studies have demon-
strated a linkage between point mutations in mprF and daptomycin
resistance in clinical isolates and laboratory strains [29–32]. In a recent
comparative study on daptomycin-susceptible and -resistant MRSA
isolates, a specific point mutation in mprF was shown to be important
for gaining daptomycin resistance based on an enhanced MprF pheno-
type [33]. Finally, interesting details on the aminoacyl-PG hydrolase as
a counterpart of MprF in the aminoacyl-PG homeostasis were recently
reported by two independent studies, one performed in Enterococcus
faecium [34] and the other in Pseudomonas aeruginosa [35]. Newly
found hydrolases in both bacterial strains degrade aminoacyl-PG back
to PG to maintain the aminoacylation level of the lipid membrane,
which also appears to be involved in additional functions such as
antimicrobial resistance and cell growth. The findings that were
reported in those two studies provide new aspects that help to under-
stand how aminoacyl-PG homeostasis is achieved with one or multiple
aminoacyl-PG species, and how this affects resistance to antimicrobial
compounds. Although the corresponding enzyme has yet to be discov-
ered in staphylococci, aminoacyl-PG homeostasis by hydrolase activity
requires to be studied together with aminoacyl-PG synthases such as
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MprF for a better understanding of mechanisms of staphylococcal
resistance to AMPs.

3.2. Teichoic acids and the role of D-alanylation of teichoic acids by the
products of the dlt operon

Staphylococci and other Gram-positive bacteria have teichoic acids
(TAs) in their cell wall [36]. TAs are a variety of anionic polymers of
phosphodiester-linked polyol phosphate repeating units with disaccha-
ride anchoring units [37,38]. The repeating units are composed of one or
both types of glycerol phosphate (Gro-P) and ribitol phosphate (Rbo-P)
with frequentmodification by D-alanine and/ormono-/di-saccharides, a
mechanism that provides zwitterionic property. According to the
anchoring location, TAs are further classified into two groups, wall
teichoic acid (WTA) and lipoteichoic acid (LTA). WTA is covalently
linked to the cell wall via a phosphodiester bond between an N-acetyl
glucosamine (GlcNAc) inWTA and anN-acetyl muramic acid (MurNAc)
moiety of peptidoglycan, whereas the disaccharide of LTA is attached to
the glycerol moiety of diacylglycerol in the outer leaflet of the cell
membrane. In S. aureus, WTA consists of 2 Gro-Ps and 40 Rbo-Ps,
while LTA comprises 18 to 50 Gro-Ps only [39]. Readers are referred to
dedicated review articles for expansive reviews about WTA [40] and
LTA [41,42], a concise review about S. aureus TA [39], and a comprehen-
sive review about TA from a physiological viewpoint [43].

Staphylococci incorporate D-alanine into the glycerol moiety of
repeating units in both WTA and LTA. As this happens via esterifica-
tion of the D-alanine carboxy group and leaves the positively charged
free amine, the reaction results in TA with a decreased overall nega-
tive net charge, lowering CAMP attraction [44], in a manner that is
similar to that by which MprF incorporates L-lysine into PG and
thereby diminishes the negative charge of the membrane surface.
The dltABCD operon is responsible for this D-alanylation mechanism
and thus represents an important genetic locus conferring resistance
to CAMPs in staphylococci and other Gram-positive bacteria. DltA
activates D-alanine with ATP and transfers it to DltC, a D-alanyl carri-
er protein [45,46]. A transmembrane protein, DltB, and a membrane-
anchored putative esterase/thioesterase, DltD, are believed to com-
plete the D-alanylation of LTA, but the exact mechanistic activities
of these two proteins are still unclear [47,48]. It is also assumed
that the D-alanyl moiety can be transferred from LTA to WTA [49].
As previously mentioned, expression of the dlt operon is controlled
by the Aps system [11,15] and, additionally, by cations [50].

In addition to their classical role as a defensive barrier in Gram-
positive bacteria, teichoic acids also play various other biological
roles in staphylococci. For example, WTA is involved in the regula-
tion of peptidoglycan biosynthesis and cell division by binding to
penicillin-binding proteins (PBPs) or autolysins [51–53]. Interest-
ingly, in contrast to previously observed resistance mechanisms
targeted at other CAMPs, WTA deficiency achieved by deletion of
tagO in S. aureus has been shown to lead to increased resistance
selectively to HBD3 and group IIA phospholipase A(2), indicating
multifactorial properties of WTA-dependent AMP resistance [54].
WTA is currently drawing even more attention owing to the impor-
tant roles it has recently been reported to play in horizontal gene
transfer among bacterial pathogens [55] as well as nasal colonization
of S. aureus through the WTA receptor, SREC-I [56,57].

3.3. Exopolymers and biofilms

Polysaccharide intercellular adhesin (PIA, also known as PNAG,
poly-N-acetylglucosamine) is a cationic exopolysaccharide produced
by the icaADBC locus in S. aureus, S. epidermidis, and other staphylococci
[58–61]. Homologous systems are present in a variety of other bacteria
[62,63]. PIA/PNAG is a linear homopolymer of partially de-acetylated
GlcNAc. Importantly, de-acetylation by IcaB results in a positive net
charge of PIA/PNAG, which is crucial for resistance to AMPs [64]. In
S. aureus the ica locus and thus expression of PIA/PNAG is subject
to phase variation by a frame shift mutationwithin icaC likely occurring
via slipped-strand mispairing [65]. Another important bacterial
exopolymer, poly-γ-glutamic acid (PGA) is produced by coagulase-
negative staphylococci and some other species, but not S. aureus [66,
67]. The capBCAD operon is responsible for the production of PGA.
Interestingly, PIA/PNAG and PGA provide protection to both cationic
and anionic human AMPs such as LL-37, HBD3, and dermcidin [64,67,
68], although those AMPs have opposite net charges. This indicates
that resistance mechanisms to AMPs facilitated by these two
exopolymers do not only include simple electrostatic repulsion but
also mechanisms based on electrostatic sequestration or charge-
independent mechanical barrier functions. In addition, both molecules
contribute to the evasion from neutrophil phagocytosis [67,68]. More
recently, another type of PIA/PNAG with partial sulfation has been
discovered in S. epidermidis, whose biological role and biosynthetic
pathway still need to be elucidated [69].

PIA/PNAG and PGA both impact pathogen success in in-vivo models
of staphylococcal biofilm-associated infection on indwelling medical
devices, but only PIA/PNAG has been shown to influence biofilm forma-
tion in vitro [63,67]. PGA, however, is likely important for biofilm-
specific AMP resistance according to a genome-wide analysis of gene
expression that has shown up-regulation of the cap locus in
S. epidermidis biofilms [70]. Of note, because in addition to AMP resis-
tance, PIA/PNAG plays a crucial role in in-vitro biofilm formation and
in-vivo biofilm-associated infection [61,64,71], it contributes to AMP
resistance by two mechanisms — as a surface exopolymer that repels
CAMPs and as a component of the biofilm matrix, a double mechanism
likely shared by other staphylococcal exopolymers.

3.4. Extracellular proteins

Staphylococci produce a series of proteases, such as S. aureus V8
protease [72] or aureolysin [73], some of which are known to degrade
human AMPs. Aureolysin is a zinc-dependent metalloprotease with
low substrate specificity [74]. Its homologue in S. epidermidis is SepA,
which is encoded by the sepA gene [75]. The aureolysin-type proteases
are well known to proteolytically inactivate LL-37, the only cathelicidin
found in humans. In contrast, the serine protease V8 protease, encoded
by the gene sspA, can degrade LL-37, but the resulting fragment was
reported to be still active against S. aureus [73]. Furthermore, we already
mentioned above that S. epidermidis SepA contributes to evading
neutrophil killing, likely by inactivating AMPs and other protein-
dependent bactericidal mechanisms in the neutrophil phagosome
[19]. Of note, staphylococcal serine proteases, including V8 and
S. epidermidis Esp, also play important roles in the evasion of human
immune defenses conferred by mechanisms other than AMPs, by
degrading, for example, α1-proteinase inhibitor, complement compo-
nent 5, or fibrinogen [76,77]. Finally, the expression of these proteases
is mostly up-regulated by agr and repressed by sarA [78–80], resulting
in significant effects that these regulatory systems have on AMP
resistance.

S. aureus also secretes staphylokinase, which sequestersα-defensins
(HNP-1 and 2) [81,82]. For decades, activation of plasminogen has been
the only known function of staphylokinase [83] until multiple binding
sites for HNPs, which are distinct from the plasminogen binding
site, were revealed in staphylokinase [81]. The bactericidal activities
of α-defensins in complex with staphylokinase are significantly
lower than without staphylokinase, an effect that is independent of
plasminogen. In addition, staphylokinase binds to LL-37 to increase
plasminogen activation and fibrinolysis [84]. Interestingly, strepto-
kinase (Ska) found in streptococci exploits Ska-activated host
plasmin to degrade LL-37 cooperatively [85].

Furthermore, staphylococcal extracellular enzymes also play a
crucial role in the escape from neutrophil extracellular traps (NETs).
Some neutrophils release DNA followed by decoration with histone
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and granule proteins to build NETs [86]. This process, also called
NETosis, helps immune cells to protect themselves from bacterial inva-
sion by trapping and killing exogenous microbes. A recent study
revealed a new strategy of S. aureus to escape from NETs, namely
that extracellular nuclease and adenosine synthase A degrade and
synthesize 2′-deoxyadenosine to facilitate macrophage apoptosis [87].
3.5. ABC transporters

Inmany organisms,multi-drug exporterswith broad substrate spec-
ificity provide resistance to a variety of antimicrobial compounds [88].
Although many transporters have been discovered in staphylococci
that confer resistance to antibiotics [89], most staphylococcal multi-
drug exporters are not active against human AMPs. For example, one
of the most important staphylococcal multidrug efflux pumps, NorA,
does not protect from AMPs such as human defensins and LL-37 [90].
Nevertheless, some ABC transporters that provide resistance from
AMPshavebeendescribed staphylococci, butmost of themhavenarrow
substrate specificity and predominantly confer resistance to lantibiotics,
which are post-translationallymodified peptide bacteriocins containing
the amino acid lanthionine [91]. These lantibiotic exporters are involved
in secretion or producer immunity, as many lantibiotics such as
epidermin, gallidermin, Pep5, or aureodermin (Bsa) are produced by
staphylococci themselves [92]. According to Gebhard's classification of
AMP transporters, a large number of AMP transporters known in
staphylococci are classified into lantibiotic-associated groups, such as
the SunT/NisT group whose members are involved with the secretion
of newly synthesized AMPs, or the LanFEG group members that are
important for producer self-protection from lantibiotic activity [93–95].
In contrast to those groups, the transporters of the BceAB group are
more broadly involved in AMP resistance due to less narrow substrate
specificities, expelling at least two different types of AMPs, bacitracin,
which is a cyclic AMP, and the lantibiotic nisin. In addition to transcrip-
tional regulation by BraSR (also known as BceSR or NsaSR), BraDE
(also known as BceAB or NsaAB) and VraDE have been shown to be
involved in bacitracin/nisin sensing and detoxification, respectively
[96–98].While BraDE and VraDE accept only those selected bacteriocins
as substrates, the VraFG transporter, which also belongs to the BceAB
group, protects from indolicidin, vancomycin, LL-37 and HBD3 [15].
However, as mentioned above, there is the caveat that it needs to be
confirmed that this protection is due to a transport function of VraFG
rather than its participation in the Aps sensing/regulation system [18,
96]. In fact, the presence of adjacent two component sensor/regulator
systems (e.g. BceSR) on the genome and the involvement of the
transporters in AMP sensing mechanism are general features of
BceAB-type transporters [99,100]. Notably, BceAB-type sensing trans-
porters often share their sensing information with other transporters
or sensor/regulator systems.

The primary biological features of the staphylococcal phenol-soluble
modulin (PSM) peptides are believed to be their cytolytic, pro-
inflammatory, and biofilm-structuring activities [101]. However, PSMs
also exhibit antimicrobial effects that are assumed to be a side effect
of the membrane-damaging capacities of those peptides that are
predominantly targeted at eukaryotic membranes [102]. Our group
has recently identified an ABC transporter, named Pmt (phenol-soluble
modulin transporter), as the transporter that secretes PSMs and
provides producer immunity to PSMs [103]. Of note, in the absence of
Pmt, PSMs accumulate in the producing cell's cytoplasm with fatal
consequences for the cell. The presumable mechanism of Pmt consists
in taking up the membrane-active PSMs from within the cytoplasmic
membrane and expelling them under ATP hydrolysis, using a mecha-
nism common to energy-driven exporters that provide resistance to
membrane-active substances. We are currently performing studies
aimed at analyzing whether Pmt has broader substrate specificity,
possibly also expelling AMPs. This appears likely, given the amino acid
sequence diversity of Pmt's PSM substrates, which virtually only have
their secondary structure of amphipathic alpha-helicity in common.

4. Conclusions and outlook

While staphylococci have a variety of resistance mechanisms to
AMPs, which also include elaborate sensing and regulatory mecha-
nisms, it is striking that many of those mechanisms have additional
biological functions. For example, WTA and PIA/PNAG play very impor-
tant roles in AMP resistance, but are also necessary for colonization
and biofilm formation. Furthermore, the Aps/VraFG sensor/regulator
controls many genes not related to AMP resistance. Moreover, many
AMP exporters seem to have secondary, or possibly original, functions
in providing producer immunity to specific bacteriocins. Finally,
staphylococci benefit from the AMP-degrading activity of multiple
non-specific secreted proteases, but these proteases certainly have a
multitude of other biological functions as well, such as in degrading
host tissue for nutrient acquisition. It is thus tempting to speculate
that many staphylococcal AMP resistance mechanisms have evolved
from other original mechanisms, despite the fact that staphylococci as
commensals of humans and other mammals must have been exposed
to AMPs for a very long time in evolution. In support of this notion,
the factors of protection that many staphylococcal AMP resistance
mechanisms provide are rather small. Thus, AMP resistance mecha-
nisms probably need to be revisited with a bigger picture of bacterial
pathogenesis and general physiology in mind.

As seenwith the lipopeptide daptomycin, which is subject to similar
bacterial resistance mechanisms as AMPs, research on staphylococcal
AMP resistance mechanisms has significance that goes beyond the
mere study of AMP resistance. A more detailed understanding of
the mechanisms providing resistance to AMPs and in general, anti-
staphylococcal agents, will enhance our preparedness for the develop-
ment of resistance to clinically important antibiotics. Furthermore,
AMPs have often been proposed as novel antibacterial agents, in
particular for infections involving biofilms, which are highly resistant
to merely bacteriostatic agents. The study of AMP resistance thus also
allows us to foresee the spread of potential resistance mechanisms to
such agents, should they make it to therapeutic use.

Finally, AMP resistance mechanisms by themselves may represent
valuable targets for antimicrobial drug development. One such example
is the Pmt exporter, which combines importance as an exporter of key
staphylococcal virulence factors with a role in producer immunity
and, possibly, AMP resistance [104]. Other possible targets include the
widespread bacterial AMP resistance mechanisms of TA D-alanylation
(by Dlt) and PG amino-acylation (by MprF and homologues) as well
as their control (by Aps).
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