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We consider the three-dimensional wave equation. It is well known that 
the solution U(X, y, z, t) is uniquely determined by two initial conditions: the 
values of u and au/at at time t = 0. Our question is, can computable initial 
data give rise to noncomputable solutions? The answer is “yes,” and two 
quite different types of noncomputability can occur. Theorem 1 below gives 
an example in which the solution U(X, y, z, t) takes a noncomputable real 
value at a computable point in space-time. By contrast, Theorem 2 provides 
an example in which the solution maps each computable sequence of points 
in space-time into a computable sequence: nevertheless U(X, y, z, t) is not a 
computable function. [We note in passing that “computability,” as used in 
this paper, is a technical term familiar to mathematical logicians: the precise 
definitions are spelled out in the next section.] The proof of Theorem 1 is 
quite short. That for Theorem 2 is considerably more intricate. 

It should be mentioned that these noncomputable solutions of the wave 
equation are of the type commonly referred to as “weak solutions”-i.e., 
although continuous, they are not twice differentiable at all points. Weak 
solutions describe creases, cusps and other non-differentiable patterns which 
frequently appear in models of wave phenomena. The use of weak solutions 
is inevitable; we will prove that no Cz solutions of the desired kind exist. For 
the convenience of readers unfamiliar with weak solutions, we have put them 
into a coherent framework in an Addendum, basing our presentation on the 
“energy integral” associated with the wave. (Just as the initial conditions are 
computable, the energy integral in our examples is also a computable real.) 
Finally, the proof that all noncomputable solutions must be of “weak” type 
is sketched at the end of this addendum. We note, however, that the main 
part of the paper may be read without reference to the addendum. 

The results in this paper are related to comments of Kreisel. In [4] Kreisel 
asks whether existing physical theories-e.g., classical mechanics or 
quantum mechanics-can predict theoretically the existence of a physical 
constant which is not a recursive real. Previous work of the authors in this 
area [9] was concerned with ordinary differential equations: it was proved 
that there exists a computable-and hence continuous-function F such that 
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dyldx’= F(x, y) has no computable solution in any rectangle however small 
within its domain. In the present paper, by passing to partial differential 
equations, we obtain similar results with an equation which is more familiar. 

The plan of the paper is as follows. In Section 1 we present some 
preliminaries-including the standard, commonly accepted definitions of 
computability for real numbers and functions. In Section 2 we give the 
proofs of the main theorems-Theorems 1 and 2. Associated with the proof 
of Theorem 2 is the “Effective Modulus Lemma,” a result which may be of 
independent interest. The generalization of these results to spaces of 
dimension other than three is presented in Section 3. The paper concludes 
with the aforementioned addendum on weak solutions. 

Since our results overlap two areas-recursion theory and analysis-we 
have attempted to make our paper self-contained, and have presented our 
arguments with great attention to detail. The few exceptions, where we 
merely give “sketches,” are clearly indicated. 

1. PRELIMINARIES 

In this section we summarize some facts of recursive analysis which will 
be used in the paper. The reader is advised to glance briefly at this section 
and return to it when necessary. 

We take as known the idea of a recursive function from the set of natural 
numbers N into itself, or from Nq + N. Then a sequence {T,} of rational 
numbers is called “recursive” or computable if there exist three recursive 
functions a, b, s from N to N such that 

W r, = (-,y -. 

b(n) 

Similarly we can define a computable double or triple sequence of rationals. 
A real number x is called computable if there exists a computable 

sequence of rationals {r,} which converges effectively to x; this means that: 
There is a recursive function e(n) such that 

k 2 e(n) implies Ix - r,l 5 10-n. 

Then we can use the function e(n) to construct a computable subsequence 
{I’,} = {TV} such that 

Ix - rbl 2 10-n. 

In the same vein, a sequence of real numbers {xk} is called computable if 
there is a computable double sequence of rationals (rkn} such that 

(Xk-rknIs 10-n for all k, n. 
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A vector (x, ,..., x1) E lRq or a sequence of vectors in [Rq is called computable 
if each of its components is a computable real number or sequence of real 
numbers, respectively. 

Now we come to the notion of a computable functionf: IF?4 --t iR l. For our 
purposes, we can restrict attention to the case wheref is defined on a closed 
bounded rectangle 19 = {ai s xI 5 b,, 1 5 i s q} in IRq; we assume that the 
endpoints a,, b, are computable reals. Here several equivalent definitions 
have been given. Perhaps the best, from a foundational point of view, is the 
“recursive functional” definition of Grzegorczyk [ 1,2]. We also have the 
“effective polynomial approximation” approach of Pour-El and Caldwell [8]. 
A definition which is equivalent to these, and which is useful in applications, 
is the following: 

A function f from a computable closed bounded rectangle I4 in IRq into IF? i 
is called computable if: 

(a) f is sequentially computable, i.e. for every computable sequence 
(xk} of points in P, the sequence of values {f(+)} is computable; and 

(b) f is efictiuely uniformly continuous, i.e., there exists a recursive 
function d(n) such that, for all points x, y E lq: 

Ix-~15 l/d(n) implies If(x) -fcv>l 2 IO-“. 

In an obviously analogous way, we define the notion of a computable 
sequence of functions {fk}. Previously we defined “effective” convergence for 
a sequence of rationals converging to a computable real. The same definition 
applies to sequences of reals, and-with the obvious modifications-to a 
sequence of functions {fk} which converges efictively and uniformly to a 
limit function$ It is a basic result that: 

(*) If a sequence of functions {fk} is computable, and converges effec- 
tively and uniformly to a limit f, then f is computable (cf. [ 1,2]). 

We will also use the obvious fact that Riemann integration, applied to 
functions satisfying (a) and (b) above, is an effective process. 

So far we have defined computability only for functions defined on 
compact rectangles 14 E IRq. There is a natural extension of this definition to 
functions defined on all of IRq (cf. [ 1,2]). However, we do not need it here, 
because all of the functions we construct will have compact support, and 
solutions of the wave equation propagate with a finite velocity. So we omit 
these complications. 

We conclude by stating a couple of well-known facts from recursion 
theory. 

A set A of natural numbers is called recursively enumerable if there is a 
recursive function a(n) which enumerates A; we can always assume that the 
function u(n) is one to one. The set is called recursive if both it and its 
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complement in R\l are recursively enumerable. It is a standard fact of 
recursion theory that there are recursively enumerable sets which are not 
recursive. Also there exist recursively inseparable pairs of sets A, B: this 
means that the sets A and B are recursively enumerable and disjoint, and 
there is no recursive set C such that A E C and B E c. 

2. MAIN THEOREMS 

We consider the three-dimensional wave equation 

with the initial conditions 

u(x, y, z, 0) =f(x, y, z), 

g (x, y, z, 0) = 0. 
(lb) 

It will be the case that f is of class C’. This implies, as will become clear 
below, that the solution u(x, y, z, t) is continuous. [We note that u need not 
be C2; i.e., u may be a “weak solution” of (la, b). For a summary of the 
properties of weak solutions, see the Addendum below. In particular, we 
show there that the solution is unique.] 

Our problem is: If the function f is assumed “computable” (in the precise 
sense of recursive analysis described in Section l), is the solution u then also 
computable? The answer turns out to be “no.” Furthermore, as noted in the 
Introduction, two quite different kinds of noncomputability can occur. 
Namely, we have: 

THEOREM 1. There exists a computable-and hence continuous- 
function f (x, y, z) such that the solution u(x, y, z, t) of (1) is continuous but 
not computable, and furthermore the value ~(0, 0, 0, 1) is a noncomputable 
real number. 

THEOREM 2. There exists a computable function f (x, y, z) such that the 
solution u of (1) is continuous, and 

(a) u(x, y, z, t) is sequentially computable, but 

(b) u(x, y, z, 1) is not a computable function of (x, y, z). 

Proof of Theorem 1. The initial function f(x, y, z) will consist of an 
infinite sequence of “spherical waves” superimposed on one another. All of 



WAVE EQUATION WITH COMPUTABLE INITIAL DATA 219 

these waves are symmetrical about the origin. Their supports are a sequence 
of spherical shells { 1 - .sk $ p =< 1 + ek}, p = (x’ + y2 + .z~)~*, lying close to 
the unit sphere {p = I}. As we shall see, at time t = 1 these waves are 
“focused” at the origin. Now, for any C’ initial function f, the equation 
(la, b) has a unique solution given by Kirchhoffs formula (cf. [7, p. 1041): 

For brevity we write x = (x, y, z), and denote by “grad” the gradient in 
terms of the space variables (x, y, z); we let n be an arbitrary unit vector 
ranging over the unit sphere in R3, and denote by da(n) the area measure on 
this sphere, normalized so that the total area equals 1. Then Kirchhoffs 
formula reads: 

24(x, t) = 
II unit sphere [f(x + ml + Gwdf)(x + W . 4 Mn). (2) 

[In our proof it will be convenient to view Eq. (2) geometrically. Because of 
the variable (x + fn) which occurs in both terms, we are really averaging f 
and (gradf) . n over a sphere of radius f centered on the point x. We note 
that the second term is multiplied by t.] 

In our construction, the wave f(x) will be a Cl function which is 
spherically symmetric about the origin, f(x) = f @), where p = 
(x2 + y* + z ) * “*. The gradient of such a function f @) at any point x = pn 
@ > 0, n = unit vector) is just 

(grad f )@n) = f’@) n. 

Hence, setting x = 0 in KirchhofPs formula (2) we obtain: 

up, 0, 0, t) = f (0 + tf (0, 

since f = f(f) is constant on the sphere {p = t), and the term 
t(grad f)(m) . n = tf’(t) n . n = #p(t) is also constant on this sphere. In 
particular, for f = 1 we have 

@, 090, l)=fU) +f’(l)* 

Thus to prove Theorem 1, all we need is to construct a computable function 
f@) such that f’@) is continuous but not computable, and f’ takes a 
noncomputable value at p = 1. An example of this type-but not fitting the 
conditions we need-was given by Myhill [6]. 

We construct a canonical “pulse function” q(x) which is C” with support 
on [- 1, f], and such that (p(x) 2 0 for all x and p’(0) = 1. An example of 
such a function, which is computable together with all of its derivatives, is 

cp(x) = (1 + x) ,-IxY(~-4x*)l 

=o elsewhere. 

for - 3 < x < f, 
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Now we come to the heart of the construction. We take a one to one 
recursive function a(k) which enumerates a nonrecursive set A (cf. 
Section 1). Then the sum of the series 

is a noncomputable real number. [This well-known fact is easy to see: if we 
had an effective method for computing u, then we could tell exactly which 
numbers a belong to A, and the set A would be recursive.] 

We define f @) as the superposition of an infinite sequence of waves wk@): 

where (3) 

Wk@) = lo- (k+a(k))q[ lOk@ - l)]. 

The kth wave wk@) is supported on the spherical shell { 1 - 10Pk <p < 
1 + 10-k}, of mean radius 1 and half-width 10wk, centered on the origin. 
(Actually, because a, has support on [- f, f], the half-width is 4 . 10-k; this 
is significant only for k = 0, since we want wk@) to vanish in a 
neighborhood of p = 0, where the spherical coordinates are singular.) 

The sequence of functions {wk} is computable, and the series for f 
converges effectively and uniformly by comparison with C 10Pk. Hence by 
(*) in Section l,f(x, y, 2) =f@) is computable. Now forf’@) we have 

f’@)= -? 
ky0 

wxP> 

= f 10-a’k’cp’[lOk@ - l)], 
k=O 

where the series converges uniformly (but not effectively) by comparison 
with C 10eatk) ( w  tc h’ h must converge since the function u(k) is one to one). 
Hence the function f is of class C’. 

Now a glance at Kirchhoffs formula shows that, if f is C’, then the 
solution ZJ is continuous. However, as we have seen, the value 
~(0, 0, 0, 1) = f(1) + f’(1). Since f is computable, f(1) is computable. But 
forf’(1) we have 

f’(l)= 2 10-“‘k’@(O) = 5 10-a(k), 
k=O k=O 
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since p’(0) = 1. Thusf’(1) is equal to the noncomputable real number u, and 
so ~(0, 0, 0, 1) is not computable. This proves Theorem 1. 

Proof of Theorem 2. As in the proof of Theorem 1, we use an infinite 
sequence of spherical waves supported on thin spherical shells whose inner 
and outer radii approach one. However, here the centers of these spherical 
shells are not at the origin. They are situated on the x-axis at a sequence of 
points rk = (rk, 0,O) which converge, but not effectively, to a noncomputable 
real point a = (a, 0,O). At time t = 1, the kth wave is “focused” at the point 
rk. The resulting solution is not effectively uniformly continuous, and hence 
not computable. However, it turns out that this solution is sequentially 
computable as a function of all four variables. Roughly speaking, sequential 
computability is possible because of the fact that the singularities rk “pile 
up” on a noncomputable point a. 

Despite the similarities, the proof of Theorem 2 is considerably more 
delicate than that of Theorem 1. We divide it into five parts. In the first part, 
we prove a result which we call “The Effective Modulus Lemma.” This 
lemma embodies the key idea behind our construction. In it, we show that 
there exists a noncomputable real number a with the following property: for 
any computable sequence of real numbers {rk}, there exists a recursive 
function d(k) such that the moduli ( yk - aI > l/d(k) for all k. The striking 
thing about this lemma is that there is no effective way to determine the 
signs of the numbers (yk - a). Indeed, if there were, then a would be 
computable. (To see this, take for {yk} any recursive enumeration of the 
rationals.) Thus the differences (yk - a) can be effectively bounded away 
from zero, but we are uncertain about their sign. 

In the second part of our proof, we construct the initial functionf(x, y, z). 
In the third part, we prove some properties of the corresponding solution 
u(x, y, z, t). The fourth step is to show that u(x, y, z, t) is sequentially 
computable. Finally, we show that u(x, y, z, t) is not computable, even when 
we restrict t to the value t = 1. 

EFFECTIVE MODULUS LEMMA. There exists a computable sequence of 
rational numbers {r,} which converges (nonefictively) to a noncomputable 
real number a, and in addition has the following property: For any 
computable sequence of reals {yk}, there exist recursive functions d(k) and 
e(k) such that 

for all m 1 e(k), 

1 Yk - rm 1 > W(k). 

ProoJ: We begin with a recursively inseparable pair of sets of natural 
numbers A, B: i.e., the sets A, B are recursively enumerable and disjoint, but 
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there is no recursive set C such that A 6 C and B s C. We can assume that 
0 G A U B. Let a(n) and b(n) be recursive functions which enumerate A and 
B in a one to one manner. Now we give the construction of the sequence 
(I,} and its limit a. 

and 

We observe that the decimal expansion of a is a sequence of 5’s and 6’s, with 
a 6 in the sth place if and only if s E A. 

The reason we choose for a a decimal built up only of 5’s and 6’s is quite 
simple. We wish to avoid the ambiguity between terminating decimals and 
decimals ending in an infinite string of 9’s. Unfortunately, we still have to 
face this ambiguity for the numbers yk. 

The number a is not a computable real; for if it were, there would be an 
effective test to determine where in its decimal expansion the 6’s occur (cf. 
the preceding paragraph)-and then the set A would be recursive, a 
contradiction. Hence the sequence {r,} cannot converge effectively. 

Now we must show that, given any preassigned computable sequence of 
reals {yk}, recursive functions d(k) and e(k) as described in the lemma exist. 
It is here that the other set B in our recursively inseparable pair is used. We 
must develop a procedure which is effective uniformly in k. However, we 
shall describe this procedure for a fixed one of the yk, but in such a way that 
the uniformity is obvious. Here is the procedure: 

To show the main idea without tedious details, we will first postulate that 
none of the numbers yk has a terminating decimal expansion. (Unfortunately 
there is no effective way to check this.) We will treat the general case later. 
By our assumption, the 000 . . . versus 999 ea. ambiguity in decimal 
expansions does not occur. Hence the decimals yk = No . N,N,N, . . . , 
N, = N,(k), are effectively determined, uniformly in k: i.e., N,(k) is a 
recursive function of s and k. [As Mostowski showed [5], this would not be 
the case for an arbitrary computable sequence of reals yk. However, when it 
is known a-priori that none of the decimals terminate, then it is easy to see 
that N,(k) is recursive in both variables.] 

Now we fix our attention on a particular yk. We begin listing the sets A 
and B in turn, using the recursive functions u(n) and b(n), until we come to 
an integer s E A U B such that either 

(a) s E A and N, # 6, or 

(b) s E B and N, = 6. 
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One of the situations (a) or (b) must eventually occur. For suppose it did 
not. Let C denote the set of integers {s 1 N, = 6). Since the function N,(k) is 
recursive, C is recursive, uniformly in k. Hence, since the sets A and B are 
recursively inseparable, we cannot have A E C and B G C. If A $Z C then we 
have situation (a), and if B P C then we have (b). Furthermore, the above. 
procedure can be carried out uniformly for the entire sequence {yk}, by an 
effective procedure which returns to each yk infinitely often. 

Recall that the sth decimal digit for a is a 6 if and only if s E A. Also A 
and B are disjoint. Hence in case (a) we have: the s-th decimal digit for a is 
a 6 and that for yk is not; in case (b) the situation is reversed. In either case, 
the sth decimal digits for a and yk differ. Since the decimal for a has only 5’s 
and 6’s, it follows that 

Iyk-aI > lo-“-‘. 

So we define 

d(k) = 10s+‘, 
. 

where s = s(k) is the integer determined by the above process. To define the 
cut-off function e(k), we note that s E A u B, and hence either s = a(n) or 
s = b(n) for some n = n(k), which is also effectively determined by the above 
construction. We set 

e(k) = n. 

Now instead of a, consider the sequence of partial sums {r,}. Since a(n) 
gives a one to one enumeration of A, and A f7 B = 0, the sth decimal digit of 
r,,, is determined as soon as either some a(n) or some b(n) equals s. (In the 
first case it is 6 and in the second case 5.) This coincides with the 8th digit 
for a. Thus, as soon as m 2 n, all of the above arguments for a apply just as 
well to r,,,. We conclude that 

m 1 n = e(k) implies Iyk - r,] > IO-“-’ = l/d(k). 

This completes the proof for the case where no yk has a terminating decimal. 
For the general case, instead of the “true” or exact decimal expansion 

yk=No.N1N2--., we must use a sequence of finite decimal approximations. 
These approximations may have a different appearance than the true decimal 
(e.g., if the approximation is 0.500 f 10e3, the true decimal might be 
0.499 . .. ). Now we show that there exists for each k a sequence of decimal 
approximations 
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such that the digits N,,, = N,,,(k) (where s 2 q + 1) are recursive in q, s, and 
k, and the error 

](qth decimal for y,J - yk] s lo-(q+ l). 

To show this: Since {yk} is computable (cf. Section l), there exists a 
computable double sequence of rationals {Rk,q} such that ]Rk,q - yk] 5 
10-‘q+2’. Of course, the decimal expansion of a rational number is 
computable. We define the (qth decimal for yk) to be that decimal of length 
q + 1 which most closely approximates R,,,; in case of ties, we take the 
smaller one. Then ](qth decimal for Y,J - Rk,ql 5 (l/2) 10--(q+*) and 
IRk,q - ~~1 5 (l/10) 10--(q+l), so ](qth decimal for Y,J - yk] 5 10-‘q+l’. 

Now the previous construction (for the case of nonterminating yk) is 
modified by adding to the two cases (a) and (b) above, a third alternative. 
As before, we list the sets A and B in turn, using the recursive functions a(n) 
and b(n). We stop when we come to an integer s E A U B such that either: 

(a) s E A and N,,, # 6, N,,,, r # 0 or 9, or 

(b) s E B and N,,, = 6, iv,,,,, # 0 or 9, or 

(c) sEAUB and Ns,s+l=O or 9. 

Again we can show that this process terminates. For if alternative (c) never 
occurs, then we are back in the previous situation, and our proof that either 
(a) or (b) must occur goes through as above. 

As before, we define d(k) = lo”+ r and e(k) = n, where s = a(n) or 
s = b(n). To prove that m 2 e(k) implies ] yk - r,] > l/d(k): When our 
procedure terminates in case (a) or case (b), the proof goes as before. [Since 
the (s + 1)st digit of (sth decimal for yk) is not a 0 or 9, the sth digit is 
“true”; and since the decimal for Y, contains only 5’s and 6’s, we get a 
difference I yk - Y, ] 2 lo-‘“+ l). ] When our procedure terminates in case (c), 
then there is a significant discrepancy in the (s + 1)st digit: for yk it is 8, 9, 
0, or 1 (allowing for errors in the decimal approximation), whereas for F-,,, it 
is 5 or 6. This proves the lemma. 

Construction of the Initial Function f (x, y, z) 

As in the proof of Theorem 1, f(x, y, z) will be the sum of an infinite 
sequence of thin spherical waves. The kth wave will be supported on a 
spherical shell centered on the point rk = (rk, O,O), where rk is given by the 
Effective Modulus Lemma above. We let u(k) be the recursive function used 
in the proof of the modulus lemma, and set 

k+l 

c(k) = 2k + 4 c a(j). 
j=O 
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Also, we use the same C”O function 0 as in the proof of Theorem 1: recall 
that ~0 has support on [- f, 11, o(x) 10, and q’(O) = 1. Then, following the 
scheme of (3) above, we set: 

f(xv Y, 2) =f@) = z. w,(x), 

where (4) 
w&c) = lo- w)+awV)[ 10C’k’(lx - r,l - I)]* 

We note some properties of the Icth wave IV&). Since Q is supported on the 
interval [- 4, 41, the wave w,Jx) is supported on the spherical shell Hk = 
{x ( 1 - ck 5 Ix - r,] 5 1 + Ed}, where sk = lO-c(k). Thus we have a shell of 
mean radius 1 and half-width IO-‘(‘), centered about the point rk. The 
amplitude of wk is 

max ]wk(x)l = 10-(c(k)+a(k)) rnXa Itp(x 
x 

whereas for the term grad(w,) in Kirchhoffs formula (2) we have 

max ( grad wk(x)] = 10-a(k) rnfx ] o’(x)]. 
x 

As in the proof of Theorem 1, the difference between the exponents 
-(c(k) + a(k)) and -a(k) for wk and grad wk will prove crucial. The 
exponents for wk give an effectively convergent series, since c(k) > 2k. The 
exponents for grad wk give a series which converges, but not effectively. 
Actually, the function c(k) was constructed with two goals in mind. Firstly, 
we have c(k) 2 2k, which gives the effective convergence mentioned above. 
Secondly, in the definition of c(k) we have a finite sum of a(j), j 5 k t 1. 
The reason for this is the following: Later on in our proof, we will use a 
sequence of disks D, of radius 10-c(kV2 about the points (rk, O,O), where 
r, = (5/9) t GE0 lo- aU). As is easily verified, our definition of c(k) ensures 
that these disks do not overlap. 

Since the series f = 2 wk is effectively uniformly convergent (being 
dominated by C lO-c(k) 5 c 10MZk), and since {wk} is a computable 
sequence of .functions, the limit f is computable (cf. (*) in Section 1). Since 
the series for gradf converges uniformly, though not effectively (being 
dominated by ,7’J 10-“(k)), the function f is of class Cr. Then Kirchhoffs 
formula implies that the solution u(x, y, z, t) is continuous. 

Properties of the Solution 

We collect here some facts which will be needed in our proof. Since the 
wave equation is linear, and since f = Ckm,0 wk, the solution is given by 

4% Y, z,t> = u(x, t) = 2 Uk(X, t), 
k=O 

(5) 
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where uk(x, t) = the solution of the wave equation with initial conditions 

u/((x, 0) = Wk(X), (au,/at)(x, 0) = 0. 

Of course, the functions u,(x, t) can be computed by substituting wk for f in 
Kirchhoffs formula (2). We now state three facts about the terms uk(x, t) in 
the series for u(x, y, z, t). One of these involves a separation condition: 

About each point rk = (rk, 0,O) we construct an open disk D, of radius 
10-c(kMZ. Thus 

D, = {x 1 (x - r,l < 10-c(k)‘2}, 

where we recall 
k+l 

c&)/2= k+ 2 J- a(j). 
,Fo 

These disks do not overlap. 

(I) The functions uk(x, t) form a computable sequence of functions 
of (xv Y, z, 0. 

(II) At the point x = rk and time t = 1 we have 

Uk(rk, 1) 2 lo-a(k). 

(III) At all points x outside the kth disk D, and all times t we have 

luk(x, t)l 2 Const . l0-c(k)‘2 < Const . 10ek, 
where 

Const = m;x 1 cp(x)( + rntx I @(x)1. 

Proof of (I). This is obvious from Kirchhoffs formula (2) (with wk(x) in 
place of f(x)) and the fact that the sequence { wk(x)} in (4) is a computable 
sequence of C”O functions. 

Proof of (II). Again we apply Kirchhoffs formula (2) to the function 
wk(x) in (4), setting x = rk and t = 1. First consider the “grad” term in 
Kirchhoff’s formula. The kth wave wk(x) is spherically symmetric about the 
point rk. Let us (here only) write p = Ix - r,l, so that wk(x) becomes a 
function of p. Then by the same reasoning used in Theorem 1 we get 

(Effect of “grad” term) 

= h@> (at p= 1) 

= (d/dp)[ IO- c(k) -a(k+,( ]oc’k’@ _ I))] (at p= 1) 
= 1(-j-(c(k)+o(k)) . ]()c(k) . #(()) 

= lo-a(k), since q’(O) = 1. 
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Similarly for the non-gradient term in (2) we have, again by the spherical 
symmetry of wk(x) about rk 

(Effect of “non-grad” term) = w&) 

= lo-‘c’k’+dk)+@). 

(atp = 1) 

Since p(x) 2 0, this term is nonnegative. This proves (II). 

Proof of (III). Again we use the solution formula (2) applied to wk(x). 
Recall that the definition of wk(x) involves the coefficient 10-(c(k)+a(k)), 
whereas grad wk(x) has coefficient 10-‘(k). Here we will make no use of 
u(k). Instead, a geometric argument based on the separation condition 
x 6Z D, will form the core of our proof. First, some trivial estimates: 

and so 

lo-(c(k)+a(k)) < 
= 

lo-c(k)/2 
3 

1 wk(x)I S l0-c(k)‘2 - max 1 p(x)l. 
x 

For the “grad” term we have, as in (II) above: 

[grad w~(x)[ 5 10mack) . max I#(x)l 
x 

5 m;x (~‘(41. 

Now consider separately the two terms in Kirchhoffs formula (2). The term 
involving f itself (as opposed to gradf) causes no difficulty. We obtain 
immediately for this term, replacing f by wk: 

I Effect of non-gradient term I s mtx I wk(x)I 

s 10-c(kU2 e mfx Jq(x)l. 

The gradient term is harder to handle, since we do not have good enough 
bounds on grad wk(x). Consequently we reason geometrically. 

Formula (2) involves integration over a sphere S of radius t centered on 
the point x (where the measure is normalized so that the whole sphere has 
measure 1). The spherical wave wk(y) is supported on a spherical shell H = 
{y I 1 - 10-C(k) s ly - rkl 5 1 + 10-C’k)} having mean radius 1 and half- 
width 10-c(k) and centered at rk. Since x 6 D,, the distance d between x and 
rk exceeds the radius of D, which is lo- c(k)‘2. These facts set the geometric 
situation. 

Now (III) can be read out of the following lemma. We consider the “grad” 
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term in Kirchhoffs formula (2) (the other term having already been dealt 
with). The factor l/r occurring in the lemma is cancelled by the factor of t 
which appears in Kirchhofl’s formula. For the other parameters in the lemma 
we substitute: E = 10-c(k) and d 2 10-c(kU2. As noted above, we can 
dominate 1 grad wk / by max ] q+(x)]. We get 

x 

] Effect of “grad” term 1 5 ( 10-c’k’/10-c’kU2) * max I@(x)1 
x 

2 10-C(kM2 . rn:x I@(x)], 

which suffices to prove (III). 

LEMMA (spherical cross sections). Let S be a sphere in R3 of radius t 
centered at a point P, S = {x I )x - PJ = t}. Let H be a spherical shell of unit 
mean radius and half-width E centered at a point Q, i.e., 
H={xIl-~JIx-Q~~l+e}.LetthedistancebetweenPandQbed. 
Then the area of the region in S where S intersects H is <(e/td) (area of S). 

Proof: For the sake of completeness, we include the elementary proof. 
Without loss of generality, assume that P and Q lie on the x-axis. We use the 
following well-known cross section principle for spheres in R3. Take an 
interval Z of length L on the x-axis situated inside the sphere S: then the 
portion of S whose x-coordinates lie in Z has area = 27ctL. 

Now consider a triangle with vertices P, Q, and an arbitrary point 
X E S n H. Its sides have lengths PQ = d, PX = t (since X E S), and for QX 
we know only that 1 - E 5 QX 5 1 + E (since X E H). Write p = QX. Apply 
the law of cosines to this triangle, where 0 is the angle between the t and d 
sides (and recall that the d side lies on the x-axis). We have 

cos tl= [t’ + d* - p2]/2td. 

Now cos 8 is just l/t times the projection of the side of length t on the x- 
axis. Thus the x-interval spanned when p varies between 1 - E and 1 + E has 
length 

5 [ (1 + E)~ - (1 - e)2]/2d = 2&/d. 

(The “5” occurs because some of the values ascribed to cos 0 may fall 
outside of [-1, l] and thus represent a geometrically impossible triangle.) 
Combining this with the spherical cross section principle above, we see that 
the intersection of S with H has area 2 (2xt)(2e/d) = (e/td) (area of S). This 
proves the lemma, and completes the proof of (III). 
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Proof That u(x, y, z, t) Is Sequentially Computable 

We use the Effective Modulus Lemma, together with (I) and (III) above. 
Let { (xk, y, , zk, tk)} be an arbitrary computable sequence of points in IR4. 
We need to show that the sequence of values { u(x~, y,, zk, tk)} is also com- 
putable. 

Recall that the solution u is the sum of an infinite series u = C,“=. u,, 
and that the result (III) applies to the individual terms u,. As before, we use 
the abbreviations xk = (xk, y,, zk) and r, = (rm, 0,O). Now we apply the 
Effective Modulus Lemma, with yk = x k: there exist recursive functions d(k) 
and e(k) such that 

bk - rm I > l/W) for m 2 e(k). 

Of course, Ixk - r,,,lz Ixk - r,,, I. Since the mth disk D, in (III) has radius 
10-c(mY2 5 lo-” about r,,,, we have 

Xk~DD, if m 2 e(k) and 10-m < l/d(k). 

Let m,(k) be the least integer m with m 2 e(k) and lo-* < l/d(k). Since e(k) 
and d(k) are integer-valued recursive functions, m,,(k) is recursive. Now the 
sequence of values {u(x,, yk, zk, tk)} is given by the infinite series 

u(xk, Yk, zk, tk) = 2 u,,g(xk, fk). 
m=o 

By virtue of (I), the sequence of functions {u,} is computable. For 
m 2 m,(k) we have by (III), since xk CZ D, 

1 u,(xk9 tk)l s Const . loem 

and so 

converges effectively and uniformly by comparison with 2 lo-“. Since 
m,(k) is recursive, this implies that the original series (6) is computable, 
uniformly in k. Thus u(x, y, z, t) is sequentially computable. 

Proof That u(x, y, z, 1) Is Not Computable 

We refer to the definition of a “computable function,” as given in 
Section 1. If u(x, y, z, 1) is computable, then it must be effectively uniformly 
continuous. We will use (I), (II), and (III) above to show that this is not the 
case. Since the details are somewhat complicated, we begin with a rough 
sketch. Suppose that u(x, y, z, 1) is effectively uniformly continuous. Recall 
that we have a sequence of disks D, about the points r,,,, of radii 10-cu”V2 

60713913.2 
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which approach zero effectively. For each m, let rz be a point on the 
boundary of D,. Because of effective uniform continuity, the difference 
[u(r,, 1) - u(rz, l)] approaches zero effectively as m-t co. 

Now the solution u is the sum of an infinite series C ui. The results (I), 
(II), and (III) above apply to the individual terms ui. By (I), the sequence 
{ui} is computable, which means that any initial segment of the series for u 
can be estimated effectively. Let this initial segment consist of the terms ui 
with i 5 k, where we assume k < m (the precise relationship between k and m 
will be spelled out below). Then we consider the infinite series 

(a) Mr,, 1) - 4rZ, 1) = CiTio [ui(r,, 1) - ui(rZ, l)], 
and break this series into three parts: 

(b) = the sum of the ith terms for 0 5 i 5 k, 

(c) = the sum of the ith terms for i > k, i # m, and 

(d) = the single term with i = m. 

Thus the original series (a) = (b) + (c) + (d). We have seen above that, since 
u is effectively uniformly continuous, (a) approaches zero effectively as 
m -+ co. Using (I), we show that (b) approaches zero effectively, and using 
(III) we can prove the same thing for (c). [The use of (III) hinges on the fact 
that the disks Di do not intersect, and hence since i # m, the points rm and rz 
lie outside of Di.] This leaves the single term (d). Now it will follow from 
(II) that (d) is “large,” specifically on the order of 10-a(m), a quantity which 
does not approach zero effectively. Since 

(4 = (a> - (b) - W9 

and the terms (a), (b), and (c) approach zero effectively, whereas (d) does 
not, we have a contradiction. 

Now for the details. Suppose that u(x, y, z, 1) is effectively uniformly 
continuous. By definition, this means that there exists a recursive function 
s(k) such that 

Ix - yl5 10-S(k) implies II.+, 1) - u(y, l)] 2 10-k. 

We know by (I) that the sequence {u,Jx)} is computable, uniformly in k. 
Hence there exists a recursive function s’(k) such that 

Ix - yl 2 lo-S’(k) implies Iq(x, 1) - u,(Y, 1115 l0-k/(k + 1) 

for 0 _I i _I k. 

For convenience, we assume that s’(k) 2 k + 1. Now consider the recursive 
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function a(m) which generates the non-recursive set A. Our goal is to show 
that, except for a jkite set of values of k 

a(m) > k/2 for m 2 s(k) + s’(k). (7) 

The remainder of this proof will be devoted to establishing (7). For (7) 
implies that a(m) is effectively bounded below. This implies in turn that the 
set A is recursive, giving a contradiction. 

Let jr,} = {rm, 0,0} be the sequence of points we have used throughout, 
and let 

r* = r + lo-c(m)/2 m m 9 rz = (rf , 0, 0). 

Thus rf is a point on the boundary of the disk D, (cf. (III)). Also 

1 rm - rb 1 = 10-c(“V2 s IO-“. 

We examine the difference (which we label (a)): 

(a) u(r,, 1) - u(rf, 1). 

Since u = 2 ul, the difference (a) is, equal to 

We will see later that m > k. Now we break this sum into three parts (b), (c), 
and (d), where 

(b) = the sum of the ith terms for 0 5 i 5 k; 

(c) = the sum of the ith terms for i > k, i # m; 

(d) = the single term for which i = m. 

Thus (a) = (b) + (c) + (d). We will see that (d) is the dominant term: we 
give upper bounds for I(a I(b and I(c and a lower bound for (d). Since 
our aim is to prove (7), we can assume that m 2 s(k) + s’(k). (This implies, 
in particular, that m 2 s’(k) 2 k + 1, as promised above.) 

Bound for (a). Since m 2 s(k) and Jr,,, - $1 s lo-“‘, we have by the 
definition of s(k) 

I(a)1 = lu(r,, 1) - u(rz, l)ls 10mk. 

Now a detail: some of our estimates will involve the constant, Const = 

max, I &I + max, I9’(.4 in (III). Since 9’(O) = 1, this constant is 21. To 
achieve a standard format, we use the weaker inequality: 

I(a)1 5 Const . 10mk. 
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Bound for (b). For 0 5 i 5 k we have, since m 2 s’(k) and 
Ir, - rz\ 5 lo-” 

IUi(r,,,, 1) - u,(rf, l>lS 10wk/(k + 11, and so 

l(b)1 = lsum of first (k + 1) terms in (a)\ 5 10ek, 

and hence as before, 

l(b)1 2 Const . lO-‘(. 

Bound for (c). Recall that if i # m, the disks Di and D, do not overlap. 
Hence rm and rz are outside of Di for i # m. Thus from (III) we have 

IUi(rm, 1)l and )z+(rz, 1)s Const . lOPi for ifm. 

Hence I z+(rm, 1) - ui(r 2, 1)15 2 . Const . lo-’ for i # m, and summing over 
all i > k, i # m, we obtain 

I(C)1 5 c 2 . Const . lOPi = $ . Const . 10ek 
i=ktl 

5 Const . 10-k. 

Bound for (d). From (II) we have 

u,(r,, 1) Z’lO-“‘“‘. 

Also, since rz lies outside of the open disk D,, we have by (III) 

( um(rz, 1)l 5 Const . lo-” 5 Const . 10-k, 

since m 2 s’(k) 2 k + 1. Thus (d) = a,,@,,,, 1) - u,(rz, 1) satisfies 

(d) 2 10-a(m) - Const . 10-k. 

Now recall that (a) = (b) + (c) + (d), an examine the inequalities which we d 
have proved for these four terms. We have 

(4 = 09 + (4 + 60 

where 

I(a)/ 5 Const * 10Fk, 

l(b)\ $ Const . 10Pk, 

I(c)1 5 Const . 10Pk, 
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and 

(d) 2 IO-a(m) - Const . 10mk. 

Putting this together, we obtain 

whence 

lo-a(m) 5 4 * Const * 10-k, 

and 

a(m) 2 k - log,,(4 . Const), 

a(m) > k/2 provided k > 2 . log,,(4 . Const), 

(where in deriving these inequalities, we have assumed that m 2 s(k) + s’(k)). 
This proves (7). As we have noted, (7) implies that a(m) is effectively 

bounded below, and hence that the set A is recursive, a contradiction. Thus 
our initial assumption, that u(x, y, z, 1) is computable, must be false. 
Previously we showed that U(X, y, z, t) is sequentially computable. This 
completes the proof of Theorem 2. 

3. THE WAVE EQUATION IN n DIMENSIONS 

Our results can be extended to the wave equation in any number of space 
dimensions n > 1. We have emphasized the three-dimensional case because 
of its physical significance and to avoid complications. 

For n = 1, the situation is reversed: the solution U(X, t) is computable 
whenever f(x) is. This follows from d’Alembert’s formula: U(X, t) = 
f [f(x - t) +f(x + t)]. (The same thing holds if, instead of the initial 
conditions u =fT au/at = 0 at t = 0, we put au/& = g with a computable g. 
The d’Alembert formula for these initial conditions shows this also.) 

For n 2 3, we can extend Theorems 1 and 2 by the “method of descent.” 
This means that we take the three-dimensional solution U(X, , x2, xj, t) from 
Theorem 1 or 2, and simply set U(X, ,..., x,, t) = u(x,, x2, xj, f), so that the 
extended solution is constant in the variables x4,..., x,. 

Remark. In our three-dimensional examples, the initial function f is C’ 
and the solution ZJ is continuous. Now the analog of Kirchhoffs formula for 
higher dimensions involves higher derivatives. Consequently, by using it we 
could build examples where f was C’, C3, or differentiable to any finite 
degree, by going to sufficiently high space dimension. However, the solution 
u would still be merely continuous. Thus the structure of these noncom- 
putable solutions seems to be largely independent of the dimension, as soon 
as n> 1. 
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The Case of dimension n = 2 

We will consider only Theorem 1. Theorem 2 can also be extended, but for 
reasons of space we will not do so here. We obtain the same results as 
before. (One minor change: here f is not C’, although the solution u is 
continuous.) We give a brief sketch, indicating the modifications in the proof 
of Theorem 1 which are needed. 

Again we use the method of descent, this time from dimension 3 to 2. We 
will construct an initial function f(x, y, z) = f(x, y) which is independent of 
z. Then we apply Kirchhoffs formula for dimension 3. Previously in 
Theorem 1 we used functions which were spherically symmetric about the 
origin. Here we use functions which are circularly symmetric, i.e., functions 
of r = (x’ + y2)“* only. The function f has the form 

f(&Y) = f Wk(XT Y), 
k=O 

where the waves wk(x, y) = wk(x, y, z) are supported on thin cylindrical 
shells {l--~~~t~l+~~} in R 3. Now Kirchhoffs formula still involves 
integration over a spherical surface. The crucial question is: as a function of 
sk, what percentage of the unit sphere is contained within the cylindrical 
shell ( 1 - ek 5 r S 1 + sk)? (Compare the “sphere cross section lemma” used 
to prove (III) in Theorem 2.) It is easy to verify that the intersection of the 
unit sphere with the cylindrical shell has an area asymptotic to const a EY* as 
sk+ 0. (We do not bother about the constant.) The key point is that we have 

112 
&k * 

Now we describe the functions wk(x, y) = wk(r), r = (x2 + y2)‘12. Using the 
same recursive function a(n) as in Theorem l,.we define 

c, = IO-(k+a(k)), 

Ek = lo-2k. 

Let wk(r) be the piecewise linear (“tent shaped”) function which takes the 
values: ~~(1) = C,, wk(l +Z sk) = 0, and such that wk(r) is linear except at 
r= 1, 1 f sk, and wk(r) vanishes for It- 11 I sk. 

The unit sphere in Kirchhoffs formula (for time t = 1, (x, y, z) = (0, 0,O)) 
intersects the cylindrical shell only in the part where 1 - .sk 5 r 5 1, and does 
not touch the region where r > 1. Assuming that sk is small, the outward 
normal to this sphere is nearly parallel to the xy-plane; we shall ignore the 
discrepancy. As we have seen, the area of intersection of sphere with cylin- 
drical shell is = ef2 (where in this sketch the symbol “ES” means that a 
constant factor has been dropped). 

Now for 1 - sk < r < 1, the derivative (d/dr) wk(r) = C,/E,. Consequently 
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the effect of the “grad” term in Kirchhoffs formula is on the order of 
(ignoring constants) 

(size of dw,/dr) (area of intersection) 

g (C&/&k> * Ey2 = C,f&,v2. 

As before, the “non-grad” term in Kirchhoffs formula can be neglected. 
Now we have 

u=f u& (where ilk is the solution corresponding to w& 
k=O in Kirchhoffs formula); 

and so by the above estimates 

the series for f is dominated by C C,, 

the series for u is dominated by 2 C,/E~‘~ + (non-grad term). 

Recall that C, = 10-(k+o(k)) and sk = lo-*&. One verities that: the series forf 
converges effectively by comparison with 2 lo-&; and the series for u 
converges, but not effectively, by comparison with C 10eotk), Since the 
series for f converges effectively and is built up from computable 
components, f is computable. Since the series for u does not converge effec- 
tively we can (copying the proof of Theorem 1) make u continuous but not 
computable. This completes our sketch for the case n = 2. 

ADDENDUM: WEAK SOLUTIONS 

Our theorems lead to “weak solutions” of the wave equation, i.e., solutions 
which are not twice differentiable. (As we shall show, this is not an accident 
arising from our proofs; it is inevitable.) For the convenience of readers who 
may be unfamiliar with weak solutions, we summarize the essential facts 
about them here- thus putting our results into a coherent framework. 

As in Theorems 1 and 2, we consider the three-dimensional wave equation 
(la), except that now we take the general initial conditions: u =f and 
&/at =g at t = 0, instead of assuming that g vanishes. Since our proofs used 
Kirchhoff’s formula, we could simply decree that a “weak solution” means 
one given by that formula-an obviously ad-hoc approach. A, physically 
reasonable framework is provided by the “finite energy theory.” In 
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describing this, we will use the language of Schwartz distributions. Despite 
the generality of distribution theory, there are several things which must be 
verified before a treatment of the wave equation based on distributions 
makes any sense. These are: (a) that solutions exist; (b) that they are unique; 
and (c) that the operation of restricting a solution to the hyperplane {t = 0} 
is well defined, so that we can discuss initial conditions. Of special impor- 
tance is the uniqueness: this means, of course, that the solution to the wave 
equation predicted by the general theory is the same as the solution given 
explicitly in our paper. In what follows, we will state only those facts which 
are necessary to substantiate (a), (b), and (c). 

First we remark that solutions of the wave equation propagate with a 
finite velocity. Therefore, in studying these solutions over a finite time 
period, there is no harm in assuming that the initial functions f and g have 
compact support. 

Secondly, associated with any solution U(X, y, z, t) of (la) and any 
particular time r = t,, there is the “energy integral” defined by 

lli II(md 4(x, A z, &,)I* + I@lW(x, Y, Z, to>12] dx dy dz. (8) ,:, 

It is a fundamental property of the wave equation that this integral has a 
value independent of t, (“conservation of energy,” cf. [3]). 

Now we can describe the space x* of finite energy solutions of the wave 
equation. We start with the space X of all solutions u which are C”, and 
have compact support for each finite time interval t, 5 t 2 f,. [Since the 
elements of X are C”, any of the standard existence or uniqueness theorems 
applies to X, and we have: for every pair of P, compact support functions 
f, g, there exists a unique solution u E X.1 We define the “energy norm” on X 
to be the square-root of the energy integral (8). Then we take the completion 
X* of X with respect to its norm. This is the space of “finite energy” 
solutions. 

To finish this outline, we need some information about the structure of X*. 
Since the energy norm topology is stronger than any of the standard 
topologies used in distribution theory, the points in X* are representable as 
Schwartz distributions. Also, differentiation is a continuous operation on 
distribution space; hence the distributions u E X* still satisfy the wave 
equation. 

Regarding the initial conditions, we must now verify property (c). In 
general, distributions on IR4 do not admit restriction to hyperplanes {t = t,) 
within lR4. However, in this case they do. Since the energy norm involves 
integration over (x, y, z) only, the preceding arguments about the structure of 
u E X* apply mutatis mutandis to give well-defined distributions u[t,] and 
(&/at)[t,] on each hyperplane {t = to}. There is one more point we must 
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verify: in terms of the energy norm on u (which implies the Lz norm for 
&@t), u [ t,] and (&/at) [ t,] are continuous functions of t,. This is clear for 
the C”O functions u E X, and since the energy norm is independent of t,, the 
general case u E x* follows from the fact that a uniform limit of continuous 
functions is continuous. (Continuity means that the restriction of u or &@t 
to {t = to} is an “intrinsic” operation, i.e., one that depends only on 
u(x, y, z, t), and not on the manner by which u was constructed.) This 
establishes (a) and (c). 

Now we come to the question of uniqueness. We must show that if the 
initial functions f = g = 0, then u = 0. Recall that f and g are the restrictions 
of u and au/at to the hyperplane {t = 0). Now we get uniqueness 
immediately from the fact that the energy integral is independent of t,: if 
f = g = 0, then this integral vanishes for t, = 0 and hence for all f,,, so that 
u(x, y, z, to) is identically zero. This proves (b). 

The “finite energy theory” outlined above is more than sufficient for our 
purposes. For a pair of initial conditions f, g corresponds to some u E x* if 
and only if: 

grad f E L2((R3) and g E L*(W). 

In our main theorems, we have f E Cl@“) (where f has compact support) 
and g = 0. Clearly this fits the above conditions. 

We remark that all of the functional-analytic results listed in this 
addendum become transparent if one uses the Fourier transform (with 
respect to the space variables x, y, z) and studies the equation dual to (la) in 
Fourier transform space. However, although the Fourier transform approach 
in neater, our aim has been to reach our goal by the shortest path. We have 
obtained (a), (b), and (c) using only’the invariance of the energy integral. 

Remark (computability of. the energy integral). It is natural to ask 
whether in Theorems 1 and 2 above, the energy integral is a computable real 
number. The answer is “yes.” Recall that in these theorems the initial 
conditions are u = f, &@t = 0 at t = 0. Hence the energy integral is just the 
integral of [grad f I* over IR 3. We sketch a proof that this is computable: 
There is a slight difficulty because the series gradf = 2 grad wk in 
Theorem 1 or 2 does not converge effectively at all points (see (3) and (4) 
above). However, when we integrute ] grad f I*, the difficulty disappears. For 
the supports of the functions wk in the series for f have volumes which 
approach zero effectively as k-t 00. This in turn gives an effectively 
convergent series for the L*-norms. We omit the details. 

Now we show that the appearance of weak solutions in Theorems 1 and 2 
is unavoidable. 

PROPOSITION. Let u be a noncomputable solution of the wave equation 
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(la, b) with computable initial data f. Then u is not eflectively uniformly 
continuous. (Hence u cannot be of class C* or even C’, and thus u is a weak 
solution. 

Proof (sketch). Let p(x) be any function on R3 which is C” with 
compact support and is computable together with all of its derivatives. We 
first show: (i) the convolution (u * (p)(x, t) = l(lIA, u(x - y, t) p(y) dy is com- 
putable. 

To prove (i). A trivial computation shows that (since differentiation 
commutes with convolution), u * (p is a solution of the wave equation for any 
u E X. Then, passing to the closure in energy norm, the same thing holds for 
all u E x*. Setting t = 0, we see that the solution u * cp satisfies the initial 
conditions: (u * P)(X, 0) = cf * v)(x) and (a/at)(u * q) = (au/at) * rp = 0. 
Thus we can use Kirchhoffs formula (2) to deduce (u * q)(x, t) from 
(f * (p)(x). Now, since f is computable, and cp is computable together with all 
of its derivatives, the convolution (f * q) is computable together with all of 
its derivatives. Then Kirchhoffs formula immediately shows that (u * ~0) is 
computable. 

The same result applies to a sequence {v)~} of P-compact support 
functions which are computable together with their derivatives, uniformly in 
k. We have: (i’) the sequence {u * (Pi} is computable. 

Now we show that (i’) implies the proposition. Suppose that u is effec- 
tively uniformly continuous. Take any function 0 as above with ~2 0 and 
whose integral over all of (R3 is equal to 1. Let v)~(x) = k3q@x) (so that the 
integral of v)~ remains equal to 1, while support ((P,J = (l/k) . support (p); 
i.e., ((Do) is an “approximate identity”). Since u is effectively uniformly 
continuous, it is easy to verify that (u * pk) + u effectively and uniformly as 
k -+ co. By (i’), the sequence {u * qk} is computable. Hence by (*) in 
Section 1, u is computable, a contradiction. 
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Note added in ProoJ In answer to several series, we state the following. Examples of the 
type presented in this paper can not be given for the standard elliptic or parabolic partial 
diITerentia1 equations. Such equations include the Dirichlet problem with a suitable regular 
boundary, and the heat equation with initial data having compact support. The proof of this 
fact depends on the maximum principle for elliptic and parabolic equations. 
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