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Abstract

A graph is chromatic-index-critical if it cannot be edge-coloured with� colours (with� the maximal
degree of the graph), and if the removal of any edge decreases its chromatic index. The Critical Graph
Conjecture stated that any such graph has odd order. It has been proved false and the smallest known
counterexample has order [[18] A.J.W. Hilton, R.J. Wilson, Edge-colorings of graphs: a progress
report, in: M.F. Cabobianco, et al. (Eds.), Graph Theory and its Applications: East and West, New
York, 1989, pp. 241–249;[31] H.P. Yap, Some topics in graph theory, London Mathematical Society,
Lecture Note Series, vol. 108, Cambridge University Press, Cambridge, 1986].

In this paper we show that there are no chromatic-index-critical graphs of order 14. Our result
extends that of [[5] G. Brinkmann, E. Steffen, Chromatic-index-critical graphs of orders 11 and 12,
European J. Combin. 19 (1998) 889–900] and leaves order 16 as the only case to be checked in order
to decide on the minimality of the counterexamples given by Chetwynd and Fiol. In addition we list
all nontrivial critical graphs of order 13.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The class of simple graphs can be divided into two subclasses by Vizing’s well-known
theorem—into the class ofcolourable graphs(or class 1 graphs), whose chromatic index
is equal to the maximum degree� of the graph, and into the class ofnoncolourable graphs
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(or class 2 graphs), whose chromatic index is� + 1. A noncolourable graphG is said to
be�-critical, or simply critical, if the removal of any edge fromG decreases its chromatic
index.

In this paper we consider only simple graphs. Also, all our graph colourings are edge-
colourings. Furthermore we assume that the reader is familiar with basic graph theory
notions, taken from[11,17,30]for instance.

In 1973, Beineke and Wilson[1] presented several methods to construct critical graphs.
Clearly, each graph with more than��n

2� edges is class 2. Their constructions yield many
critical graphs with��n

2� + 1 edges. Graphs with at least this number of edges are called
overfull. They conjectured that there are no critical graphs of even order. This Critical Graph
Conjecture was later independently stated by Jakobsen[20].

The critical graphs with��n
2�+1 edges are calledtrivial critical graphs. Critical graphs

with at most��n
2� edges are critical forstructural reasons—they are callednontrivial

critical graphs.
The Critical Graph Conjecture was disproved by Goldberg[13]: he found an infinite

family of critical graphs of even order, the smallest of them having 22 vertices. Chetwynd
and Fiol independently found a critical graph on 18 vertices. In order to check the minimality
of this counterexample, Yap[31] asked whether critical graphs of orders 12, 14 or 16 do
exist (cf.[9,31]). First lists of critical graphs of order less than 10 are given in[10,12].

In 1997 Brinkmann and Steffen[4] established that the graphs of Fiol and Chetwynd are
the smallest 4-critical graphs of even order, and that the Goldberg graph is the smallest 3-
critical graph of even order. They did this by a combination of computational and theoretical
results. Later they also partially answered Yap’s question by showing that there are no
critical graphs of order 12, and found the only two nontrivial critical graphs of order 11
(see[5]). In order to avoid possible computational errors, this was done by two independent
approaches—one of them discussing a large number of cases (possible degree sequences)
by hand and checking only the remaining cases with a computer and one a more or less
straightforward computer search. Another result on the topic was found by Steffen and
Grünewald[16], who constructed�-critical graphs of even order for any��3. A more
detailed description of the techniques described here can be found in[2].

2. Results

We prove the following two theorems:

Theorem 1. No graph of order14 is critical.

Theorem 2. There are exactly14nontrivial critical graphs of order13.They are listed in
Fig. 1.

All nontrivial critical graphs of order at most 13 have maximum degree 3. They can be
obtained from the critical subgraphPc of the Petersen graph—that is the Petersen graph
minus one vertex—by three well-known constructions. Additional information on these
methods can be found in[12,16].
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Fig. 1. All nontrivial critical graphs of order 13.

Lemma 3. Let G be a3-critical graph andG′ a graph obtained from G by replacing a
vertexv of G by a triangle and connecting the two or three edges formerly containingv

with different vertices of the triangle. ThenG′ is also3-critical.

Lemma 4. LetGbe a graphwith�(G)�2,andv1, . . . , vd be the neighbours ofv ∈ V (G).
Letu1, . . . , u� be the vertices of degree�− 1 in the complete bipartite graphK�,�−1, and
G′ be the graph obtained fromG − v andK�,�−1 by adding edgesviui for i = 1, . . . , d.
Then G is�-critical, if and only ifG′ is�-critical.

A graphH is said to be obtained fromG andG′ by aHajós-unionwherev andv′ are
identified, ifv ∈ V (G), v′ ∈ V (G′), andH is constructed fromG andG′ as follows:

1. One edgeuv ∈ E(G) and one edgeu′v′ ∈ E(G′) are removed.
2. The verticesv andv′ are identified.
3. A new edgeuu′ is inserted.

Lemma 5 (Jakobsen[19]). Let G andG′ be two�-critical graphs andv ∈ V (G), v′ ∈
V (G′) two vertices such thatdegG(v) + degG′(v′)�� + 2.Then any graph obtained from
G andG′ by a Hajós-union wherev andv′ are identified is�-critical.

The two nontrivial critical graphs of order 11 can be constructed fromPc by applying
Lemma 3 either to a vertex of degree 2 or to a vertex of degree 3. By applying Lemma 3 to



D. Bokal et al. /Discrete Mathematics 300 (2005) 16–29 19

edges of
D

vertices in
O

C
edges of

edges of
S

Fig. 2. A 6-maximal graph with a deficit clique of size 4 and 3 open vertices.

one of those graphs we obtain 10 nontrivial critical graphs of order 13 (graphs in first three
rows ofFig. 1), by applying Lemma 4 toPc we find two nontrivial critical graphs of order
13 without triangles (fourth row ofFig. 1), and two additional nontrivial critical graphs of
order 13 are obtained fromPc and the trivial 3-critical graph of order 5 by a Hajós-union
where the vertex of degree 2 in the latter graph is one of the identified vertices (fifth row).

Theorems 2 and 1 are proved using two (almost) independent computer programs to
do an exhaustive computer search for nontrivial critical graphs. We will only describe the
algorithm on which one of the programs is based in detail and sketch the other. The main
strategy of the approaches is that instead of generating and testing all possibly critical
graphs, we generated arelatively smallset of graphs (called�-maximal candidates) so that
each critical graph is contained in at least one of these supergraphs of the same order. The
search for critical subgraphs was performed like in[5].

To prove Theorem 2, all�-maximal candidates of order 13 were generated for� ∈
{3,4, . . . ,9}. For� ∈ {10,11,12} the fact that no critical graphs exist follows from[7,8,28].
To prove Theorem 1 only� ∈ {5, . . . ,10} had to be considered. The results of[4] imply
that there are no�-critical graphs of order 14 for� ∈ {3,4}, and the results of[6,28,29]
imply this for� ∈ {11,12,13}.

The remainder of this paper is structured as follows: Section 3 describes how�-maximal
candidates can be efficiently generated, Section 4 discusses how we searched the candidates
for critical subgraphs and Section 5 discusses the results obtained and sketches the second
approach.

3. �-maximal graphs,�-spanned graphs and�-maximal candidates

LetGbe a graph of maximal degree�. Verticesv with degG(v)= � are calledsaturated
verticesand vertices of degree less than� are calleddeficit vertices. We call the subgraph
S(G) that is induced by the saturated vertices thesaturated subgraphofGand the subgraph
D(G) induced by the deficit vertices thedeficit subgraph. The subgraphC(G) consisting of
all edges between vertices ofS(G) andD(G) and their endpoints is called theconnecting
subgraph. ObviouslyC(G) is bipartite. In the saturated subgraphS the verticesv with
degS(v)<� are of considerable importance. These areG-saturated vertices that are adjacent
toG-deficit vertices. They are calledopenverticesofGand the set of open vertices is denoted
as O(G). Fig. 2 illustrates these concepts.

The order of a graphG is denoted by|G|.
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A �-maximal graph Gis a graph with maximal degree� that is not a proper subgraph of
any graph with the same number of vertices and maximal degree—or equivalently: a graph
in whichD(G) is a clique or empty.

A �-maximal graph with a spanning�-critical subgraph is called a�-spanned graph.

Lemma 6. Every critical graph is2-connected.

An easy proof of Lemma 6 can be found in, for example,[31].
Let a critical graphG be given. By Lemma 6,G is 2-connected. Since this property as

well as the property of being class 2 are preserved when edges are added toG in a way that
the maximum degree is preserved, each�-critical graph is contained in a�-spanned graph
of the same order.

Lemma 7 (Vizing’s Adjacency Lemma). Let G be a�-critical graph, uv ∈ E(G). Thenv
is adjacent to at least� − deg(u) + 1 saturated vertices different from u.

The proof is rather technical and can be found in[12]. This lemma implies the following
proposition:

Proposition 8. Every vertex of a�-spanned graph G is adjacent to at least two saturated
vertices.

If a �-maximal graph has the property that every vertex has at least two saturated neigh-
bours, then it is called a�-maximal candidate. By Proposition 8 every�-spanned graph is
a �-maximal candidate. Thus, it is sufficient to generate all�-maximal candidates, apply
a filtering procedure that removes those that are colourable or not 2-connected and finally
search the remaining graphs for spanning critical subgraphs.

The decomposition into induced subgraphsSandD and the subgraphC leads to a natural
way of constructing all�-maximal candidates of a given order: first construct all saturated
graphsS, then connect each of them with the deficit cliqueD of appropriate size in a way that
every deficit vertex has at least two saturated neighbours. Isomorphism rejection methods[3]
must be applied in order to construct only one copy of each graph up to isomorphisms. For
the construction of the saturated subgraphs existing programs like described in[14,15,23,26]
can be used.

In the approach we will present in detail, the saturated subgraphs are generated from their
degree sequence, that is the sequenced1�d2� · · · �d|S| of vertex degrees of the saturated
subgraph. Obviously, all isomorphic graphs have the same degree sequence ofS(G).

The following propositions give necessary criteria for degree sequences that belong to
saturated subgraphs of�-maximal candidates of a given order.

Proposition 9. For a�-maximal candidate G we have|D(G)|�� − 2.

Proof. The maximal degree of a deficit vertex is�−1. By definition this is at least|D|+1.
Together we have|D|�� − 2. �
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Proposition 10. For a�-maximal candidate G we have|S|> |D| and2|D|< |G|.

Proof. If there are no deficit vertices, 0=2|D|< |G|. For|D|�1, let�2 <� be the second
largest degree inG. Let l = |E(C)|. Obviously|D||S|� l and equality holds if and only if
each vertex inS is adjacent to each vertex inD.

For given|D|, |S| andl, we construct an upper bound for� and a lower bound for�2.
Summing up theG-degrees of vertices inSand counting edges we get|S|��2(|S|(|S| −
1)/2) + l yielding �� |S| − 1 + l/|S|. A similar argument for vertices inD leads to
|D|�2�2(|D|(|D| − 1)/2) + l, �2� |D| − 1 + l/|D|.

Since�>�2, we get(|S| − |D|)(|D||S| − l) >0. As |D||S| − l�0, we have|S|> |D|
and also|G| = |S| + |D|>2|D|. �

Combining Propositions 9 and 10 we have the following:

Corollary 11. For a�-maximal candidate G we have0� |D|� min
{
� − 2, � |G|−1

2 �
}
.

Note that, as|S| = |G| − |D|, Corollary 11 gives necessary conditions for the lengths of
degree sequences of saturated subgraphs that can occur.

Proposition 12. Letd1, d2, . . . , d|S| be the degree sequence of the saturated subgraph S of
a�-maximal candidate. Then� − |D|�di �� for 1� i� |S|.

Proof. Since a saturated vertex can be adjacent to at most|D| deficit vertices, we have
� − |D|�di . �

For a graphG let m��(G). Them-deficiencyof a vertexv is defined as�m(v) :=
m − deg(v). Them-deficiencyof a graphG is

�m(G) :=
∑
v∈V

�m(v) = m|G| −
∑
v∈V

deg(v).

Obviously, if we add more than�m(G)/2 edges toG, then the new graph will have at
least one vertex of degree larger thanm. Note that for a�-maximal graphG, ��(S) equals
the number of edges in the connecting subgraphC.

Proposition 13. For a�-maximal candidate G we have2|D|���(S)�(� − |D|)|D|.

Proof. By definition, each vertex inD has at least two neighbours inS, yielding
2|D|���(S).

For an arbitrary deficit vertexu we have deg(u)�� − 1. Sinceu has|D| − 1 G-deficit
neighbours there are at most� − |D| neighbours inS. Summing over all deficit vertices,
we obtain��(S)�(� − |D|)|D|. �

Proposition 14. Let o be the number of open vertices in a�-maximal candidate G. Then

o�
⌈

��(S)|D|
⌉

.
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Proof. There are��(S) edges in the bipartite graphC. By the pigeon-hole principle, there

is a vertex inD that hasC-degree at least
⌈

��(S)|D|
⌉

, which gives a lower bound for the

number of open vertices.�

In the following letV (D) = {u1, . . . , u|D|} and letOui
denote the set of neighbours of

ui in C.
For a�-maximal candidateG let O be the multiset{Oui

| 1� i� |D|}. Eachui in D is
neighbouring exactly allv ∈ Oui

in S, so the graphG is uniquely determined byS,D,O and
a functionf mapping the vertices ofD to the element ofO containing its neighbours. As we
are only interested in graphs up to isomorphisms, and sinceD is a clique and therefore has
the full permutation group of its vertices as the automorphism group and since the order of
D equals the cardinality ofO, D andf are redundant information. We can take any clique
with a vertex set of the given cardinality and assign the elements ofO in any order to get
an isomorphic graph. For givenSandO let us denote a corresponding graph byGS(O).

Proposition 15. For a�-maximal candidateGS(O) we have

• Oui
⊆ O(G),

• ∑
i |Oui

| = ��(S),
• 2� |Oui

|�� − |O|,
• Eachv ∈ O(G) appears in exactly� − degS(v) setsOui

.

The question we will discuss now is under which conditionsGS(O) andGS′(O′) are
isomorphic. As any isomorphism must mapSontoS′, the fact thatSandS′ are isomorphic
is a necessary condition. Since every saturated subgraph will be constructed only once up
to isomorphisms, in the construction this would meanS = S′. AssumingS = S′, how must
O andO′ be related?

Proposition 16. Let � be an automorphism of S and letO = {Oui
| 1� i� |D|} and

O′ = {O ′
ui

| 1� i� |D|} be representations of connecting subgraphs. If there exists an
automorphism� of D such thatO ′

�(ui )
= �(Oui

), thenGS(O) andGS(O
′) are isomorphic.

Proof. Let G = GS(O), G′ = GS(O
′). The isomorphism� : G → G′ is given by the

following bijection ofV (G) ontoV (G′): �|D = � and�|S = �. Let uv ∈ E(G). If u, v ∈
V (S) oru, v ∈ V (D) then clearly�(u)�(v) ∈ E(G′). Supposeu ∈ V (D),v ∈ V (S). Then
�(u)�(v)=�(u)�(v) is an edge inG′, sinceO ′

�(u) =�(Ou) and thereforev ∈ Ou implies

�(v) ∈ �(Ou) = O ′
�(u). In the same way it can be shown that�−1 is a homomorphism.

�

Proposition 17. LetG=GS(O) andG′ =GS(O
′) be isomorphic graphs and� : G → G′

an isomorphism. Let� = �|S, � = �|D. Then� is an automorphism of S and� is an
automorphism of D such thatO ′

�(ui )
= �(Oui

).

Proof. � maps saturated vertices ofG to saturated vertices ofG′ and therefore� is an
automorphism ofS. Similarly,� must be an automorphism ofD. Letui ∈ D(G). Since� is
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an isomorphism, the saturated neighbours of�(ui) are in�(Oui
), that isO ′

�(ui )
= �(Oui

),
and thereforeO ′

�(ui )
= �(Oui

). �

For a given graphSand cardinalitydof the deficit subgraphD, let O denote the set of all
those multisetsO of cardinalityd that fulfill the requirements of Proposition 15. Then the
automorphism group ofSacts in a natural way onO and Propositions 16 and 17 imply the
following theorem:

Theorem 18. Two graphsGS(O) andGS(O
′) are isomorphic if and only if|O| = |O′| and

O andO′ are in the same orbit of the automorphism group of S onO.

Note that the number of times that an open vertexwi occurs in the adjacency lists of a
given representationO of a connecting subgraphC depends only on degS(wi) and not on
the structure of the graph. Since the program we use for generating saturated subgraphs (see
[14]) lists the graph in a way that the vertex labels are sorted with respect to their degree,
so that the degree of the vertex does only depend on the degree sequence and not on the
graph itself, the setO is identical for all these graphs, so it must be computed only once
for every degree sequence. This is used to speed up the generation of the set of�-maximal
candidates.

The �-maximal candidates were generated in the following way: first, all degree se-
quences, satisfying the conditions of Corollary 11 and Propositions 12–14 were generated.
Then, the setO of all possibleO for a given degree sequence are generated and stored. All
the nonisomorphic graphs with this degree sequence, that is all theG-saturated subgraphs
S, are generated by a program of Grund[14]. For eachS, the automorphism group and the
orbits of the automorphism group onO are computed. From each orbit one representative
is chosen to connect the givenS to the deficit cliqueD, yielding a�-maximal candidate.
The automorphism group is computed by McKay’s programnauty[21,22,24].

4. Searching for the critical subgraphs

This section describes how the�-maximal candidates were searched for spanning
�-critical subgraphs.

In the first step, all colourable candidates were discarded. The main idea for checking
colourability is the following proposition, which leads to a recursive algorithm. The proof
of this proposition is trivial and is omitted.

Proposition 19. Given a graph G ande ∈ E(G). G is of class1 if and only if there exists
an inclusion-maximal matchingM ⊆ E(G) (i.e.,M is not properly contained in any other
matching), such thate ∈ M, all vertices of degree�(G) are contained in edges of M and
G − M is of class1.

The way the initial edgee is chosen has an effect on the efficiency of the program. We
have choseneas an edge with endpoints of the smallest possible degree.
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Furthermore a test on whetherG, resp.Gminus a vertex of minimum degree is overfull
is performed. This allowed fast detection of many class 2 graphs.

In the second step we discard the candidates that are not 2-connected. Since the graphs
to be tested were small, this was done by a straightforward algorithm that merely checks
the definition.

The following lemma by Miao and Liu will be used to show that�-maximal candidates
with some special degree sequences cannot contain spanning�-critical subgraphs. Graphs
with these degree sequences were discarded without further checks.

Lemma 20 (Miao and Liu[27]). Let G be a�-critical graph containing vertices u and x
such that the distance between u and x is3.Thendeg(u) = 2 impliesdeg(x)�� − 1.

Corollary 21. Let �>3 and G be a�-critical graph containing at leastk�1 vertices
w1, . . . , wk of degree2and an additional vertexvd /∈ {w1, . . . , wk} of degree2�d��−2.
Then the order of G is at least3k + � + d − 1.

Proof. By Vizing’s Adjacency Lemma, the sets of neighbours ofw1, . . . , wk, vd and the
set {w1, . . . , wk, vd} must be pairwise disjoint, thus their unionU contains 3k + d + 1
vertices. Letx1, x2 be the neighbours ofw1. Then degG(x1) = �, and the neighbours of
x1 different fromw1 andx2 cannot be inU (Lemma 20). Hence,G contains at least� − 2
vertices which are not inU, and therefore the order ofG is at least 3k + � + d − 1. �

From this result we can deduce that for|G| = n�14 there is no�-spanned graphG
with degree sequence 8n−3444, 9n−3544, 10n−3444, 10n−3554, or 10n−3644: a spanning
critical subgraph cannot contain one of the edges connecting the deficit vertices ofG in view
of Vizing’s adjacency Lemma, thus Corollary 21 is violated. Hence, the degree sequences
mentioned above do not have to be considered.

All the remaining graphs were checked for colourability and searched for spanning
�-critical subgraphs as described below:

Let us call an edgeeVAL-removable in G, if edoes not fulfill the necessary condition for
being in a critical subgraph ofG stated in the following Corollary of Lemma 7.

Corollary 22. Let G be a graph of maximum degree�, uv ∈ E(G). For a vertex w letsw
denote the number of saturated neighbours ofw.
If su <� − deg(v)+ 1 or sv <� − deg(u)+ 1, then uv is not contained in any spanning

�-critical subgraph of G.

We denote withval 0(G) the graph obtained fromG after removing all VAL-removable
edges fromG. Let val n(G) := val 0(val n−1(G)). As the number of edges inG is
finite, there existsN ∈ N, such thatval N(G) = val N+1(G). Let us defineval (G) :=
val N(G).

In order to computeval (G) we did not delete all edges that are VAL-removable inG in
parallel, but having detected an edge that can be removed, this edge is removed at once and
all parameters that might be affected by this operation (the numbers of saturated neighbours
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and the valencies) are updated at once. An edge that could be removed with the old set of
parameters can also be removed with this updated sets of parameters, but not necessarily the
other way around. So, in general, at least some tests on removability with negative results
are avoided which leads to a faster algorithm. The proof that this leads to the same graph
val (G) is easy and is left to the reader.

When searching for a spanning critical subgraph in a 2-connected noncolourable graph
G, first val (G) is computed, and then for every edge we check whether its removal yields
a colourable graph. If this is the case for all edges, then the graph is critical. If after the
removal of an edgee the graph is still non-colourable, we recursively apply the algo-
rithm to G − e. For a (possibly empty) sequencee1, e2, . . . , ek of edges inE(G), we
define the graphG(e1, . . . , ek) recursively asG(∅) := val (G), andG(e1, . . . , ej ) :=
val (G(e1, . . . , ej−1) − ej ) for j �1. Let � be a linear (e.g. lexicographic) ordering
of the edges ofG. We say thate1, e2, . . . , ek is a regular pruning sequence, if ei ≺ ei+1
for all i ∈ {1, . . . , k − 1} and if for i ∈ {1, . . . , k} ei � e for all e ∈ E(G(e1, . . . , ei−1)\
E(G(e1, . . . , ei)).

Proposition 23. Let H be a spanning�-critical subgraph of G. Then there exists a unique
regular pruning sequencee1, . . . , ek of edges in G, such thatH = G(e1, . . . , ek).

Proof. Let F1 = E(G(∅))\E(H), and define recursively forFi �= ∅: ei = min�Fi and for
i >1 letFi := E(G(e1, . . . , ei−1))\E(H). Note thatH is a spanning critical subgraph of
G(∅) and therefore none of the edges ofH is VAL-removable in anyG(e1, ..., ej ). As F1
is finite, andFi+1�Fi , there is somek such thatFk+1 = ∅. ThenH = G(e1, . . . , ek). As
Fi ⊆ Fi+1, we haveei ≺ ei+1 and sinceE(G(e1, . . . , ei−1))\E(G(e1, . . . , ei)) ⊆ Fi also
the second requirement for a regular pruning sequence is fulfilled.

Now assume we have another regular pruning sequencee′
1, e

′
2, . . . , e

′
k′ for the graphH

and adopt the notation above. Letj � min{k, k′} be the smallest index so thate′
j �= ej .

Such an index must exist since otherwise not all edges would be removed and due to the
minimality of j the setFj is the same for both sequences. But since in order to formH, ej
must occur ine′

j+1, . . . , e
′
k′ or inE(G(e′

1, . . . , e
′
l−1))\E(G(e′

1, . . . , e
′
l )) for somel�j , the

conditions for regular pruning sequences will be violated.�

We searched for spanning critical subgraphs by removing edges in a way corresponding to
regular pruning sequences and backtracking in case the computation ofval (G) notices that
an edge must be removed that would violate the condition of a regular pruning sequence. The
set of critical subgraphs is finally filtered for pairwise nonisomorphic copies by a program
using the canonical labelling routine innauty[21,22,24].

5. The second approach and discussion

A second program implemented an algorithm very similar to the one described above.
The main difference is that it did not construct saturated subgraphsS for given degree
sequences, but for given� and� and given|S| and��(S) (or equivalently:|S| and|E(S)|).
We used the following lemma to detect some cases where no�-maximal candidates exist:
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Lemma 24. For a�-maximal graph G we have

⌈
�(|S| − |D|) + |D|2

2

⌉
� |E(S)|�

⌊
�|S| − 2|D|

2

⌋

Proof. Every vertex inD has valency at most�−1, so at most�−1− (|D|−1)=�−|D|
edges starting at a vertex inD can end in vertices ofS. So the total sum of degrees inS
must be at least�|S| − |D|(� − |D|) proving the first part of the inequality.

Since every vertex inD has at least two neighbours inS, the sum of degrees inScan be
at most�|S| − 2|D| which gives the second part of the inequality.�

This lemma excluded, for example, cases like|G| = 14,� = 5 and|D| = 3 because of
the lower bound for the edges exceeding the upper bound or cases like|G| = 13,� = 10
and|D| = 6, since the lower bound for the number of edges exceeds the number of edges
in a complete graph on|S| vertices.

This second approach had a smaller generation rate but the advantage of being able
to use a generation program for these graphs that is independent of Grund’s program.
We used Brendan McKay’sgeng [23,24] for the graphs with|D|>0 and also Markus
Meringersgenreg[25,26] for graphs with|D| = 0. The only remaining overlap of the two
implementations is (except for the platform and the compiler) the programnauty.

Our approach was designed to work fast for graphs of even order. As can be seen from the
following tables, for graphs of odd order, almost all�-maximal candidates are 2-connected
class 2 graphs. This can be easily deduced from the numbers of edges in the graphs:

Lemma 25. Let G be a�-maximal graph of odd order. If|D| ∈ {0,1,2,� − 2} then G
contains an overfull subgraph with maximal degree�.

Proof. In case��(G)<� the graphG is overfull. This is the case for|D| ∈ {0,1}.
In case|D| = 2 andG is not overfull, withv,w the deficit vertices, we have deg(v) +

deg(w)��. This gives��(S) = |E(C)|�� − 2 proving thatS is overfull.
In case|D| = � − 2, every vertex inD must have degree� − 1, so��(G)= � − 2. �

In other cases (like|D| = 3) it can be easily seen that only those cases where the deficit
vertices have very few neighbours inSdo not lead to overfull graphs, so that the ratio of
class 2 graphs is very large.

Searching these graphs for critical subgraphs is very expensive, since for each of these
graphs a large number of subgraphs has to be tested. The advantage of our approach com-
pared to the straightforward approach of generating all graphs with a suitable number of
edges and testing them directly for being critical can be seen for even order, where a lot of
graphs could be filtered out.

Compared to the number of all graphs on 14 vertices only a fraction of 1/250 000 was
generated and filtered for being class 2 and 2-connected. Including the subgraphs that
occurred while searching for spanning critical subgraphs, only a fraction of 1/100 000 was
tested for being critical (not counting the colourability tests for class 1 graphs, since this is
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Table 1
Results for|G| = 13

|G|, �, |D| �-maximal candidates 2-connected class 2
�-maximal candidates

13,3,1 872 777
13,4,0 10 786 10 768
13,4,1 35 689 35 647
13,4,2 57 016 56 933
13,5,1 1 696 704 1 696 697
13,5,2 1 323 139 1 323 137
13,5,3 161 919 161 915
13,6,0 367 860 367 860
13,6,1 2 979 292 2 979 292
13,6,2 11 642 407 11 642 407
13,6,3 1 848 811 1 766 352
13,6,4 24 643 24 643
13,7,1 2 749 744 2 749 744
13,7,2 8 222 853 8 222 853
13,7,3 4 840 355 4 481 705
13,7,4 153 418 137 061
13,7,5 323 323
13,8,0 10 786 10 786
13,8,1 165 358 165 358
13,8,2 1 334 020 1 334 020
13,8,3 1 236 313 1 129 237
13,8,4 157 392 133 781
13,8,5 842 712
13,8,6 0 0
13,9,1 4103 4103
13,9,2 29 374 29 374
13,9,3 57 743 51 862
13,9,4 15 413 12 825
13,9,5 352 314
13,9,6 0 0
13,9,7 0 0

part of the test for being critical of the class 2 graph from which the graph was constructed
by deleting an edge).

The programs were run on a cluster of 100 Linux machines with 133 to 450 MHz at
the Universität Bielefeld. For the approach described in detail, generating the saturated
subgraphs took approximately 490 h of CPU time, assembling the�-maximal candidates
took additional 230 h. The most time consuming task was the examination of the candidates,
which took 3770 h, yielding altogether approximately 4500 h of pure CPU time.

The results of both implementations are given in Theorems 1 and 2 and inTables 1
and2 .

Even with much more and much faster computers it is not possible to use the same
approach for order 16. New ideas and new insight into the structure of critical graphs are
needed in order to finally answer Yap’s question.
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Table 2
Results for|G| = 14

|G|, �, |D| �-maximal candidates 2-connected class 2
�-maximal candidatesa

14,5,0 3 459 386 22
14,5,1 17 526 403 17 526 384
14,5,2 43 353 428 552
14,5,3 0 0
14,6,0 21 609 301 7
14,6,1 171 046 398 171 046 398
14,6,2 648 221 257 132 292 661
14,6,3 88 127 504 257
14,6,4 919 510 9
14,7,0 21 609 301 0
14,7,1 239 967 643 239 967 643
14,7,2 1 304 849 058 379 522 893
14,7,3 472 124 665 0
14,7,4 15 994 671 0
14,7,5 0 0
14,8,0 3 459 386 0
14,8,1 53 889 268 53 889 268
14,8,2 413 311 923 154 615 911
14,8,3 324 131 831 19 622 620a

14,8,4 32 727 669 0
14,8,5 141 360 0
14,8,6 24 0
14,9,0 88 193 0
14,9,1 1 850 802 1 850 802
14,9,2 19 871 394 8 789 828
14,9,3 29 738 464 2 836 593a

14,9,4 7 206 269 0
14,9,5 129 315 0
14,9,6 66 0
14,9,7 0 0
14,10,0 540 0
14,10,1 11 400 11 400
14,10,2 157 783 80 827
14,10,3 408 485 54 235a

14,10,4 204 932 2394
14,10,5 10 152 0
14,10,6 19 0
14,10,7 0 0
14,10,8 0 0

aFor 14,8,3, 14,9,3 and 14,10,3 only those 2-connected class 2�-maximal candidates are listed that do not have
one of the degree sequences 811444, 911544, 1011444, 1011554, or 1011644.
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