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Abstract

Agraphis chromatic-index-critical if it cannot be edge-coloured witmlours (with4 the maximal
degree of the graph), and if the removal of any edge decreases its chromatic index. The Critical Graph
Conjecture stated that any such graph has odd order. It has been proved false and the smallest known
counterexample has orddd8] A.J.W. Hilton, R.J. Wilson, Edge-colorings of graphs: a progress
report, in: M.F. Cabobianco, et al. (Eds.), Graph Theory and its Applications: East and West, New
York, 1989, pp. 241-24931] H.P. Yap, Some topics in graph theory, London Mathematical Society,
Lecture Note Series, vol. 108, Cambridge University Press, Cambridge, 1986].

In this paper we show that there are no chromatic-index-critical graphs of order 14. Our result
extends that of[p] G. Brinkmann, E. Steffen, Chromatic-index-critical graphs of orders 11 and 12,
European J. Combin. 19 (1998) 889—-900] and leaves order 16 as the only case to be checked in order
to decide on the minimality of the counterexamples given by Chetwynd and Fiol. In addition we list
all nontrivial critical graphs of order 13.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The class of simple graphs can be divided into two subclasses by Vizing's well-known
theorem—into the class ablourable graphgor class 1 graphg whose chromatic index
is equal to the maximum degreleof the graph, and into the classmdncolourable graphs
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(or class 2 graphls whose chromatic index ig + 1. A noncolourable grap is said to
be 4-critical, or simply critical, if the removal of any edge froBidecreases its chromatic
index.

In this paper we consider only simple graphs. Also, all our graph colourings are edge-
colourings. Furthermore we assume that the reader is familiar with basic graph theory
notions, taken fronfil1,17,30]for instance.

In 1973, Beineke and Wilsofl] presented several methods to construct critical graphs.
Clearly, each graph with more thah 5 | edges is class 2. Their constructions yield many
critical graphs with4| 5| + 1 edges. Graphs with at least this number of edges are called
overfull. They conjectured that there are no critical graphs of even order. This Critical Graph
Conjecture was later independently stated by Jakof#n

The critical graphs withi | 5 | + 1 edges are calledvial critical graphs. Critical graphs
with at most4|% ]| edges are critical fostructural reasons-they are callechontrivial
critical graphs

The Critical Graph Conjecture was disproved by Golddé@®j: he found an infinite
family of critical graphs of even order, the smallest of them having 22 vertices. Chetwynd
and Fiol independently found a critical graph on 18 vertices. In order to check the minimality
of this counterexample, Y&[81] asked whether critical graphs of orders 12, 14 or 16 do
exist (cf.[9,31]). First lists of critical graphs of order less than 10 are givejiih12]

In 1997 Brinkmann and Steffdd] established that the graphs of Fiol and Chetwynd are
the smallest 4-critical graphs of even order, and that the Goldberg graph is the smallest 3-
critical graph of even order. They did this by a combination of computational and theoretical
results. Later they also partially answered Yap’s question by showing that there are no
critical graphs of order 12, and found the only two nontrivial critical graphs of order 11
(se€5]). In order to avoid possible computational errors, this was done by two independent
approaches—one of them discussing a large number of cases (possible degree sequences)
by hand and checking only the remaining cases with a computer and one a more or less
straightforward computer search. Another result on the topic was found by Steffen and
Grinewald[16], who constructedi-critical graphs of even order for any>3. A more
detailed description of the techniques described here can be fo(2id in

2. Results
We prove the following two theorems:
Theorem 1. No graph of orderl4is critical.

Theorem 2. There are exactl\t4 nontrivial critical graphs of orderl3. They are listed in
Fig. 1.

All nontrivial critical graphs of order at most 13 have maximum degree 3. They can be
obtained from the critical subgrapP: of the Petersen graph—that is the Petersen graph
minus one vertex—by three well-known constructions. Additional information on these
methods can be found [#2,16]
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Fig. 1. All nontrivial critical graphs of order 13.

Lemma 3. Let G be a3-critical graph andG’ a graph obtained from G by replacing a
vertexv of G by a triangle and connecting the two or three edges formerly containing
with different vertices of the triangle. The&H is also3-critical.

Lemma 4. Let G be agraphwithi(G) >2,andv;, ..., v; bethe neighbours af € V (G).

Letus, ..., u  be the vertices of degreé— 1 in the complete bipartite grapk 4 41, and

G’ be the graph obtained fro@ — v andK 4 41 by adding edges;u; fori =1,....d.
Then G is4-critical, if and only if G’ is 4-critical.

A graphH is said to be obtained frol® and G’ by aHajos-unionwherev andv’ are
identified, ifv € V(G), v € V(G’), andH is constructed fronG andG’ as follows:

1. One edgev € E(G) and one edge’v’ € E(G’) are removed.
2. The vertices andv’ are identified.
3. A new edge:w’ is inserted.

Lemma 5 (Jakobser19]). Let G andG’ be two4-critical graphs andv € V(G), v’ €
V(G') two vertices such thateg; (v) + deg;/ (v') <4 + 2. Then any graph obtained from
G andG’ by a Hajos-union where andv’ are identified is4-critical.

The two nontrivial critical graphs of order 11 can be constructed figrby applying
Lemma 3 either to a vertex of degree 2 or to a vertex of degree 3. By applying Lemma 3 to
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Fig. 2. A 6-maximal graph with a deficit clique of size 4 and 3 open vertices.

one of those graphs we obtain 10 nontrivial critical graphs of order 13 (graphs in first three
rows ofFig. 1), by applying Lemma 4 t@; we find two nontrivial critical graphs of order

13 without triangles (fourth row dfig. 1), and two additional nontrivial critical graphs of
order 13 are obtained fror; and the trivial 3-critical graph of order 5 by a Hajos-union
where the vertex of degree 2 in the latter graph is one of the identified vertices (fifth row).

Theorems 2 and 1 are proved using two (almost) independent computer programs to
do an exhaustive computer search for nontrivial critical graphs. We will only describe the
algorithm on which one of the programs is based in detail and sketch the other. The main
strategy of the approaches is that instead of generating and testing all possibly critical
graphs, we generatedelatively smallset of graphs (called-maximal candidatgsso that
each critical graph is contained in at least one of these supergraphs of the same order. The
search for critical subgraphs was performed lik§Sih

To prove Theorem 2, alll-maximal candidates of order 13 were generatedfoe
{3,4,...,9}.Ford € {10, 11, 12} the fact that no critical graphs exist follows fr¢i 8,28}

To prove Theorem 1 onliy € {5, ..., 10} had to be considered. The resultg4f imply
that there are ndl-critical graphs of order 14 fod € {3, 4}, and the results d6,28,29]
imply this for4 € {11, 12, 13}.

The remainder of this paper is structured as follows: Section 3 describesg-noaximal
candidates can be efficiently generated, Section 4 discusses how we searched the candidates
for critical subgraphs and Section 5 discusses the results obtained and sketches the second
approach.

3. 4-maximal graphs, 4-spanned graphs and4-maximal candidates

Let G be a graph of maximal degrek Verticesv with deg; (v) = 4 are calledsaturated
verticesand vertices of degree less thdrare calleddeficit verticesWe call the subgraph
S(G) thatis induced by the saturated verticessaturated subgrapbf G and the subgraph
D(G) induced by the deficit vertices tldeficit subgraphThe subgrapli’ (G) consisting of
all edges between vertices 8{G) and D(G) and their endpoints is called tlsennecting
subgraph Obviously C(G) is bipartite. In the saturated subgrahhe verticesv with
deg(v) < 4 are of considerable importance. TheseGusaturated vertices that are adjacent
to G-deficit vertices. They are calleghen verticesf G and the set of open vertices is denoted
as G). Fig. 2illustrates these concepts.

The order of a grapls is denoted byG]|.
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A A-maximal graph Gs a graph with maximal degreéthat is not a proper subgraph of
any graph with the same number of vertices and maximal degree—or equivalently: a graph
in which D(G) is a cliqgue or empty.

A A-maximal graph with a spanningy-critical subgraph is called a-spanned graph

Lemma 6. Every critical graph is2-connected

An easy proof of Lemma 6 can be found in, for exam{B4].

Let a critical graphG be given. By Lemma 6G is 2-connected. Since this property as
well as the property of being class 2 are preserved when edges are atliedatavay that
the maximum degree is preserved, edetritical graph is contained in a-spanned graph
of the same order.

Lemma 7 (Vizing’s Adjacency Lemmalet G be ad-critical graph, uv € E(G). Thenv
is adjacent to at leastl — degu) + 1 saturated vertices different from u

The proof is rather technical and can be founflli?]. This lemma implies the following
proposition:

Proposition 8. Every vertex of a1-spanned graph G is adjacent to at least two saturated
vertices.

If a 4-maximal graph has the property that every vertex has at least two saturated neigh-
bours, then it is called 4-maximal candidateBy Proposition 8 everyl-spanned graph is
a 4-maximal candidate. Thus, it is sufficient to generatedathaximal candidates, apply
a filtering procedure that removes those that are colourable or not 2-connected and finally
search the remaining graphs for spanning critical subgraphs.

The decomposition into induced subgrag@andD and the subgrap@ leads to a natural
way of constructing alt-maximal candidates of a given order: first construct all saturated
graphsS then connect each of them with the deficit clidquef appropriate size in a way that
every deficit vertex has at least two saturated neighbours. Isomorphism rejection nigthods
must be applied in order to construct only one copy of each graph up to isomorphisms. For
the construction of the saturated subgraphs existing programs like desciibéd 5 23,26]
can be used.

In the approach we will present in detail, the saturated subgraphs are generated from their
degree sequence, that is the sequeheed> < - - - <dg of vertex degrees of the saturated
subgraph. Obviously, all isomorphic graphs have the same degree sequénég.of

The following propositions give necessary criteria for degree sequences that belong to
saturated subgraphs dfmaximal candidates of a given order.

Proposition 9. For a 4-maximal candidate G we hav®(G)| <4 — 2.

Proof. The maximal degree of a deficit vertexds- 1. By definition this is at leagiD| + 1.
Together we haveD| <4 — 2. O
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Proposition 10. For a 4-maximal candidate G we havy§| > |D| and2|D| < |G]|.

Proof. If there are no deficit vertices 02| D| < |G|. For|D| >1, let4, < 4 be the second
largest degree . Let/ = |E(C)|. Obviously|D||S| >1 and equality holds if and only if
each vertex irSis adjacent to each vertex i

For given|D]|, |S| andl, we construct an upper bound fdrand a lower bound foxl».
Summing up thé&-degrees of vertices iBand counting edges we get|4 <2(|S|(]S]| —
1)/2) + 1 yielding 4<|S| — 1 + 1/|S|. A similar argument for vertices iD leads to
|D|42>2(|D|(|D| — 1)/2) + 1, 42> |D| —1+1/|D|.

Sinced > Ay, we get(|S| — |D|)(|D]|S| — 1) > 0. As|D||S| — >0, we have S| > |D|
and alsdG|=|S| + |D|>2|D|. O

Combining Propositions 9 and 10 we have the following:
Corollary 11. For a 4-maximal candidate G we ha@e< |D|< min {A -2, L%J }

Note that, asS| = |G| — | D|, Corollary 11 gives necessary conditions for the lengths of
degree sequences of saturated subgraphs that can occur.

Proposition 12. Letds, da, . . ., d|s| be the degree sequence of the saturated subgraph S of
a A-maximal candidate. Thet — |D|<d; <4 for 1<i <|S].

Proof. Since a saturated vertex can be adjacent to at nigsteficit vertices, we have
A—|D|<d;. O

For a graphG let m > A(G). The mdeficiencyof a vertexv is defined a®9,,(v) =
m — dedv). Them-deficiencyf a graphG is

On(G) =) On()=m|G| - Y degu).

veV veV

Obviously, if we add more tha®,,(G)/2 edges td5, then the new graph will have at
least one vertex of degree larger thrarNote that for ad-maximal graplG, © 4(S) equals
the number of edges in the connecting subgi@ph

Proposition 13. For a 4-maximal candidate G we ha@D|< @ 4(S) <(4 — |D|)|D|.

Proof. By definition, each vertex irD has at least two neighbours i yielding
2[D|<O4(S).

For an arbitrary deficit verted we have de@:) <4 — 1. Sinceu has|D| — 1 G-deficit
neighbours there are at most— | D| neighbours irS. Summing over all deficit vertices,
we obtain®@ 4(S)< (4 — |D|)|D|. O

Proposition 14. Let o be the number of open vertices infanaximal candidate G. Then

04(S)
02{ \ADI —I
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Proof. There are? 4(S) edges in the bipartite gragh By the pigeon-hole principle, there

is a vertex inD that hasC-degree at IeaﬁE @‘AD(f)W, which gives a lower bound for the

number of open vertices.[J

In the following letV (D) = {us, ..., u;p|} and letO,, denote the set of neighbours of
u; in C.

For a4-maximal candidat& let ¢ be the multise{O,, | 1<i <|D|}. Eachu; in D is
neighbouring exactly alf € 0,, in S, so the grapi® is uniquely determined b§, D, ¢ and
a functionf mapping the vertices @ to the element of containing its neighbours. As we
are only interested in graphs up to isomorphisms, and $irisa cliqgue and therefore has
the full permutation group of its vertices as the automorphism group and since the order of
D equals the cardinality of, D andf are redundant information. We can take any clique
with a vertex set of the given cardinality and assign the elementsiofany order to get
an isomorphic graph. For givédiand( let us denote a corresponding graphdy(®).

Proposition 15. For a 4-maximal candidat&; g(¢) we have

L4 Ou,' g O(G)7

o > 10y 1 =0,(9),

o 2|0y, | <4 —10),

e Eachv € O(G) appears in exactlyl — deg;(v) setsO,, .

The question we will discuss now is under which conditighg() and Gg (') are
isomorphic. As any isomorphism must m&pntoS’, the fact thaSandS’ are isomorphic
is a necessary condition. Since every saturated subgraph will be constructed only once up
to isomorphisms, in the construction this would me&aa S’. AssumingS = §’, how must
¢ and(’ be related?

Proposition 16. Let  be an automorphism of S and lét= {0,, | 1<i<|D|} and
0 = {0,’” | 1<i<|D]} be representations of connecting subgraphs. If there exists an
automorphism of D such thatOjZ(ui) =y(0y,), thenG(0) andG (') are isomorphic
Proof. Let G = Gg(0), G’ = Gs(('). The isomorphismd : G — G’ is given by the
following bijection of V(G) onto V(G’): ®|p = m andP|s = . Letuv € E(G). If u,v €
V(S)oru,v € V(D)thenclearlyp(u)®(v) € E(G"). Supposa € V(D),v € V(S).Then
P(u)®(v) =n(w)y (v) is an edge irG’, sinceO; , =y (0,) and therefore € O, implies
Y(v) € Y(0,) = O;Z(u). In the same way it can be shown that! is a homomorphism.

O

Proposition 17. LetG = G5(0) andG’ = G5(¢') be isomorphic graphsand : G — G’
an isomorphism. Let) = &|g, n = @|p. Theny is an automorphism of S andis an
automorphism of D such thm;(ui) =y (0y,).

Proof. @ maps saturated vertices 6fto saturated vertices @i’ and therefora) is an
automorphism o§. Similarly, = must be an automorphismDbBf Letu; € D(G). Since® is
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an isomorphism, the saturated neighbourg@f;) are in®(0,,), that isO{p(ui) =P(0y,),
and thereforeO;T(ul_) =y(0,). O

For a given grapl®sand cardinalityd of the deficit subgrapb, let O denote the set of all
those multiset® of cardinalityd that fulfill the requirements of Proposition 15. Then the
automorphism group ddacts in a natural way o® and Propositions 16 and 17 imply the
following theorem:

Theorem 18. Two graphsG s(¢) and G (') are isomorphic if and only if¢| = |¢'| and
¢ and (" are in the same orbit of the automorphism group of SJon

Note that the number of times that an open veitg»occurs in the adjacency lists of a
given representatiodi of a connecting subgraph depends only on degw;) and not on
the structure of the graph. Since the program we use for generating saturated subgraphs (see
[14]) lists the graph in a way that the vertex labels are sorted with respect to their degree,
so that the degree of the vertex does only depend on the degree sequence and not on the
graph itself, the seD is identical for all these graphs, so it must be computed only once
for every degree sequence. This is used to speed up the generation of thd-gesxinal
candidates.

The 4-maximal candidates were generated in the following way: first, all degree se-
qguences, satisfying the conditions of Corollary 11 and Propositions 12—-14 were generated.
Then, the se® of all possible’ for a given degree sequence are generated and stored. All
the nonisomorphic graphs with this degree sequence, that is &i-Hzgurated subgraphs
S are generated by a program of Gryad]. For eacts, the automorphism group and the
orbits of the automorphism group d@hare computed. From each orbit one representative
is chosen to connect the giv&to the deficit cliqueD, yielding a4-maximal candidate.

The automorphism group is computed by McKay's prograauty[21,22,24]

4. Searching for the critical subgraphs

This section describes how th#-maximal candidates were searched for spanning
A-critical subgraphs.

In the first step, all colourable candidates were discarded. The main idea for checking
colourability is the following proposition, which leads to a recursive algorithm. The proof
of this proposition is trivial and is omitted.

Proposition 19. Given a graph G and € E(G). G is of classl if and only if there exists
an inclusion-maximal matchiny < E(G) (i.e., M is not properly contained in any other
matching, such thate € M, all vertices of degreel(G) are contained in edges of M and
G — M is of classl.

The way the initial edge is chosen has an effect on the efficiency of the program. We
have choser as an edge with endpoints of the smallest possible degree.
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Furthermore a test on wheth@r resp.G minus a vertex of minimum degree is overfull
is performed. This allowed fast detection of many class 2 graphs.

In the second step we discard the candidates that are not 2-connected. Since the graphs
to be tested were small, this was done by a straightforward algorithm that merely checks
the definition.

The following lemma by Miao and Liu will be used to show thamaximal candidates
with some special degree sequences cannot contain spatairigcal subgraphs. Graphs
with these degree sequences were discarded without further checks.

Lemma 20 (Miao and Liu[27]). Let G be a4-critical graph containing vertices u and x
such that the distance between u and 8.i$hendegu) = 2 impliesdegx) >4 — 1.

Corollary 21. Let 4> 3 and G be a4-critical graph containing at leask > 1 vertices
wi, ..., wy of degree and an additional vertex, ¢ {w1, ..., wi} of degre <d <4 —2.
Then the order of Gis atleaSk + 4 +d — 1.

Proof. By Vizing's Adjacency Lemma, the sets of neighboursuaf . .., wg, vy and the
set{wi, ..., wg, vy} must be pairwise disjoint, thus their unidhcontains 8 +d + 1
vertices. Letxq, xp be the neighbours ab;. Then deg (x1) = 4, and the neighbours of
x1 different fromw; andx, cannot be ilJ (Lemma 20). HenceG contains at least — 2
vertices which are not itJ, and therefore the order &isatleast8+4+d — 1. O

From this result we can deduce that faf| = n <14 there is nad-spanned grapls
with degree sequencd 8444, 93544, 103444, 133554, or 10-3644: a spanning
critical subgraph cannot contain one of the edges connecting the deficit vert@as\aéw
of Vizing’s adjacency Lemma, thus Corollary 21 is violated. Hence, the degree sequences
mentioned above do not have to be considered.

All the remaining graphs were checked for colourability and searched for spanning
A-critical subgraphs as described below:

Let us call an edge VAL-removable in 3f edoes not fulfill the necessary condition for
being in a critical subgraph @ stated in the following Corollary of Lemma 7.

Corollary 22. Let G be a graph of maximum degrdeuv € E(G). For a vertex w lets,,
denote the number of saturated neighbours of

If s, <4 —dedqv)+1ors, <4 —dedqu) + 1,then uv is not contained in any spanning
A-critical subgraph of G

We denote withval o(G) the graph obtained froi® after removing all VAL-removable
edges fromG. Let val ,(G) := val g(val ,_1(G)). As the number of edges 6 is
finite, there existv € N, such thaval 5 (G) =val y11(G). Let us defineval (G) :=
val y(G).
In order to computeal (G) we did not delete all edges that are VAL-removabl&im
parallel, but having detected an edge that can be removed, this edge is removed at once and
all parameters that might be affected by this operation (the numbers of saturated neighbours
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and the valencies) are updated at once. An edge that could be removed with the old set of
parameters can also be removed with this updated sets of parameters, but not necessarily the
other way around. So, in general, at least some tests on removability with negative results
are avoided which leads to a faster algorithm. The proof that this leads to the same graph
val (G) is easy and is left to the reader.

When searching for a spanning critical subgraph in a 2-connected noncolourable graph
G, firstval (G) is computed, and then for every edge we check whether its removal yields
a colourable graph. If this is the case for all edges, then the graph is critical. If after the
removal of an edge the graph is still non-colourable, we recursively apply the algo-
rithm to G — e. For a (possibly empty) sequeneg e», ..., ¢, of edges inE(G), we
define the graplG (e, ..., ex) recursively asG(?) := val (G), andG(ey, ..., e;) =
val (G(ey,...,ej—1) —e;) for j>1. Let < be a linear (e.g. lexicographic) ordering
of the edges 06G. We say thatq, eo, .. ., ¢, is aregular pruning sequencéf ¢; < e; 11
foralli e {1,...,k—1}andiffori € {1,...,k} ¢; < eforalle € E(G(ex,...,ei—1)\
E(G(eq,...,ei)).

Proposition 23. Let H be a spanningl-critical subgraph of GThen there exists a unique
regular pruning sequenca, ..., ¢, of edges in Gsuch thatd = G(es, ..., e).

Proof. Let F1 = E(G(9))\E(H), and define recursively faF; # #: ¢; = min< F; and for
i>1letF; := E(G(es,...,ei—1))\E(H). Note thatH is a spanning critical subgraph of
G (¥) and therefore none of the edgestbfs VAL-removable in anyG (e, ..., ¢;). As Fy
is finite, andF; 1 C F;, there is som& such thatFy 1 = 0. ThenH = G(e1, ..., ex). As

F; C F;jy1, we havee; < e; 11 and sinceE(G(eq, ..., e;i—1)\E(G(e1,...,e;)) C F; also
the second requirement for a regular pruning sequence is fulfilled.
Now assume we have another regular pruning sequenes, . . ., ¢, for the graphH

and adopt the notation above. Lg& min{k, k'} be the smallest index so thelt # ¢;.

Such an index must exist since otherwise not all edges would be removed and due to the
minimality of j the setF; is the same for both sequences. But since in order to foyay

must occur inz;.ﬂ, e, ONiNE(G(ey, ..., e _1)\E(G(ey, ..., e)) forsome > j, the
conditions for regular pruning sequences will be violated!

We searched for spanning critical subgraphs by removing edges in away corresponding to
regular pruning sequences and backtracking in case the computati@n @) notices that
an edge must be removed that would violate the condition of aregular pruning sequence. The
set of critical subgraphs is finally filtered for pairwise nonisomorphic copies by a program
using the canonical labelling routine mauty[21,22,24]

5. The second approach and discussion

A second program implemented an algorithm very similar to the one described above.
The main difference is that it did not construct saturated subgr&gdbs given degree
sequences, but for giverand4 and given S| and® 4(S) (or equivalently]S| and|E(S)|).

We used the following lemma to detect some cases wheremaximal candidates exist:
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Lemma 24. For a A-maximal graph G we have

[A<|S| — |D|) + |D|?

2

“ {A|S|—2|D|J
SIEOIS | ———

2

Proof. Every vertex inD has valency atmogt—1,soatmostl —1— (|D|—1)=4—|D|
edges starting at a vertex ib can end in vertices of. So the total sum of degrees $h
must be at least|S| — | D|(4 — | D]) proving the first part of the inequality.

Since every vertex i has at least two neighbours $1the sum of degrees iBcan be
at most4|S| — 2| D| which gives the second part of the inequality.]

This lemma excluded, for example, cases likg = 14, 4 =5 and|D| = 3 because of
the lower bound for the edges exceeding the upper bound or cas¢€ |ikel3, 4 = 10
and|D| = 6, since the lower bound for the number of edges exceeds the number of edges
in a complete graph off| vertices.

This second approach had a smaller generation rate but the advantage of being able
to use a generation program for these graphs that is independent of Grund’s program.
We used Brendan McKay'geng[23,24] for the graphs with D| > 0 and also Markus
Meringersgenreg[25,26]for graphs with| D| = 0. The only remaining overlap of the two
implementations is (except for the platform and the compiler) the progearty.

Our approach was designed to work fast for graphs of even order. As can be seen from the
following tables, for graphs of odd order, almost4dmaximal candidates are 2-connected
class 2 graphs. This can be easily deduced from the numbers of edges in the graphs:

Lemma 25. Let G be ad-maximal graph of odd order. IfD| € {0, 1,2, 4 — 2} then G
contains an overfull subgraph with maximal degree

Proof. In case® 4(G) < 4 the graphG is overfull. This is the case faiD| € {0, 1}.

In case|D| = 2 andG is not overfull, withv, w the deficit vertices, we have deg +
degw) < 4. This gives® 4(S) = |E(C)| < 4 — 2 proving thatSis overfull.

In caseD| =4 — 2, every vertex ifD must have degre¢ — 1, so@4(G)=4-2. O

In other cases (likeD| = 3) it can be easily seen that only those cases where the deficit
vertices have very few neighbours 8do not lead to overfull graphs, so that the ratio of
class 2 graphs is very large.

Searching these graphs for critical subgraphs is very expensive, since for each of these
graphs a large number of subgraphs has to be tested. The advantage of our approach com-
pared to the straightforward approach of generating all graphs with a suitable number of
edges and testing them directly for being critical can be seen for even order, where a lot of
graphs could be filtered out.

Compared to the number of all graphs on 14 vertices only a fractiof28Q000 was
generated and filtered for being class 2 and 2-connected. Including the subgraphs that
occurred while searching for spanning critical subgraphs, only a fractiofl®01000 was
tested for being critical (not counting the colourability tests for class 1 graphs, since this is
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Table 1
Results foG| = 13

27

|G|, 4, |D| A-maximal candidates 2-connected class 2
A-maximal candidates
13,3,1 872 777
13,4,0 10786 10768
134,1 35689 35647
13,4,2 57016 56933
13,51 1696704 1696 697
13,5,2 1323139 1323137
13,5,3 161919 161915
13,6,0 367860 367860
13,6,1 2979292 2979292
13,6,2 11642407 11642407
13,6,3 1848811 1766352
13,6,4 24643 24643
13,7,1 2749744 2749744
13,7,2 8222853 8222853
13,7,3 4840355 4481705
13,7,4 153418 137061
13,7,5 323 323
13,8,0 10786 10786
13,8,1 165358 165358
13,8,2 1334020 1334020
13,8,3 1236313 1129237
13,8,4 157392 133781
13,8,5 842 712
13,8,6 0 0
13,9,1 4103 4103
13,9,2 29374 29374
13,9,3 57743 51862
13,9,4 15413 12825
13,9,5 352 314
13,9,6 0 0
13,9,7 0 0

part of the test for being critical of the class 2 graph from which the graph was constructed
by deleting an edge).

The programs were run on a cluster of 100 Linux machines with 133 to 450 MHz at
the Universitat Bielefeld. For the approach described in detail, generating the saturated
subgraphs took approximately 490 h of CPU time, assemblinglthraximal candidates
took additional 230 h. The most time consuming task was the examination of the candidates,
which took 3770 h, yielding altogether approximately 4500 h of pure CPU time.

The results of both implementations are given in Theorems 1 and 2 ahabies 1
and2.

Even with much more and much faster computers it is not possible to use the same
approach for order 16. New ideas and new insight into the structure of critical graphs are
needed in order to finally answer Yap’s question.
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Table 2
Results foG| = 14

|G|, 4, |D| A-maximal candidates 2-connected class 2
A-maximal candidatés

14,5,0 3459386 22
14,51 17526403 17526384
14,5,2 43353428 552

14,53 0 0

14,6,0 21609301 7

14,6,1 171046398 171046398
14.6,2 648221257 132292661
14,6,3 88127504 257

14.6,4 919510 9

14,7,0 21609301 0

14,7,1 239967643 239967643
14,7,2 1304849058 379522893
14,7,3 472124665 0

14,7,4 15994671 0

14,75 0 0

14,8,0 3459386 0

14,8,1 53889268 53889268
14,8,2 413311923 154615911
14,8,3 324131831 19622620
14,8,4 32727669 0

14,8,5 141360 0

14,8,6 24 0

14,9,0 88193 0

14,91 1850802 1850802
14,9,2 19871394 8789828
14,9,3 29738464 2836593
14,9.4 7206269 0

14,95 129315 0

14,9,6 66 0

14,9,7 0 0

14,10,0 540 0

14,10,1 11400 11400
14,10,2 157783 80827
14,10,3 408485 54285
14,10,4 204932 2394
14,10,5 10152 0

14,10,6 19 0

14,10,7 0 0

14,10,8 0 0

8For 14,8,3, 14,9,3 and 14,10,3 only those 2-connected cldssaximal candidates are listed that do not have
one of the degree sequencéd®i4, 31544, 131444, 131554, or 131644,
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