The recognition of the class of indecomposable digraphs under low hemimorphy

A. Boussaïri, P. Ille

Faculté des Sciences Ain Chock, Département de Mathématiques et Informatique, Km 8 route d’El Jadida, BP 5366 Maarif, Casablanca, Maroc
Institut de Mathématiques de Luminy, CNRS – UMR 6206, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 09, France

A R T I C L E I N F O

Article history:
Received 3 February 2006
Received in revised form 17 April 2008
Accepted 29 August 2008
Available online 24 September 2008

Keywords:
Interval
Indecomposable digraph
Hemimorphy

A B S T R A C T

Given a digraph \(G = (V, A) \), the subdigraph of \(G \) induced by a subset \(X \) of \(V \) is denoted by \(G[X] \). With each digraph \(G = (V, A) \) is associated its dual \(G^* = (V, A^*) \) defined as follows: for any \(x, y \in V \), \((x, y) \in A^* \) if \((y, x) \in A \). Two digraphs \(G \) and \(H \) are hemimorphic if \(G \) is isomorphic to \(H \) or to \(H^* \). Given \(k > 0 \), the digraphs \(G = (V, A) \) and \(H = (V, B) \) are \(k \)-hemimorphic if for every \(X \subseteq V \), with \(|X| \leq k \), \(G[X] \) and \(H[X] \) are hemimorphic. A class \(C \) of digraphs is \(k \)-recognizable if every digraph \(k \)-hemimorphic to a digraph of \(C \) belongs to \(C \).

1. Introduction

A directed graph or simply digraph \(G \) consists of a finite and nonempty set \(V \) of vertices together with a prescribed collection \(A \) of ordered pairs of distinct vertices, called the set of the arcs of \(G \). Such a digraph is denoted by \((V, A) \). For example, given a set \(V \), \((V, \{\}) \) is the empty digraph on \(V \) whereas \((V, (V \times V) - \{(x, x); x \in V\}) \) is the complete digraph on \(V \). Given a digraph \(G = (V, A) \), with each nonempty subset \(X \) of \(V \) associate the subdigraph \((X, A \cap (X \times X))\) of \(G \) induced by \(X \) denoted by \(G[X] \).

In another respect, given digraphs \(G = (V, A) \) and \(G' = (V', A') \), a bijection \(f \) from \(V \) onto \(V' \) is an isomorphism from \(G \) onto \(G' \) provided that for any \(x, y \in V \), \((x, y) \in A \) if and only if \((f(x), f(y)) \in A' \). Two digraphs are then isomorphic if there exists an isomorphism from one onto the other. Finally, a digraph \(H \) embeds into a digraph \(G \) if \(H \) is isomorphic to a subdigraph of \(G \).

With each digraph \(G = (V, A) \) associate its dual \(G^* = (V, A^*) \) and its complement \(\overline{G} = (V, \overline{A}) \) defined as follows. Given \(x \neq y \in V \), \((x, y) \in A^* \) if \((y, x) \in A \), and \((x, y) \in \overline{A} \) if \((x, y) \notin A \). The digraph \(\overline{G} = (V, \overline{A}) \) is then defined by \(\overline{A} = A - A^* \). Given digraphs \(G \) and \(H \) and \(H \) are hemimorphic if \(G \) is isomorphic to \(H \) or to \(H^* \). Given an integer \(k > 0 \), consider digraphs \(G = (V, A) \) and \(H = (V, B) \). The digraphs \(G \) and \(H \) are \(k \)-hemimorphic if for every subset \(X \) of \(V \), with \(|X| \leq k \), the subdigraphs \(G[X] \) and \(H[X] \) are hemimorphic.

A digraph \(G \) is \(k \)-forced (up to duality) if \(G \) and \(G^* \) are the only digraphs \(k \)-hemimorphic to \(G \).

We need some notations. Let \(G = (V, A) \) be a digraph. For \(x \neq y \in V \), \(x \rightarrow_G y \) or \(y \leftarrow_G x \) means \((x, y) \in A \) and \((y, x) \notin A \), \(x \rightarrow_G y \) means \((x, y) \in A \) and \((y, x) \in A \) and \(x \cdot \circ_G y \) means \((x, y) \in A \) and \((y, x) \notin A \). For \(x \in V \) and \(V \subseteq V \), \(x \rightarrow_G V \) signifies that for every

* Corresponding author.
E-mail addresses: aboussairi@hotmail.com (A. Boussaïri), ille@iml.univ-mrs.fr (P. Ille).

0012-365X/see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.08.023
Theorem 1 (\cite{5,9}). Let \(Q = (V, A) \) be an indecomposable poset. For every poset \(Q' = (V, A') \), if \(C(Q') = C(Q) \), then \(Q' = Q \) or \(Q' = Q^* \).

Given a poset \(Q \), any digraph \(G \), 3-hemimorphic to \(Q \), is a poset such that \(C(G) = C(Q) \). Therefore, every indecomposable poset is 3-forced. To obtain an analogue of Theorem 1 for the tournaments, the comparability digraph is replaced by the \(C_3 \)-structure. Given a tournament \(T = (V, A) \), the family of the subsets \(X \) of \(V \), such that \(T[X] \) is isomorphic to \(C_3 \), is called the \(C_3 \)-structure of \(T \) and denoted by \(C_3(T) \).

Theorem 2 (\cite{11}). Let \(T = (V, A) \) be an indecomposable tournament. For every tournament \(T' = (V, A') \), if \(C_3(T') = C_3(T) \), then \(T' = T \) or \(T' = T^* \).

In other words, every indecomposable tournament is 3-forced. To generalize the two theorems above, we have to disallow the embedding of the following digraphs and its dual. The digraph \((\{0, 1, 2\}, \{(0, 2), (2, 0), (0, 1)\}) \) is denoted by \(F \). The digraphs \(F \) and \(F^* \) are called flags. A digraph \(G \) is then said to be without flags when \(F \) and \(F^* \) do not embed into \(G \).

Theorem 3 (\cite{11}). An indecomposable digraph without flags is 3-forced.

The flags are generalized in the following way. Given an integer \(n \geq 4 \), consider a permutation \(\sigma \) of \(\{0, \ldots, n - 2\} \). The digraph \(F_n(\sigma) \) is defined on \(\{0, \ldots, n - 1\} \) in the following manner:

\begin{enumerate}
\item \(F_n(\sigma)[\{0, \ldots, n - 2\}] \) is the total order \(\sigma(0) < \cdots < \sigma(n - 2) \);
\item given \(m \in \{0, \ldots, n - 2\} \), either \(m \) is even and \((m, n - 1) \) and \((n - 1, m) \) are arcs of \(F_n(\sigma) \) or \(m \) is odd and \((m, n - 1) \) and \((n - 1, m) \) are not.
\end{enumerate}

Given \(n \geq 4 \), \(F_n(\text{id}[-(n-2)]) \) is simply denoted by \(F_n \) (see Fig. 1). For \(k \geq 2 \), the digraphs \(F_{2k} \) and \(F_{2k}^* \) (resp. \(F_{2k+1} \) and \(F_{2k+1}^* \)) are called generalized flags. By definition, \(F_n(\text{id}[-1]) \equiv F \). We may verify that for a permutation \(\sigma \) of \(\{0, \ldots, n - 2\} \), where \(n \geq 3 \), \(F_n(\sigma) \) is decomposable if and only if there is \(i \in \{0, \ldots, n - 3\} \) such that \(\sigma(i) \) and \(\sigma(i + 1) \) share the same parity. Therefore, the generalized flags are indecomposable. Furthermore, given an indecomposable digraph \(G \), if \(i \) is an interval of \(G \), then the digraph obtained from \(G \) by reversing all the arcs included in \(i \), is 3-hemimorphic to \(G \). Sometimes, intervals are created in this way so that the obtained digraph equals neither \(G \) nor \(G^* \). For instance, given \(n \geq 4 \), consider the generalised flag \(F_4 \) and an integer \(i > 0 \) such that \(2i \leq n - 2 \). Clearly, \(\{1, \ldots, 2i\} \) is an interval of \(F_n \). From \(F_n \), we obtain by reversing the arcs contained in \(\{1, \ldots, 2i\} \) the digraph \(F_n(\sigma_i) \), where \(\sigma_i \) is the permutation of \(\{0, \ldots, n - 2\} \) which interchanges \(j \) and \(2i - j + 1 \) for \(1 \leq j \leq 2i \). The pair \(\{0, 2i\} \) forms an interval of \(F_n(\sigma_i) \). Consequently, the generalized flags are not 3-forced since \(F_n(\sigma_i) \) differ regarding the indecomposability. Incidentally, the problem of the recognition of the class of indecomposable digraphs occurs. Precisely, given \(k > 0 \), a class \(C \) of digraphs is \(k \)-recognizable if every digraph \(k \)-hemimorphic to a digraph of \(C \) belongs to \(C \) as well. As showing by \(F_n \) and \(F_n(\sigma) \), the class of indecomposable digraphs is not \(k \)-recognizable. We re-examine these counter-examples with the following observation: \(\{0, \ldots, 2i\} \) is an interval of \(F_n \) and for every \(x \in \{0, \ldots, n - 1\} - \{0, 2i\} \), we have \((x, 0) \not\equiv F_n(\sigma_i)(x, 2i) \) if and only if \(0 < x < 2i \). Generally, consider an indecomposable digraph \(G = (V, A) \). Given vertices \(\alpha \) and \(\beta \) of \(G \) such that \(\alpha \not\equiv c \beta \), the pair \(\{\alpha, \beta\} \) is weakly separated if \(\{\alpha, \beta\} \subseteq c \) and if \(\alpha \not\equiv c \beta \). The main result consists of the following characterization.

Theorem 4. Let \(G \) be an indecomposable digraph 3-hemimorphic to \(G \) if and only if \(G \) admits a weakly separated pair.

As an immediate consequence, we obtain:

Theorem 5. The class of indecomposable digraphs is 4-recognizable.
2. The Gallai decomposition theorem

We begin with a well-known property of the intervals. Given a digraph $G = (V, A)$, if X and Y are disjoint intervals of G, then $(x, y) \in c^I(x', y')$ for any $x, x' \in X$ and $y, y' \in Y$. This property leads to consider interval partitions of G, that is, partitions of V, all the elements of which are intervals of G. The elements of such a partition P become the vertices of the quotient $G/P = (P, A/P)$ of G by P defined as follows: given $X \neq Y \in P$, $(X, Y) \in A/P$ if $(x, y) \in A$ for $x \in X$ and $y \in Y$. To state the Gallai decomposition theorem below, we need the following strengthening of the notion of interval. Given a digraph $G = (V, A)$, a subset X of V is a strong interval [5,9] of G provided that X is an interval of G and for each interval Y of G, we have: if $X \cap Y \neq \emptyset$, then $X \subseteq Y$ or $Y \subseteq X$. The family of the maximal strong intervals under inclusion which are distinct from V is denoted by $P(G)$.

Theorem 6 ([5,9]). Given a digraph $G = (V, A)$, with $|V| \geq 2$, the family $P(G)$ constitutes an interval partition of G. Moreover, the corresponding quotient $G/P(G)$ is a complete digraph or an empty digraph or a total order or an indecomposable digraph.

The next result follows from Theorem 3.

Corollary 7 ([1]). Given digraphs G and H without flags, if G and H are 3-hemimorphic, then $P(G) = P(H)$.

3. Proof of Theorems 4 and 5

Lemma 8. Consider 3-hemimorphic digraphs $G = (V, A)$ and $H = (V, B)$. Given an interval I of G such that $|I| \geq 2$, if $\overrightarrow{G}[I]/P(\overrightarrow{G}[I])$ is not a total order, then I is an interval of H.

Proof. Given $x \in V - I$, since I is an interval of G, we have: $x \leftarrow c I$ or $x \cdots c I$ or $x \rightarrow c I$. In the first two instances, it follows from the 2-hemimorphy that $x \leftarrow H I$ or $x \cdots H I$. In the last two ones, since $\overrightarrow{G}[I]/P(\overrightarrow{G}[I])$ is not a total order, $P(\overrightarrow{G}[I \cup \{x\}]) = I \cup \{x\}$ As \overrightarrow{G} and \overrightarrow{H} are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that $P(\overrightarrow{H}[I \cup \{x\}]) = I \cup \{x\}$. Consequently, either $x \rightarrow H I$ or $x \leftarrow H I$. \qed

Corollary 9. Consider 3-hemimorphic digraphs G and H. If G is indecomposable, then for every interval I of H, $H[I]$ is a total order.

Proof. Consider an interval I of H. By the previous lemma, $\overrightarrow{H}[I]/P(\overrightarrow{H}[I])$ is a total order. We denote the elements of $P(\overrightarrow{H}[I])$ by X_1, \ldots, X_q in such a way that $\overrightarrow{H}[I]/P(\overrightarrow{H}[I])$ is the total order $X_1 < \cdots < X_q$. For a contradiction, suppose that there is $i \in \{1, \ldots, q\}$ such that $|X_i| \geq 2$. Since I is an interval of H, X_i is also. It follows from the preceding lemma that $\overrightarrow{H}[X_i]/P(\overrightarrow{H}[X_i])$ is a total order as well. By interchanging H and H^*, we can assume that $i < q$. By denoting by Y the largest element of $\overrightarrow{H}[X_i]/P(\overrightarrow{H}[X_i])$, we obtain that $Y \cup X_{i+1}$ would be an interval of $\overrightarrow{H}[I]$, which contradicts the fact that X_i is a strong interval of $\overrightarrow{H}[I]$. Consequently, for each $i \in \{1, \ldots, q\}$, $|X_i| = 1$, that is, $H[I]$ is a total order. \qed

Theorem 10. Consider 3-hemimorphic digraphs $G = (V, A)$ and $H = (V, B)$. If G is indecomposable and if H is decomposable, then there exist $\alpha \neq \beta \in V$ such that $[\alpha, \beta]$ is an interval of H which is weakly separated in G.

Proof. Given a non-trivial interval I of H, by the preceding corollary, $H[I]$ is a total order. Denote by α and β the first two elements of this total order, with $\alpha \rightarrow c \beta$. Clearly, $[\alpha, \beta]$ is an interval of H. Consider the smallest interval \overrightarrow{I} of \overrightarrow{G} containing α and β. We use Theorem 6. Firstly, suppose that $\overrightarrow{G}[\overrightarrow{I}]/P(\overrightarrow{G}[\overrightarrow{I}])$ is empty. Since $[\alpha, \beta]$ is directed, there is an element of $P(\overrightarrow{G}[\overrightarrow{I}])$ containing α and β, which contradicts the minimality of \overrightarrow{I}. Secondly, assume that $\overrightarrow{G}[\overrightarrow{I}]/P(\overrightarrow{G}[\overrightarrow{I}])$ is indecomposable. As $\overrightarrow{G}[\overrightarrow{I}]$ and $\overrightarrow{H}[\overrightarrow{I}]$ are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that $P(\overrightarrow{G}[\overrightarrow{I}]) = P(\overrightarrow{H}[\overrightarrow{I}])$. Since $[\alpha, \beta]$ is an interval of H, $[\alpha, \beta]$ is an interval of $\overrightarrow{H}[\overrightarrow{I}]$. We obtain the same contradiction.
because \(\overrightarrow{H(J)} / P(\overrightarrow{G(J)}) \) is indecomposable by Theorem 3. Therefore, \(\overrightarrow{G(J)} / P(\overrightarrow{G(J)}) \) is a total order. We denote the elements of \(P(\overrightarrow{G(J)}) \) by \(X_1, \ldots, X_q \) in such a way that the corresponding quotient is \(X_1 < \cdots < X_q \). By the minimality of \(J \), \(\alpha \in X_1 \) and \(\beta \in X_q \). As previously noticed, \(P(\overrightarrow{H(J)}) = \{X_1, \ldots, X_q\} \) and hence \(\overrightarrow{H(J)} / P(\overrightarrow{H(J)}) \) is a total order as well. Since \(\{\alpha, \beta\} \) is an interval of \(H \), \(\{\alpha, \beta\} \) is an interval of \(\overrightarrow{H(J)} \). As \(X_1 \) and \(X_q \) are strong intervals of \(\overrightarrow{H(J)} \), \(\{\alpha, \beta\} = X_1 \cup X_q \) or, equivalently, \(X_1 = \{\alpha\} \) and \(X_q = \{\beta\} \). To conclude, we verify that \(\{\alpha, \beta\} \) is weakly separated in \(G \). It suffices to show that for every \(x \in V - \{\alpha, \beta\} \), \((x, \alpha) \not\equiv_C (x, \beta) \) if and only if \(x \in \overrightarrow{J} - \{\alpha, \beta\} \). Clearly, if \(x \in \overrightarrow{J} - \{\alpha, \beta\} \), then \(\alpha \rightarrow C x \rightarrow C \beta \) and hence \((x, \alpha) \not\equiv_C (x, \beta) \). Conversely, consider an element \(u \) of \(V - \overrightarrow{J} \). If \((u, \alpha) \) is directed, then \((u, \alpha) \equiv_C (u, \beta) \) because \(\overrightarrow{J} \) is an interval of \(\overrightarrow{G} \). Otherwise, \((u, \alpha) \equiv_C (u, \beta) \) because \(\{\alpha, \beta\} \) is an interval of \(H \). \(\square \)

The proof of the main result follows.

Proof of Theorem 4. Consider an indecomposable digraph \(G = (V, A) \). If there is a decomposable digraph 3-hemimorphic to \(G \), then, by Theorem 10, \(G \) possesses a weakly separated pair. Conversely, consider \(\alpha \neq \beta \in V \) such that \(\{\alpha, \beta\} \) is a weakly separated pair of \(G \). Since \(\{\alpha, \beta\} \cup S_C((\alpha, \beta)) \) is an interval of \(\overrightarrow{G} \), \(\{\beta\} \cup S_C((\alpha, \beta)) \) is also. Consequently, by reversing all the arcs contained in \(\{\beta\} \cup S_C((\alpha, \beta)) \), we obtain a digraph \(H \) which is 3-hemimorphic to \(G \). The pair \(\{\alpha, \beta\} \) is then an interval of \(H \) and thus \(H \) is decomposable. \(\square \)

The next result follows from Theorem 10.

Corollary 11. Consider 3-hemimorphic digraphs \(G = (V, A) \) and \(H = (V, B) \) such that \(G \) is indecomposable and \(H \) is decomposable. There exists a subset \(X \) of \(V \), with \(|X| = 4 \), such that \(G[X] \) is indecomposable and \(H[X] \) is decomposable. More precisely, \(G[X] \) is isomorphic to \(F_4 \) (resp. \(F_2 \)) and \(H[X] \) is isomorphic to \(F_4(\sigma) \) (resp. \(F_2(\sigma) \)), where \(\sigma \) is the permutation of \(\{0, 1, 2\} \) which interchanges either 0 and 1 or 2 and 1 and 2.

Proof. By Theorem 10, there are \(\alpha \neq \beta \in V \) such that \(\{\alpha, \beta\} \) is an interval of \(H \) which is weakly separated in \(G \). If \(\{\alpha, \beta\} \cup S_C((\alpha, \beta)) = V \), then \(\{\beta\} \cup S_C((\alpha, \beta)) \) would be an interval of \(G \). Consequently, \(\{\alpha, \beta\} \cup S_C((\alpha, \beta)) \neq V \) and hence \(\{\alpha, \beta\} \cup S_C((\alpha, \beta)) \) is an interval of \(\overrightarrow{G} \) and not of \(G \). Therefore, there exist \(s \in S_C((\alpha, \beta)) \) and \(u \notin \{\alpha, \beta\} \cup S_C((\alpha, \beta)) \), such that \(\{\alpha, \beta, s\} \) is an interval of \(\overrightarrow{G} \) \(\{\alpha, \beta, s\} \) and not of \(G[\{\alpha, \beta, s\}] \). It follows that \(\{\alpha, u\}, \{s, u\} \) and \(\{\beta, u\} \) are not directed. For example, assume that \(\alpha \leftarrow C u \). Since \(u \notin S_C((\alpha, \beta)) \), \(\beta \leftarrow C u \) and, necessarily, \(s \cdots \alpha \). Furthermore, \(G[\{\alpha, \beta, s\}] \) is the total order \(\alpha < s < \beta \) or \(\beta < s < \alpha \) because \(s \in S_C((\alpha, \beta)) \). In both cases, \(G[\{\alpha, \beta, s\}] \) is isomorphic to \(F_4 \). As \(G \) and \(H \) are 3-hemimorphic, we have \(\alpha \leftarrow_H u, s \cdots_H u, \beta \leftarrow_H u \) and \(H[\{\alpha, \beta, s\}] \) is a total order. To end, it is sufficient to recall that \(\{\alpha, \beta\} \) is an interval of \(H[\{\alpha, \beta, s\}] \). \(\square \)

Theorem 5 is directly deduced. Finally, Corollary 11 leads to the following.

Remark 12. To obtain Theorem 5, it is not necessary to assume that the considered digraphs \(G = (V, A) \) and \(H = (V, B) \) to be 4-hemimorphic. It suffices to require that \(G \) and \(H \) are 2-hemimorphic and that for every subset \(X \) of \(V \), with \(|X| = 3 \) or 4, the subdigraphs \(G[X] \) and \(H[X] \) are both indecomposable or not.

Acknowledgement

The authors were supported by the France-Morocco cooperation CNRS/CNRST 2005.

References