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. Introduction 

he nonlinear partial differential equations (NLPDEs) play an 

mportant role to study many problems in physics and geome- 
ry. The effort in finding exact solutions to nonlinear equations 
s important for the understanding of most nonlinear physical 
henomena [1,2] . Nonlinear wave phenomena appears in var- 

ous scientific and engineering fields, such as fluid mechanics, 
lasma physics, optimal fiber, biology, oceanology, solid state 
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hysics, chemical physics and geometry. In recent years, the 
owerful and efficient methods to find analytic solutions of non- 

inear equations have drawn a lot of interest by a diverse group
f scientists, such as the inverse scattering transform method [3] ,
ackland transformation [4] , Darboux transformation [5] , Hi- 

ota bilinear method [6] , variable separation approach [7] , var-
ous tanh method [11,8–10] , homogenous balance method [12] , 
imilarity reductions method [13,14] , (G 

′ /G ) -expansion method 

15,16] , sine–cosine method [17] , the exp-function method [18] ,
he sub-ODE method [19] , and so on. 

In this paper, we obtain the exact solution of Kodomtsev–
etviashvili (KP) equation, the (2 + 1) -dimensional break- 

ng soliton equation and the modified generalized Vakhnenko 

quation by using the simple equation method. The simple 
quation method is a very powerful mathematical technique 
or finding exact solution of nonlinear ordinary differential 
quations. It has been developed by Kadreyshov [20,21] and 
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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used successfully by many authors for finding exact solution
of ODEs in mathematical physics [22,23] . In Section 2 , we
give a brief algorithm for the simple equation method. In
Section 3 , we apply this method to KP equation, the (2 +
1) -dimensional breaking soliton equation and the modified
generalized Vakhnenko equation. We give the conclusion in
Section 4 . 

2. Algorithm of the simple equation method 

In this section we will describe a direct method namely simple
equation method for finding the traveling wave solution of non-
linear evolution equations. Suppose that the nonlinear partial
equation, in two independent variables x and t is given by: 

P ( u, u t , u x , u tt , u xx , u xt , . . . ) = 0 , (2.1)

where u (x, t) is an unknown function, P is a polynomial of
u (x, t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved. In the following
we give the main steps of this method. 

Step (1): Combining the independent variables x and t into one
variable ξ = x − ct , we suppose that 

u (x, t) = u (ξ ) , ξ = x − ct . (2.2)

The traveling wave transformation Eq. (2.2) permits us to
reduce Eq. (2.1) to the following ordinary differential equation
(ODE) 

Q (u, u ′ , u ′′ , . . . ) = 0 (2.3)

where Q is a polynomial of u (ξ ) and its derivatives, where
u ′ (ξ ) = 

du 
dξ

, u ′′ (ξ ) = 

d 2 u 
dξ2 and so on. 

Step (2): We seek the solution of Eq. (2.2) in the following
form: 

u (ξ ) = 

n ∑ 

i=0 

a i F i (ξ ) . (2.4)

which a i (i = 0 , 1 , 2 , . . . , n ) are constants to be deter-
mined later and F (ξ ) are the functions that satisfy
the simple equations (ordinary differential equations).
The simple equation has two properties, first it is lesser
order than Eq. (2.2) , second we know the general so-
lution of the simple equation. In this paper, we shall
use as simple equations, the Bernoulli and Riccati
equations which are well known nonlinear ordinary
differential equations and their solutions can be ex-
pressed by elementary functions. For the Bernoulli
equation 

F ′ (ξ ) = cF (ξ ) + dF 2 (ξ ) . (2.5)

Step (3): The balance number n can be determined by balanc-
ing the highest order derivative and nonlinear terms in
Eq. (2.2) . 

Step (4): We discuss the general solutions of the simple
Eq. (2.5) as following: 

F (ξ ) = 

c exp [ c (ξ + ξ0 )] 
1 − d exp [ c (ξ + ξ0 )] 

. (2.6)

For case d < 0 , c > 0 , here ξ0 is a constant of the integration,

and 

 

F (ξ ) = − c exp [ c (ξ + ξ0 )] 
1 + d exp [ c (ξ + ξ0 )] 

. (2.7)

For the Riccati equation 

F ′ (ξ ) = αF 2 (ξ ) + β. (2.8)

Eq. (2.8) admits the following exact solutions [23] , 

F (ξ ) = −
√ −αβ

α
tanh 

(√ 

−αβξ − νln (ξ0 ) 

2 

)
, ξ0 > 0 , ν = ±1 , 

(2.9)

where αβ < 0 and 

F (ξ ) = 

√ 

αβ

α
tan 

(√ 

αβ(ξ + ξ0 ) 
)
, ξ0 is a constant, (2.10)

where αβ > 0 . 

Remark 1. (i) When c = δ, d = −1 the Eq. (2.5) has another
form of Bernoulli equation 

F ′ (ξ ) = δF (ξ ) − F 2 (ξ ) , (2.11)

which has the exact solutions when δ > 0 , 

F (ξ ) = 

δ

2 

[
1 + tanh 

(
δ

2 
(ξ + ξ0 ) 

)]
, (2.12)

and when δ < 0 , 

F (ξ ) = 

δ

2 

[
1 − tanh 

(
δ

2 
(ξ + ξ0 ) 

)]
, (2.13)

(ii) When c = 1 , d = −1 the Eq. (2.5) has another form of Ric-
cati equation [20,21] 

F ′ (ξ ) − F (ξ ) + F 2 (ξ ) = 0 , (2.14)

which has the logistic function as the exact solutions 

F (ξ ) = 

1 
1 + e −δ

. (2.15)

The logistic Eq. (2.15) can be presented in the hyperbolic tan-
gent function according to the relation 

1 
1 + e −ξ

= 

1 
2 

[
1 + tanh 

(
ξ

2 

)]
. (2.16)

3. Application 

3.1. Kodomtsev–Petviashvili (KP) equation 

The Kodomtsev–Petviashvili (KP) equation 

u xt − 6 u u xx − 6 (u x ) 2 + u xxxx + 3 δ2 u yy = 0 (3.1)

or 

(u t − 6 u u x + u xxx ) x + 3 δ2 u yy = 0 

is a two-dimensional generalization of the Kdv equation.
Kodomtsev and Petviashvili (1970) first introduced this equa-
tion to describe slowly varying nonlinear waves in a dispersive
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edium [24] . Eq. (3.1) with δ2 = 1 arises in the study of weakly
onlinear dispersive waves in plasmas and also in the modu- 

ation of weakly nonlinear long water waves [3] , which travel 
early in one dimension (that is, nearly in a vertical plane). The
quation with δ2 = −1 arises in acoustics and admits unstable 
oliton solutions, whereas for δ2 = 1 the solutions are stable. 

Suppose traveling wave transformation equation is 

 (ξ ) = u (x, y, t) , ξ = x + y − wt . (3.2) 

The traveling wave transformation (3.2) permits us to reduce 
3.1) into the following ODE 

−wu ′ − 6 u u ′ + u ′′′ ) ′ + 3 δ2 u ′′ = 0 . (3.3) 

ntegrating Eq. (3.3) twice with respect to ξ , setting the integra- 
ion constant to zero, we have 

 

′′ + (3 δ2 − w ) u − 3 u 2 = 0 . (3.4) 

ith balancing according procedure that be described, the bal- 
ncing number n is a positive integer which can be determined 

y balancing the highest order derivative terms u ′′ with the high- 
st power nonlinear terms u 2 in Eq. (3.4) , i.e., n + 2 = 2 n , hence
 = 2 . Therefore the solution of Eq. (3.4) can be expressed as
ollows: 

 = 

2 ∑ 

i=0 

a i ( F (ξ ) ) i = a 0 + a 1 F + a 2 F 2 . (3.5) 

here F satisfies Eq. (2.5) , consequently, we have: 

 

′ = a 1 cF + (2 a 2 c + da 1 ) F 2 + 2 a 2 dF 3 , (3.6) 

 

′′ = a 1 c 2 F + (4 a 2 c 2 + 3 a 1 cd ) F 2 + (10 a 2 dc + 2 a 1 d 2 ) F 3 + 6 a 2 d 2 F 4 , 

 

2 = a 2 0 + 2 a 0 a 1 F + (2 a 0 a 2 + a 2 1 ) F 
2 + 2 a 1 a 2 F 3 + a 2 2 F 

4 . 

ubstituting Eqs. (3.5) and (3.6) into Eq. (3.4) and then equating the coeffi-
ient of F i to zero, where i ≥ 0 , we get 

 a 2 d 2 − 3 a 2 2 = 0 , (3.7) 

0 a 2 dc + 2 a 1 d 2 − 6 a 1 a 2 = 0 , 

 a 2 c 2 + 3 a 1 cd + a 2 (3 δ2 − w ) − 6 a 0 a 2 − 3 a 2 1 = 0 , 

 1 (c 2 + (3 δ2 − w ) − 6 a 0 ) = 0 , 

 0 (3 δ2 − w ) − 3 a 2 0 = 0 . 

olving Eqs. (3.7) , we find that solution of Eq. (3.1) exists only in the follow-
ng two cases: 

Case (1): 

 0 = 

c 2 

3 
, a 1 = 2 dc , a 2 = 2 d 2 , w = 3 δ2 − c 2 , cd � = 0 . (3.8) 

Case (2) : 

 0 = 0 , a 1 = 2 dc , a 2 = 2 d 2 , w = 3 δ2 + c 2 , cd � = 0 . (3.9) 

hen d < 0 and c > 0 the solution of Eq. (3.1) with using case
1) is given by 

 1 (x, y, t) = 

c 2 

3 
+ 

2 dc 2 exp 

[
c 
(
(x + y ) + (c 2 − 3 δ2 ) t 

)]
(
1 − d exp 

[
c 
(
(x + y ) + (c 2 − 3 δ2 ) t 

)])2 . (3.10) 

lso solution of Eq. (3.1) with using case (2) is given by 

 2 (x, y, t) = 

2 dc 2 exp 

[
c 
(
(x + y ) + (c 2 + 3 δ2 ) t 

)]
(
1 − d exp 

[
c 
(
(x + y ) + (c 2 + 3 δ2 ) t 

)])2 . (3.11) 
hen d > 0 and c < 0 the solution of Eq. (3.1) with using case
1) is given by 

 3 (x, y, t) = 

c 2 

3 
+ 

2 dc 2 exp 

[
c 
(
(x + y ) + (c 2 − 3 δ2 ) t 

)]
(
1 + d exp 

[
c 
(
(x + y ) + (c 2 − 3 δ2 ) t 

)])2 . (3.12) 

lso solution of Eq. (3.1) with using case (2) is given by 

 4 (x, y, t) = 

2 dc 2 exp 

[
c 
(
(x + y ) + (c 2 + 3 δ2 ) t 

)]
(
1 + d exp 

[
c 
(
(x + y ) + (c 2 + 3 δ2 ) t 

)])2 . (3.13) 

.2. Application of simple equation method to the 
2 + 1) -dimensional breaking soliton equation 

n this section, we use the proposed method to find the exact so-
utions of following (2 + 1) -dimensional breaking soliton equa- 
ions in [25] , 

 t + αu xxy + 4 ( uv ) x = 0 , (3.14) 

 y = v x , (3.15) 

here α is an arbitrary constant. The solutions of Eqs. 
3.14) and (3.15) have been investigated using different meth- 
ds, see for example [25–27] . The system of Eqs. (3.14) and
3.15) has not been solved elsewhere using the functional simple 
quation method. Let us now solve Eqs. (3.14) and (3.15) using
he proposed method of Section 2 . To this end, we apply the
ave transformation u (x, y, t) = u (ξ ) , ξ = x + y − ct to reduce
qs. (3.14) and (3.15) into the following ODE: 

cu ′ + αu ′′′ + 4 (u 2 ) 
′ = 0 , (3.16) 

here u = v . Integrating Eq. (3.16) with respect to ξ , we get 

 

′′ − cu 
α

+ 

4 u 2 

α
= 0 , α � = 0 (3.17) 

ith zero constant of integration. Now balancing the highest 
rder derivative u ′′ and non-linear term u 2 , we get n = 2 . Now

or n = 2 , the solutions of Eq. (3.16) have the form: 

 (ξ ) = a 0 + a 1 F (ξ ) + a 2 F 2 (ξ ) , (3.18) 

here a 0 , a 1 and a 2 are constants to be determined such that
 2 � = 0 , while c, d are aribtrary constants. 

Substituting Eq. (3.18) into (3.17) and setting the coefficients 
f F (ξ ) to be zero, where ξ ≥ 0 , we get 

4 a 2 0 

α
− ca 0 

α
= 0 , (3.19) 

ca 1 
α

+ a 1 c 2 + 

8 a 0 a 1 
α

= 0 , 

 a 1 cd − ca 2 
α

+ 4 a 2 c 2 + 

8 a 0 a 2 
α

+ 

4 a 2 1 

α
= 0 , 

 a 1 d 2 + 10 a 2 dc + 

8 a 1 a 2 
α

= 0 , 

 a 2 d 2 + 

4 a 2 2 

α
= 0 . 

olving Eq. (3.19) , we find that solution of Eq. (3.17) exists only
n the following two cases: 
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Case (1) : 

a 0 = 

−1 
4 α

, a 1 = 

3 
2 

d, a 2 = 

−3 
2 

d 2 α, c = 

−1 
α

. (3.20)

Case (2) : 

a 0 = 0 , a 1 = 

−3 
2 

d, a 2 = 

−3 
2 

d 2 α, c = 

1 
α

. (3.21)

When d < 0 and c > 0 the solution of Eq. (3.17) with using case
(1) is given by 

u 1 (x, y, t) = 

−1 
4 α

+ 

3 d exp 

[−1 
α

(
(x + y ) + 

1 
α

t 
)]

2 α
(
1 − d exp 

[−1 
α

(
(x + y ) + 

1 
α

t 
)])2 . (3.22)

Also solution of Eq. (3.17) with using case (2) is given by 

u 2 (x, y, t) = 

−3 d exp 

[
1 
α

(
(x + y ) − 1 

α
t 
)]

2 α
(
1 − d exp 

[
1 
α

(
(x + y ) − 1 

α
t 
)])2 . (3.23)

When d > 0 and c < 0 the solution of Eq. (3.17) with using case
(1) is given by 

u 3 (x, y, t) = 

−1 
4 α

+ 

3 d exp 

[−1 
α

(
(x + y ) + 

1 
α

t 
)]

2 α
(
1 + d exp 

[−1 
α

(
(x + y ) + 

1 
α

t 
)])2 . (3.24)

Also solution of Eq. (3.17) with using case (2) is given by 

u 4 (x, y, t) = 

3 d exp 

[
1 
α

(
(x + y ) − 1 

α
t 
)]

2 
(
1 + d exp 

[
1 
α

(
(x + y ) − 1 

α
t 
)])2 . (3.25)

3.3. Modified generalized Vakhnenko equation 

Consider a modified generalized Vakhnenko equation (mGVE)
[23,28] : 

∂ 

∂x 

(ϕ 

2 u + 

1 
2 

pu 2 + βu ) + qϕu = 0 , (3.26)

ϕ = 

∂ 

∂t 
+ u 

∂ 

∂x 

, 

where p, q, β are arbitrary non-zero constants. Eq. (3.26) can
be traced to the well-known Vakhnenko equation (VE) which
was initially presented to model high-frequent wave motion in a
relaxing medium [28] . Recently, Eq. (3.26) has been discussed
using the ( G 

′ /G )-expansion method [15] and using the auxil-
iary equation method [23] . To calculate the exact solutions for
Eq. (3.26) a sensible step is to transform variables. We 

x = T + 

∫ x 

−∞ 

U (X 

′ , T ) dX 

′ + x 0 , t = X , (3.27)

where u (x, t) = U (X , T ) and x 0 is a constant. We introduce a
new function W defined by 

 (X , T ) = 

∫ x 

−∞ 

U (X 

′ , T ) dX 

′ . (3.28)

Then 

 X (X , T ) = U (X , T ) , W T (X , T ) = 

∫ x 

−∞ 

U T (X 

′ , T ) dX 

′ . (3.29)

It is easy to see that 

∂ 

∂T 

= 

∂ 

∂x 

∂x 

∂T 

+ 

∂ 

∂t 
∂t 
∂T 

, 
∂ 

∂X 

= 

∂ 

∂x 

∂x 

∂X 

+ 

∂ 

∂t 
∂t 
∂X 

. (3.30)
From Eqs. (3.27) and (3.30) , we have 

∂ 

∂T 

= (1 + W T ) 
∂ 

∂x 

, 
∂ 

∂X 

= 

∂ 

∂t 
+ u 

∂ 

∂x 

, (3.31)

and hence ϕu = U X , ϕ 

2 u = U X X . 
Now, Eq. (3.26) reduces to 

 X X X T + pW X W X T + q (1 + W T ) W X X + βW X T = 0 . (3.32)

Assume that W (X , T ) = W (ξ ) , where ξ = k (x − vt ) , then Eq.
(3.32) reduces to the equation 

k 

2 V W 

′′′ + 

1 
2 
(p + q ) kV (W 

′ ) 2 + (βV − q ) W 

′ = 0 (3.33)

with zero constants of integration. Setting r = 1 and W 

′ = v , we
have W (ξ ) = 

∫ 
v (ξ ) d ξ + d , where v (ξ ) satisfies the following

ODE: 

k 

2 V v ′′ + 

1 
2 
(p + q ) kV v 2 + (βV − q ) v = 0 . (3.34)

Balancing v ′′ with v 2 in Eq. (3.34) we get n = 2 . Consequently,
the exact solution of Eq. (3.34) can be written in the following
form: 

v (ξ ) = a 0 + a 1 F (ξ ) + a 2 F 2 (ξ ) , (3.35)

where F (ξ ) satisfies Eq. (2.5) . Substituting (3.35) in (3.34) and
collecting all terms with the same powers of F i , i = 0 , 1 , 2 , 3 , 4
together, the left hand side of Eq. (3.34) is converted into a poly-
nomial in F i . Setting each coefficient of this polynomial to be
zero, we get the following algebraic equations 

(βV − q ) a 0 + 

1 
2 
(p + q ) kVa 2 0 = 0 , 

(k 

2 V ) a 1 c 2 + 2 a 0 a 1 

(
1 
2 

)
(p + q ) kV + (βV − q ) a 1 = 0 , 

4 c 2 (k 

2 V ) a 2 + 3 cdk 

2 V + 2 
(

1 
2 

)
(p + q ) kVa 0 a 2 

+ 

1 
2 
(p + q ) kVa 2 1 + (βV − q ) a 2 = 0 , 

10 cdk 

2 Va 2 + 2 d 2 k 

2 Va 1 + 2 
(

1 
2 

)
(p + q ) kVa 1 a 2 = 0 , 

6 d 2 k 

2 Va 2 + 

1 
2 
(p + q ) kVa 2 2 = 0 . 

Solving the above algebraic equations, we have the results: 
Case (1) : 

a 0 = 

−2 k 

2 c 
p + q 

, a 1 = 

−12 kcd 
p + q 

, a 2 = 

−12 kd 2 

p + q 
, v = 

q 
β − k 

2 c 2 
. (3.36)

Case (2) : 

a 0 = 0 , a 1 = 

−12 kcd 
p + q 

, a 2 = 

−12 kd 2 

p + q 
, v = 

q 
β + k 

2 c 2 
. (3.37)

When d < 0 and c > 0 , the solution of Eq. (3.34) with using
case (1) is given by 

v 1 (ξ ) = 

−2 k 

2 c 
p + q 

− 12 kdc 2 exp [ cξ ] 

(p + q ) ( 1 − d exp [ cξ ] ) 2 
, (3.38)

and consequently, we get 
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[  

[

[  

[

[

[  

[

[

[

[  
 1 (ξ ) = −12 kd 2 c 2 

(p + q ) 

∫ 
exp [ cξ ] 

( 1 − d exp [ cξ ] ) 2 
dξ − 2 k 

2 c 
p + q 

ξ + d 1 

= −12 kcd 
p + q 

(
1 

1 − d exp [ cξ ] 

)
− 2 k 

2 c 
p + q 

ξ + d 1 (3.39) 

nd now the solution in this case is the soliton solution 

 1 (x, t) = W 1 x (ξ ) = 

12 k 

2 d 2 c exp [ cξ ] 

(p + q ) ( 1 − d exp [ cξ ] ) 2 
− 2 k 

3 c 
p + q 

. (3.40) 

lso solution of Eq. (3.34) with using case (2) is given by 

 2 (ξ ) = − 12 kdc 2 exp [ 2 cξ ] 

(p + q ) ( 1 − d exp [ cξ ] ) 2 
. (3.41) 

nd consequently, we get 

 2 (ξ ) = − 12 kdc 2 

(p + q ) 

∫ 
exp [ cξ ] 

( 1 − d exp [ cξ ] ) 2 
dξ + d 2 

= − 12 kc 
p + q 

(
1 

1 − d exp [ cξ ] 

)
+ d 2 (3.42) 

nd now the solution in this case is the soliton solution 

 2 (x, t) = W 2 x (ξ ) = 

−12 k 

2 c exp [ cξ ] 

(p + q ) ( 1 − d exp [ cξ ] ) 2 
. (3.43) 

hen d > 0 and c < 0 the solution of Eq. (3.34) with using case
1) is given by 

 3 (ξ ) = 

−2 k 

2 c 
p + q 

+ 

12 kdc 2 exp [ 2 cξ ] 

(p + q ) ( 1 + d exp [ cξ ] ) 2 
. (3.44) 

nd 

 3 (ξ ) = − 12 kc 
p + q 

(
1 

1 + d exp [ cξ ] 

)
− 2 k 

2 c 
p + q 

ξ + d 3 (3.45) 

nd 

 3 (x, t) = W 3 x (ξ ) = 

12 k 

2 dc exp [ cξ ] 

(p + q ) ( 1 + d exp [ cξ ] ) 2 
− 2 k 

3 c 
p + q 

. (3.46) 

lso solution of Eq. (3.34) with using case (2) is given by 

 4 (ξ ) = 

12 kdc 2 exp [ 2 cξ ] 

(p + q ) ( 1 + d exp [ cξ ] ) 2 
. (3.47) 

nd 

 4 (ξ ) = − 12 kc 
p + q 

(
1 

1 + d exp [ cξ ] 

)
+ d 4 (3.48) 

nd 

 4 (x, t) = W 4 x (ξ ) = 

12 k 

2 dc exp [ cξ ] 

(p + q ) ( 1 + d exp [ cξ ] ) 2 
. (3.49) 

. Conclusions 

n this paper, the simple equation method has been success- 
ully used to obtain the exact solution of KP equation, the 
2 + 1) -dimensional breaking soliton equation and the modi- 
ed generalized Vakhnenko equation. As the simple equation, 
e have used the Bernoulli and Riccati equations. For the simple 
quation, we have obtained a balance equation. By means of 
alance equation, we obtained exact solutions of the studied 

lass of nonlinear PDEs, we have also verified that solutions we
ave found are indeed solutions to the original equations. Fi- 
ally, we point out of either integrable or non-integrable non- 

inear coupled systems. 
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