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a b s t r a c t

Prudent walks are self-avoiding walks on a lattice which never
step into the direction of an already occupied vertex. We study the
closed version of these walks, called prudent polygons, where the
last vertex of the walk is adjacent to its first one. More precisely,
we give the half-perimeter generating functions of two subclasses
of prudent polygons on the square lattice, which turn out to be
algebraic and non-D-finite, respectively.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The enumeration of self-avoiding walks (SAW) and polygons (SAP) on a lattice by their number
of steps [11] is a long standing problem in combinatorics. Extrapolation of series data from exact
enumeration has led to high precision estimates of the exponential growth rate and subexponential
corrections but an exact solution of either problem (i.e. finding the generating function, see below)
seems out of reach. Rechnitzer [16] has shown that the anisotropic generating function of SAPs on
the square lattice is not D-finite. A (possibly multivariate) function f (z) is D-finite, if the vector space
over C(z) spanned by its derivatives is finite dimensional. In the univariate case this means that f
is a solution of a homogeneous linear ordinary differential equation with polynomial coefficients.
At present one tries to find solvable subclasses with large exponential growth rates. This approach
is particularly successful in two dimensions. We will restrict to the square lattice in our paper. One
promising example is the class of prudentwalks (PW) [5,14]. These are SAWswhich never step towards
an already occupied vertex. Note that a general prudent walk is not reversible, i.e. the walk traversed
backwards from its terminal vertex to its initial vertex may not be prudent. Since SAWs are counted
modulo translation, we may choose the initial vertex of a PW to be the origin (0, 0). The full problem
of PW is unsolved, but recently Bousquet-Mélou [2] succeeded in enumerating a substantial subclass.
We adopt the terminology of her paper and use the same methods to obtain the generating functions
for the corresponding polygon models defined below. Every nearest neighbour walk on the square
lattice has a minimal bounding rectangle containing it, referred to as the box of the walk. It is easy
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to see that each unit step of a prudent walk ends on the boundary of its current box. (This is not a
characterisation of PWs, e.g. the walk (0, 0) → (0, 1) → (1, 1) → (2, 1) → (2, 0) → (1, 0) is not
prudent.) This property allows the definition of the following subclasses. Call a PW one-sided, if every
step ends on the top side and two-sided, if every step ends on top or on the right side of the current
box. Similarly, a PW is referred to as three-sided if every step ends on the left, top or the right side of
the current box and additionally each left step and each right step that ends on the bottom side of the
current box inflates the box.

Remark. (i) As soon as thewidth of the boxof a PW is greater thanone, the latter additional condition
is redundant. It rules out certain configurations which can occur only if the box width is equal to
one, namely ‘‘downward zig-zags’’ of width one, e.g. . . . → (1, 0) → (1,−1) → (0,−1) →
(0,−2)→ (1,−2)→ (1,−3)→ . . .which needlessly complicate the computations below.

(ii) Duchi [5] introduced two-sided and three-sided PWs as type-1 and type-2 PWs, respectively. In [4,
7] the authors also employ her notation.

Explicit expressions for the generating functions of one-, two- and three-sided PWs have been
found so far confirming the data obtained in [4,7] by computer enumeration. The first class consists
of partially directed walks and has a rational generating function. The second class was shown to
have an algebraic generating function by Duchi [5] and recently in [2] the third class was solved and
the generating function was found not to be D-finite. Guttmann [4,7,9] proposed to study the polygon
version of the problem,meaningwalks,whose last vertex is adjacent to the starting vertex.Weexclude
single edges from this definition. As above, the property of being prudent demands a starting vertex
and a terminal vertex. So prudent polygons are rooted polygonswith a directed root edge. Note further
that a prudent polygon (PP) which ends, say, to the right of the origin (i.e. in the vertex (1, 0)) may
never step right of the line x = 1, and furthermore if the walk hits that line it has to head directly
to the vertex (1, 0). So prudent polygons are directed in the sense that they contain a corner of their
box. Moreover, a k-sided PP can be interpreted as a (k−1)-sided PW confined in a half-plane, see also
Section 6. In this paper we deal with the polygon versions of the two-sided and three-sided walks,
referred to as two-sided and three-sided PPs. Enumeration of one-sided PPs is trivial, since these are
simply rows of unit cells. We give explicit expressions for the half-perimeter generating functions of
two-sided PPs and three-sided PPs and show that the latter is not D-finite, as expected on numerical
grounds [4,7]. To our knowledge three-sided PPs are the first exactly solved polygon model with a
non-D-finite half-perimeter generating function. Enumeration of the full class of PPs remains an open
problem, as for the walk case.
Outline: In Section 2 we give functional equations for the generating functions which are based on
decompositions of the classes in question, in Section 3 we solve those by the kernel method [1–3,
12] and in Section 4 we study the analytic behaviour of the generating functions of two-sided and
three-sided prudent polygons. Section 5 is dedicated to the random generation of three-sided PPs.

2. Functional equations

In combinatorial enumeration of objects from a class P (say PPs) with respect to counting
parameters c1, . . . , cn : P → Z≥0 (say perimeter, area etc.) the (multivariate) power series

P (x1, . . . , xn) =
∑
α∈P

xc1(α)1 · · · xcn(α)n

is called the generating function of P . In the following we will count prudent polygons by half-
perimeter and other, so-called catalytic counting parameters. The variables in the generating function
marking the latter are called catalytic variables. Their introduction allows us to translate certain
combinatorial decompositions into non-trivial functional equations for the associated generating
functions [8]. Furthermore, we identify a PP (a ‘‘closed’’ PW)with the collection of unit cells it encloses
and build larger PPs from smaller ones by attaching unit cells in a prudent fashion, i.e. the new
boundarywalkwith the same initial vertex remains prudent. A two-sided prudent polygon either ends
at the vertex above the origin or at the vertex to the right of it. This partitions two-sided PPs into two
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Fig. 1. Degenerate (left) and generic 2-sided PPs ending on the top of the box.

Fig. 2. Illustration of the decomposition underlying functional equation (2.1).

subsets, which can be transferred into each other by the reflection in the diagonal x = y. So it suffices
to enumerate prudent polygons ending on the top of their box. Here two cases occur, namely the
‘‘degenerate’’ casewhen the first steps of thewalk are left. The resulting PP is simply a row of unit cells
pointing to the left. These have a half-perimeter generating function t2+ t3+· · · = t2/(1− t). In the
‘‘generic case’’ such a PP is a bar graph turned upside down, i.e. a column convex polyomino containing
the top side of its bounding box, cf. Fig. 1. Denote by B(t, u, w) the generating function of bar graphs
counted by half-perimeter, width and height of the rightmost column (catalytic parameter), marked
by t, u and w respectively. Here w is the catalytic variable. The width parameter is not a catalytic
parameter. However, it will be important in the study of three-sided PPs. We follow the lines of [1].

Lemma 2.1. The generating function B(t, u, w) of bar graphs satisfies the functional equation

B (t, u, w) = u
(
t2w
1− wt

+
wt (B (t, u, 1)− B (t, u, w))

1− w
+
B (t, u, w) t2w
1− wt

)
. (2.1)

Proof. A bar graph is either a single column, or it is obtained by attaching a new column to the right
side of a bar graph. The decomposition is sketched in Fig. 2. Single columns of height ≥1 contribute
ut2w/(1−wt) to the generating function. The polygons obtained by adding a columnwhich is shorter
than or equal to the old rightmost column contribute the second summand. This is seen as follows. A
polygon of half-perimeter n, width k and rightmost column height l contributing tnukwl to B(t, u, w)
gives rise to l polygons whose rightmost column is shorter or equal. Their contribution sums up to

tu
l∑
j=1

tnukwj = tuw
tnuk1l − tnukwl

1− w
. (2.2)

Summing this over all polygons gives the second summand. The third summand corresponds to adding
a larger column. To this end duplicate the rightmost column and attach a non-empty column below
the so obtained new rightmost column. A so obtained bar graph can be viewed as an ordered pair of a
bar graph and a column. The generating function of those pairs is the third summand of the rhs. This
finishes the proof. �

The walk constituting the boundary of a three-sided PP has (0, 0) as its initial vertex and (1, 0) or
(−1, 0) or (0, 1) as its terminal vertex. Those walks with terminal vertex (0, 1) may not step above
the line y = 1 and they have to move directly to the vertex (0, 1) as soon as they step upon that line.
This leads to two sorts of bar graphs either rooted on their left or on their right side, see Fig. 3.
So only those three-sided PPs are of further interest, which end in (1, 0) or (−1, 0). Both classes

are transformed into each other by a reflection in the line x = 0.We study those ending to the right of
the origin in the vertex (1, 0). Again a degenerate and a generic case are distinguished, according to
whether such a PP reaches its terminal vertex from below via the vertex (1,−1) (‘‘counterclockwise
around the origin’’) or from above, via the vertex (1, 1) (‘‘clockwise’’). In the degenerate case we
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Fig. 3. Three-sided PPs with terminal vertex (0, 1) are bar graphs.

Fig. 4. Degenerate and generic three-sided PPs, catalytic variables.

Fig. 5. Illustration of the decomposition underlying functional equation (2.3).

simply obtain a single column. In the generic case, a (possibly empty) sequence of initial down steps is
followed by a left step. So denote by R(t, u, w) the generating function of the generic three-sided PPs
ending in the vertex (1, 0) counted by half-perimeter, the length of the top row and the distance of
the top left corner of the top row and the top left corner of the box,marked by t, u, andw, respectively,
cf. Fig. 4. Here both u andw are catalytic variables.

Lemma 2.2. The generating function R(t, u, w) of generic three-sided PPs satisfies the functional equation

R(t, u, w) = ut (B (t, u)+ t)+
ut (R (t, w,w)− R (t, u, w))

w − u

+
ut2 (R (t, u, w)− R (t, u, ut))

w − ut
+ R (t, u, ut) ut (B (t, u)+ t) , (2.3)

where B(t, u) := B(t, u, 1) is the generating function of bar graphs counted by half-perimeter and width.

Proof. The decomposition we use is sketched in Fig. 5. The polygons in question contain the top right
corner of their box. This corner is some point (1, y). If y = 1, then the PP is either the unit square
containing (0, 0) and (1, 1) or a bar graph as above with that unit square glued to the right. This
yields the first summand. A PP with y > 1 is obtained in one of the following three ways from a PP
with top right corner (1, y − 1). The first is to add a new row on top, which is shorter than or equal
to the original top row. A similar computation as in (2.2) (with some additional book keeping on w)
yields the second summand. The second way to obtain a larger PP from a smaller one is by adding a
new rowon top,which is longer than the original top row, but does not inflate the box to the left. Again
a treatment similar to the computation in (2.2) yields the third summand. The third way to extend a
PP is to add a row on top of length equal to the width of the box plus one and possibly an arbitrary bar
graph. This finally yields the fourth summand and the functional equation is complete. �

Remark. As in the case of general SAPs [10] we can define a concatenation of two three-sided PPs.
Roughly speaking, the one PP can be enlarged by inserting the other one at the top corner of the
leftmost column, see Fig. 6.

The numbers pp(m)3 of three-sided PPs hence satisfy pp(m+n)3 ≥ pp(m)3 · pp
(n)
3 . This implies the

existence of a connective constant β , i.e. a representation pp(m)3 = exp(βm + o(m)). The precise
value for β and the subexponential corrections are given in Section 4. The converse inequality holds
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Fig. 6. Concatenating two 3-sided PPs.

for prudent walks, since breaking an m + n step PW after m steps leaves one with a pair of prudent
walks of respective lengthsm and n.

3. Solution by the kernel method

The following result has already been obtained in [15] as the solution of an algebraic equation
which arises from a different decomposition of the class. We derive it here for completeness and to
recall the ‘‘classic’’ kernel method as applied in [1].

Theorem 3.1. The generating function B(t, u) := B(t, u, 1) of bar graphs counted by half-perimeter and
width is equal to

B(t, u) =
1− t − u(1+ t)t −

√
t2(1− t)2u2 − 2t

(
1− t2

)
u+ (1− t)2

2tu
. (3.1)

Proof. The functional equation (2.1) is equivalent to

0 =
(
t2uw(1− w)− uwt(1− wt)− (1− w)(1− wt)

)
B(t, u, w)

+ tuw(1− wt)B(t, u, 1)+ t2uw(1− w). (3.2)

The kernel equation

0 =
(
t2uw(1− w)− uwt(1− wt)− (1− w)(1− wt)

)
is a quadratic equation in the catalytic variable w and has the following unique power series solution
q(t, u)

q(t, u) =
1+ (1− u)t + ut2 −

√
t2(1− t)2u2 − 2t

(
1− t2

)
u+ (1− t)2

2t
. (3.3)

Upon substituting w = q(t, u) into Eq. (3.2), the terms with B(t, u, w) are cancelled and we can
solve for B(t, u, 1), which leads to (3.1). �

Remark. In principle, B(t, u, w) can also be computed, by substituting the result for B(t, u, 1) into
Eq. (3.2).

By setting u = w = 1 in the bar graph generating function, adding the contribution of the
degenerate two-sided PPs and multiplication by 2, we obtain the following result so far conjectured
by series extrapolation from exact enumeration data [4].

Corollary 3.2. The generating function of two-sided prudent polygons is equal to

PP2(t) =
1
t

(
1− 3t + t2 + 3t3

1− t
−

√
(1− t)

(
1− 3t − t2 − t3

))
= 4 z2 + 6 z3 + 12 z4 + 28 z5 + 72 z6 + 196 z7 + 552 z8 + 1590 z9

+ 4656 z10 + 13 812 z11 + 41 412 z12 + 125 286 z13 + 381 976 z14

+ 1172 440 z15 + 3620 024 z16 + 11 235 830 z17 + 35 036 928 z18

+ 109 715 014 z19 + 344 863 872 z20 + · · · . (3.4)
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Now we turn to the three-sided case. Note that the sum of the catalytic counting parameters,
namely the length of the top row and the distance of its top left corner to the top left corner of the
box, is equal to the width of the polygon. We have the following result for the generic three-sided PPs
ending on the right. It is derived in a similar way as the corresponding result on PWs in [2].

Theorem 3.3. The functional equation (2.3) has a unique power series solution. For the generating
function R(t, w,w) of generic three-sided prudent polygons ending on the right and counted by half-
perimeter and width we have an explicit expression as an infinite sum of formal power series

R(t, w,w) =
∑
k≥0

L
((
tq2
)k
w
) k−1∏
j=0

K
((
tq2
)j
w
)
. (3.5)

Here

q := q(t, 1) =
t2 + 1−

√
1− 4 t + 2 t2 + t4

2t
, (3.6)

with q(t, u) as in (3.3) in the proof of Theorem 3.1. K and L are given by

K(w) =
(1− t) q− 1−

((
1− t + t2

)
q− 1

)
(B (t, qw)+ t) w

1− t (1+ t) q−
(
t
(
1− t − t3

)
q+ t2

)
(B (t, qw)+ t) w

(3.7)

and

L(w) =

(
1+ t2 −

(
1− 2 t + 2 t2 + t4

)
q
)
(B (t, qw)+ t) w

1− t (1+ t) q−
(
t
(
1− t − t3

)
q+ t2

)
(B (t, qw)+ t) w

, (3.8)

where B(t, u) is the generating function of bar graphs as in (3.1).

Proof. The functional equation (2.3) is equivalent to

0 =
(
ut2(w − u)− ut(w − ut)− (w − u)(w − ut)

)
R(t, u, w)

+
(
ut (B(t, u)+ t) (w − u)(w − ut)− t2u(w − u)

)
R(t, u, ut)

+ ut(w − ut)R(t, w,w)+ ut(w − u)(w − ut) (B(t, u)+ t) . (3.9)

We first solve the kernel equation(
ut2(w − u)− ut(w − ut)− (w − u)(w − ut)

)
= 0

for u andw. The unique power series solutions are U(t, w) = q(t)w resp.W (t, u) = q(t)tu, with q(t)
as in (3.6). We substitutew = W (t, u) in Eq. (3.9) and obtain an expression for R(t, u, ut) in terms of
R (t, qtu, qtu), namely

R (t, u, ut) =
(q− 1) R (t, qtu, qtu)+ (1− q) (1− tq) (B (t, u)+ t) u

1− qt − (1− q) (1− tq) (B (t, u)+ t) u
. (3.10)

Substitute this into Eq. (3.9) and set u = U(t, w). This relates R(t, w,w) and R
(
t, wtq2, wtq2

)
as

follows:

R(t, w,w) = K(w) · R
(
t, wtq2, wtq2

)
+ L(w), (3.11)

with K(w) and L(w) as in (3.7) and (3.8). K(w) and L(w) are a formal power series in t , which is seen
as follows: B (t, qw) is well-defined as a formal power series in t as

[
tN
]
B(t, u) is a polynomial in u of

degree atmostN−1. Furthermore by the definition of Bwe see B(t, u) = t2u+O(t3). The denominator
is now easily seen to be 1 + O(t), so both K(w) and L(w) are well-defined as formal power series in
t. Inspecting the first few coefficients we see (1− t)q− 1 = O

(
t3
)
and 1−

(
1− t + t2

)
q = O

(
t2
)
,

so the numerator of K(w) is O
(
t3
)
. In a similar way the numerator of L(w) is seen to be w · O

(
t2
)
.

Moreover we have tq2 = t + O
(
t2
)
. So we can iterate Eq. (3.11) and obtain formula (3.5). �
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Remark. (i) We have the following alternative expressions for K(w) and L(w) :

K(w) =

(
(1− q)(1− qt)qwt (B(t, qw)+ t)+ t2q(q− 1)

)
(q− 1)

q(1− qt)2 ((1− q)qwt (B(t, qw)+ t)+ t)
(3.12)

and

L(w) =
(1− qt)(1− q2t)(q− 1)qtw (B(t, qw)+ t)
q(1− qt)2 ((1− q)qwt (B(t, qw)+ t)+ t)

. (3.13)

The expressions (3.7) and (3.8) were obtained by expressing powers of q in terms of q, e.g.

q2 =
(
t
(
t2 + 1

)
q− t

)
/t2,

q3 =
(
t
(
t4 + 2t2 − t + 1

)
q− t3 − t

)
/t3,

q4 =
(
tq
(
t6 + 3t4 − 2t3 + 3t2 − 2t + 1

)
− t + t2 − 2t3 − t5

)
/t4.

(ii) In principle one could also compute R(t, u, w). To obtain the generating function of all three-sided
PPs we sum up the contributions of the degenerate PPs and those ending on top, multiply by two and
obtain

PP3(t) = 2
(
t2

1− t
+ B(t, 1)+ R(t, 1, 1)

)
.

The first few terms of the series PP3(t) are

PP3(t) = 6 t2 + 10 t3 + 24 t4 + 66 t5 + 198 t6 + 628 t7 + 2068 t8 + 7004 t9 + 24260 t10

+ 85596 t11 + 306692 t12 + 1113204 t13 + 4085120 t14

+ 15131436 t15 + 56495170 t16 + 212377850 t17 + 803094926 t18

+ 3052424080 t19 + 11653580124 t20 + · · · .

4. Analytic properties of the generating functions

So far we have considered the generating functions in question as formal power series. A crude
estimate on the number of SAPs of half-perimeter n is 42n which is the total number of all nearest
neighbour walks on the square lattice of length 2n. So the series PP2(t) and PP3(t) converge at least in
the open disc {|t| < 1/16} and represent analytic functions there. This section deals with the analytic
properties of these functions.We first discuss the analytic structure of the generating function of two-
sided PPs.

Proposition 4.1. The generating function PP2(t), cf. (3.4), is algebraic of degree 2, with its dominant
singularity a square root singularity at t = ρ , where ρ is the unique real root of the equation

1− 4 t + 2 t2 + t4

1− t
= 1− 3t − t2 − t3 = 0. (4.1)

With θ = 3
√
26+ 6

√
33 the exact value for ρ can be written as

ρ =
θ2 − θ − 8
3θ

= 0.2955977 . . . .

The number pp(m)2 of two-sided PPs of half-perimeter m is asymptotically

pp(m)2 ∼ A · ρ
−m
·m−3/2 (m→∞),
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where

A =

√
(−37+ 11

√
33)θ2 + (−152+ 8

√
33)θ + 32

4
√
6πρ

= 0.8548166 . . . .

Remark. (i) The generating function of two-sided prudent walks is algebraic with its dominant
singularity a simple pole at σ = 0.403 . . .. Its coefficients are asymptotically equal to κ · σ −m,
where κ = 2.51 . . ., cf. [2].

(ii) The asymptotic number of bar graphs as well as staircase polygons (counted by half-perimeter)
andDyck paths (by half-length) is of the form κ ·µn ·n−3/2. Furthermore, the area randomvariables
in the fixed-perimeter (fixed-length) ensembles of all threemodels are known to convergeweakly
to the Airy distribution [6,17,19].

The analytic structure of PP3(t) is far more complicated due to the analytic structure of R(t, 1, 1),
which is stated in themain result Theorem 4.4. In what followswemake frequent use of the following
facts about the series q :

Lemma 4.2. The series q, (1− t)q−1, q2t, t(1+ t)q and t
(
1− t − t3

)
q+ t2 have non-negative integer

coefficients. For |t| ≤ ρ we have the estimates

|q| ≤
|t|2 + 1
2|t|

,
∣∣q2t∣∣ ≤ 1, |(1− t)q− 1| ≤ ρ, |1− t(1+ t)q| ≥ ρ. (4.2)

Equality holds if and only if t = ρ . Furthermore

q (ρ) =
ρ2 + 1
2ρ

=
1
√
ρ
. (4.3)

The singular behaviour of B
(
t, q

(
q2t
)N) and B(t, qw) plays an important role in the study of

R(t, 1, 1).

Lemma 4.3. For N ≥ 0 the dominant singularity of B
(
t, q

(
q2t
)N) is σN , which is the unique solution in

the interval [0, ρ) of the equation

u(t)− q
(
q2t
)N
=
1
t
·
1−
√
t

1+
√
t
− q

(
q2t
)N
= 0.

In particular, σ := σ0 = τ 2 = 0.2441312 . . ., where τ is the unique real root of the polynomial
t5+2t2+3t−2. The sequence {σN , N ≥ 0} is monotonically increasing and converges to ρ . Furthermore
B(t, qw) is analytic in the polydisc {|t| < ρ} × {|w| <

√
ρ}.

Proof. B(t, u) is singular if and only if

t2(1− t)2u2 − 2t
(
1− t2

)
u+ (1− t)2 = 0.

The relevant solution u(t)with u(ρ) = 1 is

u(t) =
1
t
·
1−
√
t

1+
√
t
. (4.4)

B
(
t, q

(
q2t
)N) is singular if q (q2t)N = u(t). This equation has a solution σN in the interval (0, ρ),

as u(t) → 1 and q
(
q2t
)N
→ (ρ2 + 1)/2ρ = 1/

√
ρ > 1, for t → ρ. Here u is strictly decreasing

and q
(
q2t
)N strictly increasing. We further see that σN converges to ρ, as for arbitrary fixed t with
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0 < t < ρ we can chose N sufficiently large, such that u(t) > q
(
q2t
)N , see Lemma 4.2. So σN ≥ t ,

which shows the convergence. Monotonicity follows, as q
(
q2t
)N+1

< q
(
q2t
)N for t ∈ (0, ρ). All

these singularities are square root singularities, as the expressions under the root are analytic in
|t| < ρ.B(t, qw) is singular, ifw = u(t)/q and hence

|w| =
|u(t)|
|q|
≥
√
ρu(ρ) =

√
ρ,

with equality if and only if t = ρ. So there is no singularity inside the polydisc. �

Now we are ready to state the main result, which is proven in the subsequent lemmas.

Theorem 4.4. The function R(t, 1, 1) is analytic in the disc {|t| < σ }with its unique dominant singularity
a square root singularity at σ . Moreover it is meromorphic in the slit disc

Dσ ,ρ = {|t| < ρ} \ [σ , ρ),

and it has infinitely many square root singularities in the set {σN , N = 0, 1, 2, . . .} . In particular,
R(t, 1, 1) is not D-finite.

Remark. (i) The number pp(m)3 of three-sided PPs of half-perimeter m is asymptotically equal to
κ · σ−m · m−3/2 for some positive constant κ . In particular, two-sided PPs are exponentially rare
among three-sided PPs.

(ii) The generating function of three-sided prudentwalks has its dominant singularity a simple pole at
σ = 0.403 . . ., as in the two-sided case. It ismeromorphic in some larger disc of radiusρ =

√
2−1

with infinitelymany simple poles in the intervall [ σ , ρ). Its coefficients grow like κ ·σ−m, for some
κ > 0 [2].

Possible singularities of R(t, 1, 1) in Dσ ,ρ are zeroes of the denominators of K(w) and L(w), places,

where the representation (3.5) diverges, and square root singularities of B
(
t, q

(
q2t
)N)

. Now we
investigate the analytic properties of the single summands in the representation (3.5).

Lemma 4.5. 1. K
((
q2t
)N) and L ((q2t)N) are analytic in {|t| < σN}.

2. K
((
q2t
)N
w
)
and L

((
q2t
)N
w
)
are analytic in {|t| < ρ} × {|w| <

√
ρ}.

Proof. With the above definition of u(t) and a short computation we obtain the estimate∣∣∣B (t, q (q2t)N)∣∣∣ < B(|t|, u(|t|)) = √|t|. (4.5)

The denominator of K(w) and L(w) is

1− T (t, w) = 1− t (1+ t) q−
(
t
(
1− t − t3

)
q+ t2

)
(B (t, qw)+ t) w.

T (t, w) is a power series in t and w with non-negative coefficients and T (0, w) = 0. Hence we have
the estimate

T
(
t,
(
q2t
)N)
≤ T

(
σN ,

(
q (σN)2 σN

)N)
≤ T

(
σN ,
u (σN)
q (σN)

)
.

A computation shows that the function 1− T (t, u(t)/q(t))

1− T
(
t,
u(t)
q(t)

)
= 1− t (1+ t) q−

(
t
(
1− t − t3

)
q+ t2

) (√
t + t

) u(t)
q(t)

has no zeroes in [σ , ρ]. This finishes the proof of the first assertion, as K
((
q2t
)N) and L ((q2t)N) do

not have poles inside {|t| < σN}. Furthermore, the denominator 1− T
(
t,
(
q2t
)N
w
)
is analytic in the
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polydisc {|t| < ρ} × {|w| <
√
ρ}, with the only singular point (t, w) = (ρ,

√
ρ) on its boundary. As

above we see∣∣∣T (t, (q2t)N w)∣∣∣ ≤ T (|t|, |w|) ≤ T (ρ, u(ρ)
q(ρ)

)
= T

(
ρ,
√
ρ
)
,

and hence the denominator is non-zero in the domain in question and K
((
q2t
)N
w
)
and L

((
q2t
)N
w
)

are both analytic in the polydisc. �

Lemma 4.6. 1. The series representation (3.5) of R(t, 1, 1) is a series of algebraic functions, which
converges compactly in the slit disc Dσ ,ρ = {|t| < ρ} \ [σ , ρ) to a meromorphic function.

2. Furthermore the corresponding representation of R(t, w,w) converges compactly in the polydisc
{|t| < ρ} × {|w| <

√
ρ} to an analytic function.

3. The Taylor expansion of R(t, w,w) about (t, w) = (0, 0) converges absolutely in {|t| < ρ}× {|w| <
√
ρ}.

Proof. For the first assertion choose 0 < r < ρ. We look at the disc {|t| ≤ r}. The term independent
of w in the numerator of K(w) is strictly less than ρ for |t| ≤ r and the corresponding term in the
denominator is strictly larger than ρ, see Lemma 4.2. So we can choose N large such that σN > r and∣∣∣K ((q2t)N)∣∣∣ < 1 for |t| ≤ r . Split the series at N . The summands for k = 0, . . . ,N − 1 sum up to a
function which is meromorphic in the slit disc {|t| ≤ r} \ [σ , r]. In the rest of the series take out the
common factors to obtain

N−1∏
j=0

K
((
tq2
)j)∑

k≥0

L
((
tq2
)N+k) k−1∏

j=0

K
((
tq2
)N+j)

. (4.6)

The first product is a meromorphic function in the slit disc. L
((
tq2
)N+k) is easily seen to converge

uniformly to 0 in |t| ≤ r as k → ∞. In |t| ≤ r all summands are holomorphic (see the above
discussion) and the sum can be estimated by a geometric series and hence converges uniformly in the
compact disc {|t| ≤ r}. By Montel’s theorem the limit of the sum is again analytic. This finishes the
proof for the first assertion. The second assertion is proven along the similar lines. By the multivariate
version of Montel’s theorem [18] the limit function is also analytic in the domain in question and thus
the third assertion follows. �

Lemma 4.7. R(t, 1, 1) is singular at infinitely many of the σN . Furthermore, R(t, 1, 1) is singular at σ .

Proof. Terms singular at σN only show up in the summands for k ≥ N . The sum of these (4.6) is equal
to

N−1∏
j=0

K
((
tq2
)j) [

L
((
tq2
)N)
+ K

((
tq2
)N)
R
(
t,
(
tq2
)N+1

,
(
tq2
)N+1)]

. (4.7)

In order to show that the singularity σN does not cancel, only the term in square brackets is of
interest. Singular terms show up in the numerators and the common denominator of K

((
tq2
)N) and

L
((
tq2
)N). We now manipulate the expressions (3.12) and (3.13) for K(w) and L(w) in order to get

rid of singular terms in the denominator, where the factor

(1− q)qwt (B(t, qw)+ t)+ t

leads to a singularity at σN forw =
(
tq2
)N . Write

qwt (B(t, qw)+ t) = A(w)− φ(w),
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where

A(w) =
1
2
(1+ t − qw(1+ t)t)

φ(w) =
1
2

√
t2(1− t)2(qw)2 − 2t

(
1− t2

)
qw + (1− t)2.

Then A
((
tq2
)N) is analytic in {|t| < ρ}. After multiplication of the numerator and denominator

with (1− q)A(w)+ t + (1− q)φ(w) there is no more occurrence of φ in the denominator. We now
have to collect the terms involving φ(w) in the numerators of K(w) and L(w). In the numerator of
K(w) the terms involving φ(w) sum up to

PK (w)φ(w) := t(q− 1)2(1− q2t)φ(w).

The terms involving φ(w) in the numerator of L(w) sum up to

PL(w)φ(w) := (1− qt)(1− q2t)(1− q)tφ(w).

So the singularity at σN can only cancel if

−

PL
((
σNq(σN)2

)N)
PK
((
σNq(σN)2

)N) = R (σN , (σNq(σN)2)N+1 , (σNq(σN)2)N+1) . (4.8)

In order to prove that this equation can hold for at most finitely many of the σN , we show that for
σN sufficiently close to ρ the lhs of Eq. (4.8) is strictly decreasing while the rhs is strictly increasing.
Since (σN) is monotonically increasing and converges to ρ this will finish the proof. We first prove the
assertion on the rhs. The Taylor expansion of R(t, w,w) about (0, 0) has non-negative coefficients
and represents R(t, w,w) in the polydisc {|t| < ρ} × {|w| <

√
ρ} by Lemma 4.6. By the definition of

σN and u(t)we have(
σNq (σN)2

)N+1
= u (σN) q (σN) σN .

The rhs of the last equation is strictly increasing for sufficiently large N and converges to
√
ρ as

N →∞. The sequence σN is also strictly increasing by Lemma 4.3. So for large enoughN the sequence
R
(
σN ,

(
σNq (σN)2

)N+1
,
(
σNq (σN)2

)N+1)
is strictly increasing.

Now we turn to the lhs of Eq. (4.8). A computation yields

−

PL
((
σNq(σN)2

)N)
PK
((
σNq(σN)2

)N) = 1− σNq(σN)q(σN)− 1
,

which easily seen to be ultimately strictly decreasing. This finishes the proof of Lemma 4.7. �

The Lemmas 4.5–4.7 together constitute a proof of Theorem 4.4.

5. Random three-sided prudent polygons

In [2] prudent walks of a given fixed length are generated uniformly at random with a refined
version of a method proposed in [13]. We briefly describe a version of the method tailored to our
particular needs. The main ingredient are generating trees. These are trees with their nodes labelled in
such a way that if two nodes bear the same label, then the multisets of the labels of their children are
the same. In this section we present a generating tree for generic three-sided prudent polygons.
The decomposition underlying the functional equation (2.3) (cf. Fig. 5) yields a rule according to

which a larger three-sided prudent polygon can be constructed starting from a smaller one. We refine
this to a step-by-step procedure which allows to generate any three-sided PP of half-perimeter m in
a unique way, starting from the unit square, such that after the kth construction step we have a PP of
half-perimeter k+ 2, k = 0, 1, . . .m− 2. The four types of steps used in the construction are
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Fig. 7. The types of steps used to obtain a generating tree.

1. attaching a new top row which is shorter than or equal to the current top row,
2. attaching a unit square to the left side of the current top row,
3. attaching a new leftmost column which is shorter than or equal to the present leftmost column,
4. attaching a unit square to the bottom side of the leftmost column.

Any of these steps, if admissible, increases the half-perimeter by one, see Fig. 7. In the proof of the
functional equation (2.3) the steps of types 3 and 4 are encapsulated in the ‘‘attaching a bargraph to
the left’’ operation. Hence any generic three-sided PP can be generated starting from the unit square
by using only these steps.
To each polygon we associate a label encoding the admissible steps which can be applied to

enlargen it. This label is a four-tuple (A, B, k, l) ∈ {L, T } × {y, n} × Z2
≥0. A encodes the last building

step. It is equal to T (top), if the last step was of type 1 which inflated the box to the top, or of type
2 but without inflating the box to the left. A is equal to L if the last step was of type 2 and thereby
inflating the box to the left, or of types 3 or 4. If A = T , the parameter B ∈ {y, n} (yes/no) indicates if
the current top row is longer than or equal to the second row from the top, and hence if a step of type
2 is applicable. Similarly, if A = L, B decides if a step of type 4 can be performed, i.e. if the leftmost
column is shorter than or equal to the second but leftmost one. The parameter k always denotes the
length of the top row, and l is either the length of the leftmost column or the distance of the left end
of the top row to the left side of the box, depending on whether A = L or A = T , respectively. Finally,
the unit square receives the label (L, n, 1, 1).

Labels for the generating tree of 3-sided PPs

A B k l

T Top row extendable? Length of top row Distance of box to top row
L Left col. extendable? Length of top row Length of leftmost col

Remark. The polygons with A = L are precisely those corresponding to the first and last term on the
rhs of functional equation (2.3), see also Fig. 5 (‘‘attaching bar graphs’’).

The construction steps yield the following rewriting rules for the labels.

(T , n, k, l)→
{
(T , n, i, l+ k− i), i = 1, . . . , k− 1
(T , y, k, l) (5.1)

(T , y, k, l)→


(T , n, i, l+ k− i), i = 1, . . . , k− 1
(T , y, k, l)
(T , y, k+ 1, l− 1), if l ≥ 1
(L, n, k+ 1, 1), if l = 0

(5.2)

(L, n, k, l)→


(T , n, i, k− i), i = 1, . . . , k− 1
(T , y, k, 0)
(L, n, k+ 1, i), i = 1, . . . , l− 1
(L, y, k+ 1, l)

(5.3)

(L, y, k, l)→


(T , n, i, k− i), i = 1, . . . , k− 1
(T , y, k, 0)
(L, n, k+ 1, i), i = 1, . . . , l− 1
(L, y, k+ 1, l)
(L, y, k, l+ 1).

(5.4)
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Fig. 8. Random 3-sided PPs of half-perimeter 250.

The labelled rooted tree generated according to these rewriting rules with its root labelled (L, n, 1, 1)
is a generating tree for three-sided prudent polygons.
The idea is that polygons of half-perimeterm correspondbijectively to paths of lengthm−2 starting

in the root (and hence to vertices on the level m − 2). In order to generate such a polygon (or path)
uniformly at random, each step in the path has to be chosen according to an appropriate probability.
This probability can be expressed in terms of extension numbers. If π is a polygon of half-perimeter
m− s (a path of lengthm− s− 2), then EX(π, s) denotes the number of polygons of half-perimeterm
which can be reached from π in s construction steps, or equivalently of extensions of length s of the
path. Denote by Ch(π) the set of polygons obtained from π in one step, i.e. the children of π in the
generating tree. Now the right probability to choose α ∈ Ch(π) in our random sampling procedure is
equal to

P(α|π) =
EX(α, s− 1)
EX(π, s)

.

The numbers EX(π, s) can be computed recursively, namely

EX(π, s) =

1 if s = 0,∑
α∈Ch(π)

EX(α, s− 1) otherwise.

The crucial observation is that EX(π, ·) only depends on the label of π . In the first m − 2 levels of
the tree O(m2) different labels occur since none of the parameters exceeds m. It hence takes O(m3)
operations to compute the all required extension numbers. We have implemented the procedure and
computed these numbers up tom = 250. See Fig. 8 for some samples.

6. Conclusion

We have solved the class of two-sided and three-sided prudent polygons, the generating function
being algebraic in the former and non-D-finite in the latter case. The analysis shows that two-sided PPs
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Fig. 9. Embedding of k-sided PPs into k− 1-sided PWs.

are exponentially rare among three-sided PPs which is different from the corresponding walk models
where the growth rates are equal.
It would be nice to solve the class of general prudent polygons. We expect that the involved

functional equations require three ormore catalytic variables, which is the case for the equation found
for the walk model.
Since the exponential growth rates of SAWs and SAPs are known to be equal [10] it is also

interesting to compare the exponential growth rates of k-sided PWs and PPs. To that end it suffices
to study PPs ending in (1, 0). As already mentioned in the introduction, a k-sided PP ending in (1, 0)
may never step right of the line x = 1 and it heads towards the vertex (1, 0) as soon as it hits that line
for the first time in a point (1, y0). Up to that step the boundary walk of that k-sided PP is genuinely
k−1-sided. This yields an injective map sending a k-sided PP to a k−1-sided PW simply by reflecting
the segment joining (1, y0) and (1, 0) in the line y = y0, see Fig. 9.We denote the so obtained subclass
of k − 1-sided PWs by ‘‘embedded k-sided PPs’’. If we count PPs by full perimeter, their exponential
growth rates become 1/

√
ρ = 1.83 . . . for two-sided PPs and 1/

√
σ = 2.02 . . . for three-sided PPs.

It is known that the exponential growth rate of PWs is equal to 1 +
√
2 = 2.41 . . . in the one-sided

case and equal to 2.48 . . . in the two- and three-sided cases [2]. The latter rate is also expected for
unrestricted PWs [4,7]. Consequently, for k = 2, 3, our results imply that k-sided PPs are exponentially
rare among k-sided PWs and, via embedding, among k− 1-sided PWs. Furthermore, the rate of three-
sided PPs is even smaller than that of one-sided PWs. This is not surprising looking at the pictures
in Fig. 8, as such a PP roughly consists of two ‘‘almost’’ one-sided PWs, one heading to the far left
followed by one ‘‘almost directed’’ walk up and to the right (and the closing tail). We expect that a
similar heuristic argument also applies in the general case, which is also supported by an estimated
value of approximately 2.1 < 1+

√
2 for the growth rate of general PPs [4,7].
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