
Theoretical Computer Science 428 (2012) 47–57

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Self-stabilizing gathering with strong multiplicity detection✩

Yoann Dieudonné a,∗, Franck Petit b
a MIS, Université de Picardie Jules Verne, France
b LIP6, UPMC Sorbonne Universités, France

a r t i c l e i n f o

Article history:
Received 5 January 2011
Received in revised form 6 December 2011
Accepted 9 December 2011
Communicated by D. Peleg

Keywords:
Distributed coordination
Gathering
Mobile robot networks
Self-stabilization

a b s t r a c t

In this paper,we investigate the possibility to deterministically solve the gathering problem
starting from an arbitrary configuration with weak robots, i.e., anonymous, autonomous,
disoriented, oblivious, anddevoid ofmeans of communication. By starting fromanarbitrary
configuration, we mean that robots are not required to be located at distinct positions in
the initial configuration. We introduce strong multiplicity detection as the ability for the
robots to detect the exact number of robots located at a given position. We show that with
strong multiplicity detection, there exists a deterministic algorithm solving the gathering
problem starting from an arbitrary configuration for n robots if, and only if, n is odd.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The distributed systems considered in this paper are teams (or swarms) of mobile robots (sensors or agents). Such
systems supply the ability to collect (to sense) environmental data such as temperature, sound, vibration, pressure, motion,
etc. Each robot interprets the information gathered from its sensors and acts in a given (sometimes dangerous) physical
environment. Numerous potential applications exist for such multi-robot systems, e.g., environmental monitoring, large-
scale construction, risky area surrounding, exploration of an unknown area. All these applications involve basic cooperative
tasks such as pattern formation, gathering, scatter, leader election, flocking, etc.

Among the above fundamental coordination tasks, we address the gathering (or Rendez-Vous) problem. This problem can
be stated as follows: robots, initially located at various positions, gather at the same position in finite time and remain at
this position thereafter. The difficulty to solve this problem greatly depends on the system settings, e.g.,whether the robots
can remember past events or not, their means of communication, their ability to share a global property like observable IDs,
sense of direction, global coordinate, etc. For instance, assuming that the robots share a common global coordinate system or
have (observable) IDs allowing to differentiate any of them, it is easy to come up with a deterministic distributed algorithm
for that problem. Gathering turns out to be very difficult to solve with weak robots, i.e., devoid of (1) any (observable) IDs
allowing to differentiate any of them (anonymous), (2) any central coordination mechanism or scheduler (autonomous),
(3) any common coordinate mechanism or common sense of direction (disoriented), (4) means of communication allowing
them to communicate directly, e.g., by radio frequency, and (5) any way to remember any previous observation nor
computation performed in any previous step (oblivious).

With the same algorithm for all robots, each robot computes a destination point according to the snapshot of the
positions of all other robots. Assuming that robots are points evolving on the plane, no deterministic algorithm exists for the
gathering problem if the system contains two robots only [21]. The gathering problem has been extensively studied in the
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literature assuming various settings. For instance, the robots move either in a discrete environment (i.e., among the nodes
of a graph) [12,15], or in the plane [1,2,5,13,16,17,21], their visibility can be limited (visibility sensors are supposed to be
accurate within a constant range, and sense nothing beyond this range) [13,19], robots are prone to faults [1,7], the robots
gather with some probability (i.e., they gather in an expected finite time) by using randomization [6,7,14], etc.

A deterministic system is self-stabilizing if, regardless of the initial states of the computing units, it is guaranteed to
converge to the intended behavior in a finite number of steps [11]. Self-stabilization is a very desirable property for modern
distributed systems in order to design distributed algorithms that withstand transient faults. In addition to fault-tolerance,
self-stabilizing systems encompass an other advantage that is the absence of initialization phase.

The gathering problem (as many other basic tasks related to robot coordination) is quite close to be a self-stabilizing task
in its statement. However, the gathering problem was always tackled in a deterministic way assuming that in the initial
configuration, no two robots are located at the same position. (A probabilistic solution with no restriction on the initial
configuration is proposed in [9].) As a matter of fact, none of the existing deterministic solutions for the gathering problem
works if some robots share the same positions in the initial configuration. So, effectively, as already noticed in [8,9], this
implies that none of them is ‘‘truly’’ self-stabilizing because some initial configurations (where robots are located at the
same positions) are avoided. Notice that surprisingly, such a restriction prevents to initiate the system in a configuration
where the problem is already solved—i.e., initially all the robots occupy the same position.

In this paper, we investigate the self-stabilizing gathering problem that is, gathering the robots deterministically with
no kind of restriction on the initial configuration. In particular, robots are allowed to share same positions in the initial
configuration. In [17], Prencipe shows that the gathering problem cannot be deterministically solved if the robots are devoid
of an extra capability, calledmultiplicity detection, i.e., each robot is able to knowwhether zero, one, or more than one robots
are located at position on the plane. As a matter of fact, it is easy to show that the multiplicity detection as above stated—in
the sequel referred to asweakmultiplicity detection—is not a sufficient capability allowing weak robots to deterministically
solve self-stabilizing gathering. Indeed, since the initial configuration is arbitrary, no matter the number of robots, all the
robots can be initially located at exactly two positions. As we consider deterministic solutions only, the systemmay behave
as if it contains exactly two robots, leading to the impossibility result in [21].

Let us introduce strong multiplicity detection as the ability for the robots to count the exact number of robots located at a
given position.1 Again, it is easy to show that even with such capability, the problem cannot be solved deterministically, if
the number of robots is even. The proof is similar as above: if initially the robots occupy exactly two positions, then there is
no way to maintain a particular position as an invariant. Again, the impossibility result in [21] holds. By contrast, we show
that with an odd number of robots, the problem becomes solvable. Our proof is constructive, as we present and prove a
deterministic self-stabilizing algorithm for the gathering problem.

In the next section (Section 2), we describe the distributed system, the problem considered in this paper and some basic
geometric requirements. Our main result with its proof is given in Section 3. We conclude this paper in Section 4.

2. Preliminaries

In this section, we define the distributed system followed by the problem considered in this paper. Basic geometric
requirements are also provided.

2.1. Distributed model

We adopt the semi-synchronous model introduced in [20], below referred to as SSM . The distributed system considered
in this paper consists of n robots r1, r2, . . . , rn—the subscripts 1, . . . , n are used for notational purpose only. Each robot ri,
viewed as a point in the Euclidean plane, moves on this two-dimensional space unbounded and devoid of any landmark. It
is assumed that two or more robots may simultaneously occupy the same physical location.

Any robot can observe, compute andmovewith infinite decimal precision. The robots are equippedwith sensors enabling
to detect the instantaneous position of the other robots in the plane. In particular, we assume that the robots are able to
sense the number of robots located at a given position. More formally:

Definition 1 (Strong Multiplicity Detection). The robots have strong multiplicity detection if, for every point p, their sensors
can detect the number of robots at p.

Each robot has its own local coordinate system and unitmeasure. The robots do not agree on the orientation of the axes of
their local coordinate system, nor on the unit measure. They are uniform and anonymous, i.e., they all have the same program
using no local parameter such that an (observable) identity allowing to differentiate any of them. They communicate only
by observing the position of the others and they are oblivious, i.e., none of them can remember any previous observation nor
computation performed in any previous step. In the sequel, such uniform, anonymous, disoriented, and oblivious robots are
said to be weak.

1 In [14], the authors provide randomized solutions for the gathering problem based on two variants (weak and strong) of multiplicity detection that
considers the current position of the robot only.
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Time is represented as an infinite sequence of time instants 0, 1, . . . , j, . . . Let P (t) be the set of the positions in the
plane occupied by the n robots at time t . For every t , P (t) is called the configuration of the distributed system in t . Given
any point p, |p| denotes the number of robots located at p. At each time instant t , each robot ri is either active or inactive.
The former means that, during the computation step (t, t + 1), using a given algorithm, ri computes in its local coordinate
system a position pi(t + 1) depending only on the system configuration at t , and moves toward pi(t + 1)—pi(t + 1) can be
equal to pi(t), making the location of ri unchanged. In the latter case, ri does not perform any local computation and remains
at the same position. In every single activation, the distance traveled by any robot r is bounded by σr . So, if the destination
point computed by r is farther than σr , then r moves toward a point of at most σr . This distance may be different between
two robots. Given a cohort of n robots {r1, r2, . . . , rn}, we denote by ϵ the distance such that ϵ = min(σr1 , σr2 , . . . , σrn).

The concurrent activation of robots is modeled by the interleaving model in which the robot activations are driven by
a fair scheduler. At each time instant t , the scheduler arbitrarily activates a (nonempty) set of robots. Fairness means that
every robot is infinitely often activated by the scheduler.

2.2. Specification

In the literature, the gathering problem is tackled assuming that initially, no two robots are located at the same position
(or node, if the environment is a graph). In this paper, we address the problem without any restriction on the initial
configuration. In other words, we aim to provide an algorithm able to work starting from any arbitrary configuration, i.e.,
even if initially some robots share the same locations.

Definition 2 (Self-Stabilizing Gathering Problem). The Self-Stabilizing Gathering Problem is to design a (deterministic)
distributed protocol (or, algorithm) P for nmobile robots so that, in every execution, the following properties are true:

– Convergence: regardless of the initial positions of the robots on the plane, all the robots gather at one point in finite time.
– Closure: starting from a configuration where all the robots are located at the same position, all the robots remain at the

same position thereafter.

Note that a probabilistic solution could not fit Definition 2. Indeed, convergence and closure together impose that the
protocol terminates in finite time. Any probabilistic solution only ensures that the protocol terminates in an expected finite
time.

2.3. Notations, basic definitions and properties

Given a configuration P , MaxP indicates the set of all the points p such that |p| is maximal. In other terms, ∀pi ∈ MaxP
and ∀pj ∈ P , we have |pi| ≥ |pj|. |MaxP | will be the cardinality of MaxP .

Remark 1. Since the robots have the strong multiplicity detection, then they are able to compute |p| for every point p ∈ P .
In particular, all the robots can determine MaxP (t) at each time instant t .

Given three distinct points r, r ′ and c in the plane, we say that the two half-lines [c, r) and [c, r ′) divide the plane into
two sectors if and only if:

– either r, r ′ and c are not collinear,
– or r, r ′ and c are collinear and c is between r and r ′ on the segment [r, r ′

].

If it exists then this pair of sectors is denoted by {△(rcr ′), ∇(rcr ′)} andwe assume that the two half-lines [c, r) and [c, r ′)
do not belong to any sector in {△(rcr ′), ∇(rcr ′)}. Note that, if the three points r, r ′, and c are not collinear then one of two
sectors is convex (angle centered at c between r and r ′

≤ 180o) and the other one is concave (angle centered at c between
r and r ′ > 180o). Otherwise, the three points r, r ′, and c are collinear and the two sectors are convex. More precisely, they
are straight (both conjugate angles centered at c between r and r ′ are equal to 180o).

Definition 3 (Smallest Enclosing Circle). [8] Given a setP of n ≥ 2 points p1, p2, . . . , pn on the plane, the smallest enclosing
circle of P , called SEC(P ), is the smallest circle enclosing all the positions in P . It passes either through two of the positions
that are on the same diameter (opposite positions), or through at least three of the positions in P .

When no ambiguity arises, SEC(P ) will be shortly denoted by SEC and SEC(P ) ∩ P will indicate the set of all the points
both on SEC(P ) and P . Besides, we will say that a robot r is inside SEC if, and only if, r is not located on the circumference
of SEC . In any configuration P , SEC is unique and can be computed in linear time [3].

Given a set P of n ≥ 2 points p1, p2, . . . , pn on the plane and SEC(P ) its smallest enclosing circle, Rad(SEC(P )) will
indicate the length of the radius of SEC(P ).

The next lemma states a simple fact:

Lemma 1. Let P1 be an arbitrary configuration of n points. Let P2 be a configuration obtained by pushing inside SEC(P1) all the
points which are in P1 ∩ SEC(P1). We have Rad(SEC(P2)) < Rad(SEC(P1)).
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Fig. 1. C2 is an enclosing circle for the three points ri, rj and rk . However, there is no point in the intersection between C2 and the concave sector formed by
ri , rj and the center c of C2 . So, C2 can be replaced by a smaller enclosing circle, here C1 , even if all the points are on the circumference of C2 .

Let S and C be a sector in {△(pcp′), ∇(pcp′)} and a circle centered at c , respectively. We denote by arc(C, S) the arc of
the circle C inside S. Given a set P of n ≥ 2 points p1, p2, . . . , pn on the plane and SEC(P ) its smallest enclosing circle
centered at c , we say that p and p′ are adjacent on SEC(P ) if, and only if, p and p′ are in P and there exists one sector
S ∈ {△(pcp′), ∇(pcp′)} such that there is no point in arc(SEC(P ), S) ∩ P .

The following property is fundamental about smallest enclosing circles:

Property 1. [4] Let P and c be a set of n ≥ 2 points p1, p2, . . . , pn in the plane and the center of SEC(P ), respectively. If p
and p′ are adjacent on SEC(P ) then, there does not exist a concave sector S in {△(pcp′), ∇(pcp′)} such that there is no point in
arc(SEC(P ), S) ∩ P .

Property 2 is more general than Property 1:

Property 2. Let P and c be a set of n ≥ 2 points p1, p2, . . . , pn in the plane and the center of SEC(P ), respectively. If p and p′

are in P then, there does not exist a concave sector S in {△(pcp′), ∇(pcp′)} such that there is no point in S ∩ P .

Proof. Assume by contradiction that p and p′ are in P and, there exists a concave sector S in {△(pcp′), ∇(pcp′)} such that
there is no point in S ∩ P . So, there is no point in arc(SEC(P ), S) ∩ P . We deduce that there exists a concave sector S′ in
{△(qcq′), ∇(qcq′)} such that q and q′ are adjacent on SEC(P ) and there is no point i arc(SEC(P ), S′) ∩ P . This contradicts
Property 1. �

Fig. 1 illustrates Property 2.

Observation 1. Given three collinear points, c, r , and r ′. If c is on the segment [r, r ′
], then c cannot be on the circumference of a

circle enclosing r and r ′.

Definition 4 (Convex Hull). [18] Given a set P of n ≥ 2 points p1, p2, . . . , pn on the plane, the convex hull of P , denoted
H(P ), is the smallest polygon such that every point in P is either on an edge of H(P ) or inside it.

Informally, convex hull can be seen as the shape of a rubber-band stretched around p1, p2, . . . , pn. The convex hull is
unique and can be computed with time complexity O(n log n) [18]. When no ambiguity arises, H(P )will be shortly denoted
by H and H(P ) ∩ P will indicate the set of the positions both on H(P ) and P .

From Definition 4, we deduce the following property:

Property 3. Let P be a set of n ≥ 2 points that are not on the same line and let H(P ) be a convex hull, respectively. The two
following properties are equivalent:

1. Any point c, not necessarily in P , is located on H (either on a vertex or an edge);
2. there is a concave or a straight sector S in {△(rcr ′), ∇(rcr ′)} such that r and r ′ are in P and there exists no point ∈ P ∩ S.

3. Self-stabilizing gathering

In this section, we prove the following theorem:

Theorem 1. With strong multiplicity detection, there exists a deterministic algorithm solving the self-stabilizing gathering
problem in SSM for n weak robots if, and only if, n is odd.

As mentioned in the introduction, even with strong multiplicity detection, no deterministic algorithm exists solving the
self-stabilizing gathering problem for an even number of robots. So, to prove Theorem 1, we give a deterministic algorithm
that solves the self-stabilizing gathering problem for an odd number of robots having the strong multiplicity detection. The
algorithm is followed by its correctness proof.
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3.1. A deterministic self-stabilizing algorithm for an odd number of robots

The main idea of our algorithm is as follows: it consists in transforming an arbitrary configuration P into one where
there is exactly one point pmax ∈ MaxP . When such a configuration is reached, all the robots which are not located at pmax
move toward pmax avoiding to create another point q than pmax such that |q| ≥ pmax. When |MaxP | ≠ 1, we will distinguish
two cases: |MaxP | = 2 and |MaxP | ≥ 3.

If MaxP = {pmax1; pmax2}, then each robot which is not neither at pmax1 nor at pmax2 moves toward its closest position
∈ MaxP by avoiding to create an adding maximal point. Since the number of robots is odd, we have eventually either
|pmax1| > |pmax2| or |pmax2| > |pmax1| and then, |MaxP | = 1.

For the case |MaxP | ≥ 3, our strategy consists in trying to create a unique maximal point inside SEC . To reach such a
configuration, we distinguish three cases:

1. If there is no robot inside SEC , then all the robots are allowed to move toward the center of SEC .
2. If all the robots inside SEC are located at the center of SEC , then only the robots in SEC ∩ MaxP are allowed to move

toward the center of SEC .
3. If some robots inside SEC are not located at the center of SEC , then only the robots inside SEC are allowed tomove toward

the center of SEC .

The algorithm is shown in Algorithm 1. It uses two subroutines:

– move_to_carefully(p) allows a robot r , located at q, tomove toward p only if there is no robot on the segment [q, p], except
the robots located at p or at q.

– choose_closest_position(p1, p2) returns the closest position to r among {p1, p2}. If the distance between r and p1 is equal
to the distance between r and p2, then the function returns p1.

Algorithm 1 Gathering for an odd number of robots, executed by each robot.

P := the set of all the positions;
MaxP := the set of all the points p ∈ P such that |p| is maximal;
if |MaxP | = 1
then pmax := the unique point in MaxP ;

if I am not on pmax;
thenmove_to_carefully(pmax);
endif

endif
if |MaxP | = 2
then pmax1 := the first point in MaxP ;

pmax2 := the second point in MaxP ;
if I am not neither on pmax1 nor pmax2
then q := choose_closest_position(pmax1, pmax2);

move_to_carefully(q);
endif

endif
if |MaxP | ≥ 3
then SEC := the smallest circle enclosing all the points in P ;

c := the center of SEC;
Boundary := SEC ∩ P ;
Inside := P \ Boundary;
if Inside ≠ ∅

then if All the robots ∈ Inside are located at c
then if I am in (Boundary ∩ MaxP )

thenmove_to(c);
endif

else if I am in Inside
thenmove_to(c);
endif

endif
else move_to(c);
endif

endif

3.2. Proof of closure

Lemma 2 (Closure). According to Algorithm 1, if all the robots are located at the same position p, then all the robots remain at
the same position thereafter.
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Proof. If all the robots are located at the same position p, then |MaxP | = 1 and all the robots are at the unique position
p ∈ MaxP . According to Algorithm 1, in the case |MaxP | = 1 the robots located on p remains idle. So, all the robots remain
at the same position forever. �

3.3. Proof of convergence

Cases |MaxP | = 1 and |MaxP | = 2.

Lemma 3. Let P be an arbitrary configuration for an odd number of n robots. According to Algorithm 1, if |MaxP | = 1 then all
the robots gather at the same position in finite time.

Proof. Let pmax be the unique point in MaxP (t). According to Algorithm 1, the robots located at pmax during step (t, t + 1)
remains idle. Moreover, according to Algorithm 1 and Functionmove_to_carefully(), if two robots ri and rj are not at the same
point at time t (pi(t) ≠ pj(t)), then pi(t + 1) ≠ pj(t + 1) at time t + 1 unless they have reached pmax. Hence, pmax remains
the unique point in MaxP (tk), for all tk ≥ t . So, according to Algorithm 1 and by fairness, we deduce that |pmax| = n in finite
time. �

Lemma 4. Let P be an arbitrary configuration for an odd number of n robots. According to Algorithm 1, if |MaxP | = 2 then all
the robots gather at the same position in finite time.

Proof. The proof is organized as follows: first, we prove that there exists tk ≥ t such that |MaxP (tk)| ≠ 2. Then, we prove
that there does not exist any time tk ≥ t such that |MaxP (tk)| ≥ 3. Finally, we deduce that Lemma 3 holds.

1. Assume by contradiction that no time tk ≥ t exists such that |MaxP (tk)| ≠ 2. Consequently, for every tk ≥ t ,
|MaxP (tk)| = 2. Let pmax1 and pmax2 be the two points in MaxP (t) at time t . According to Algorithm 1, every robot
located either on pmax1 or on pmax2 during step (t, t + 1) remains idle. Moreover, according to Algorithm 1 and Function
move_to_carefully(), if two robots ri and rj are not at the same point at time t , i.e., pi(t) ≠ pj(t) then pi(t + 1) ≠ pj(t + 1)
at time t + 1 unless either ri and rj have reached pmax1 or ri and rj have reached pmax2. So, by induction we deduce that
pmax1 and pmax2 remain the only positions in MaxP (tk) for every tk ≥ t . By fairness, we deduce that, all the robots are
either at pmax1 or at pmax2 in finite time. However, since the number of robots is odd then, we have either |pmax1| > |pmax2|

or |pmax1| < |pmax2|. Hence, |MaxP (tk)| = 1. A contradiction.
2. Assume by contradiction that there exists tk ≥ t such that |MaxP (tk)| ≥ 3. Without lost of generality, we assume that

tk is the first time for which |MaxP (tk)| ≥ 3. Clearly, there exists no time tl such that t < tl < tk and |MaxP (tk)| = 1:
Indeed from Lemma 2 and the proof of Lemma 3, once there exists a unique point pmax then, it remains the unique point
in MaxP forever and that would be a contradiction.

Hence, |MaxP (tk − 1)| = 2.
Let pmax1 and pmax2 be the two points inMaxP (tk−1) at time tk−1. According to Algorithm1, the robots located either

on pmax1 or on pmax2 during step (t, t+1) remains idle. Besides, according toAlgorithm1and Functionmove_to_carefully(),
if two robots ri and rj are not at the same point at time tk −1 (pi(tk −1) ≠ pj(tk −1)), then pi(k) ≠ pj(k) at time tk unless
either ri and rj have reached pmax1 or ri and rj have reached pmax2. So, |MaxP (tk)| ≤ 2 at time tk. A contradiction.

From above, we deduce that if |MaxP (t)| = 2 at time t then, according to Algorithm 1 there exists tk, tk > t such that
|MaxP (tk)| = 1. So, from Lemma 3, we know that all the robots will gather at the same position in finite time. �

Case |MaxP | ≥ 3. From now on, we prove that starting from a configuration where |MaxP | ≥ 3, all the robots gather at
the same position in finite time.

In order to prove Lemma 8, we use Lemmas 5–7. In particular, Lemma 5 shows that, under specific conditions, the center
of SEC(P (t)) is inside SEC(P (t + 1)) even if SEC(P (t)) ≠ SEC(P (t + 1)) or the center of SEC(P (t)) is not the center of
SEC(P (t + 1)).

Lemma 5. Let P (t) be a configuration such that |MaxP (t)| ≥ 3 and there exists at least one robot inside SEC(P (t)). Let c be
the center of SEC(P (t)).

According to Algorithm 1, at least one of these properties is true:

1. |MaxP (t + 1)| ≤ 2.
2. The center c of SEC(P (t)) is inside SEC(P (t + 1)) at time t + 1 (even if c is not the center of SEC(P (t + 1))).

Proof. Let us consider the two following cases:

1. There exists at least one robot inside SEC(P (t)) that is not located at c at time t . According to Algorithm 1, only
the robots inside SEC(P (t)) are allowed to move at time t . So, the robots on the circumference of SEC remains so at
time t . Moreover, according to Algorithm 1, no robot inside SEC(P (t)) can move outside of SEC(P (t)) at time t . So,
SEC(P (t)) = SEC(P (t +1)) and thus, Lemma 5 holds for this case. Note that, due to the motion of the robots inside SEC ,
it may also be possible that |MaxP (t + 1)| ≤ 2.
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a b

Fig. 2. The numbers between parenthesis indicate the multiplicity. Figure a describes a configuration P (t), where the center c of SEC(P (t)) is inside the
convex hull. Figure b describes P (t + 1), where some robots have moved toward c , and where c is inside the new convex hull.

2. All the robots inside SEC(P (t)) are located at c at time t . According to Algorithm 1, only the robots on a maximal point
on SEC , i.e., in MaxP (t) ∩ SEC(P (t)), are allowed to move. Clearly, if none of these robots move then Lemma 5 holds.
That is why, in the rest of this proof, we assume that at least one robot in MaxP (t) ∩ SEC(P (t)) moves. The, we need to
consider the two following sub-cases:
(a) ∃p ∈ MaxP (t) ∩ SEC(P (t)) such that all the robots in p reach c at time t + 1. Since there is at least one robot at c

at time t , the number of robots located at c at time t + 1, denoted by |c(t + 1)| is strictly greater than the number
of robots located on the maximal point p at time t , denoted by |p(t)|. So, we have |c(t + 1)| > |p(t)|. Furthermore,
since all the robot inside SEC at time t are located at c and since the robots move in straight line toward c at time t ,
two robots coming from two distinct maximal positions on SEC cannot occupy the same point at time t + 1 except
at c. So, it is impossible to create another point p′ at time t + 1 such that |p′(t + 1)| > |p(t)|. We deduce that c is the
unique maximal point at time t + 1, i.e., |MaxP (t + 1)| = 1 and thus, Lemma 5 is true.

(b) ∀p ∈ MaxP (t)∩SEC(P (t)) there is at least one robot on p that does not reach c at time t +1. Depending onwhether
c is on the convex hull H(P (t)) or not, at time t , we consider two cases again:
i. c is on H(P (t)) at time t . From Property 3, there exists a concave or a straight sector S in {△(xcy), ∇(xcy)} such

that x and y are in P (t) and there is no point ∈ P (t) ∩ S. However, from Property 2, we know that there exists
no pair of points x and y in P (t) such that there exists a concave sector S in {△(xcy), ∇(xcy)} and P (t) ∩ S = ∅.
So, there exists only a straight sector S in {△(xcy), ∇(xcy)} such that x and y are in P (t) and there is no point
∈ P (t) ∩ S. Consequently, c is on the segment [x, y] at time t . Since the robots move in straight line toward c and
since some robots are located at x and some other at ywhich do not reach c at time t + 1 then, c is on the segment
[r, s] at time t + 1 with r and s ∈ P (t + 1). From Observation 1, we deduce that c is inside SEC(P (t + 1)) at time
t + 1.

ii. c is not on H(P (t)) at time t . In this case, all the points in P (t) are not on the same line otherwise c would
have been on H(P (t)). So, from Property 3 we know that there does not exist a concave or a straight sector S in
{△(xcy), ∇(xcy)} such that x and y are in P (t) and there is no point ∈ P (t) ∩ S. Since the robots move in straight
line toward c and since for each point p ∈ P (t) there exists at least one robot located at p which does not reach
c at time t + 1 then, we deduce that there does not exist a concave or a straight sector S in {△(rcs), ∇(rcs)} such
that r and s are in P (t + 1) and there is no point ∈ P (t + 1) ∩ S—refer to Fig. 2. So, from Property 3, c is inside
H(P (t + 1)) at time t + 1, which directly implies that c is inside SEC(P (t + 1)). �

Lemma 6. Let P (t) be a configuration such that |MaxP | ≥ 3. If any robot r is inside SEC(P (t)) and r is on the boundary of
SEC(P (t + 1)) then |MaxP (t + 1)| ≤ 2.

Proof. We consider two cases.

– No robot is inside SEC at time t . Since there is no robot inside SEC(P (t)) then there exists no robot inside SEC(P ) at
time t which is on the boundary of SEC(P (t + 1)) at t + 1. So, in this case, Lemma 6 always holds.

– There exists at least one robot inside SEC(P (t)). By contradiction, assume that r is inside SEC(P (t)) and r is located on
the boundary of SEC(P (t+1)) and |MaxP (t+1)| > 2. Let c be the center of SEC(P (t)) at time t . From assumption, some
robots on the boundary of SEC(P (t)) havemoved toward the center of SEC(P (t)). According to Algorithm 1, that implies
that all the robots inside SEC(P (t)), namely r , are located at the center of SEC(P (t)) at time t . So, c is on the boundary
of SEC(P (t + 1)). From Lemma 5, we deduce that there exists a point p ∈ P (t) ∩ SEC(P (t)) such that all the robots in
p have reached c at time t + 1. However, according to Algorithm 1 only the robots located in MaxP (t) ∩ SEC(P (t)) are
allowed to move at time t . Therefore, for every point p ≠ c we have |c| > |p| at time t + 1. Hence, MaxP (t + 1) = {c},
i.e., |MaxP (t + 1)| = 1. A contradiction. �

Before proving Lemma 7, we need some extra definitions, observations and properties.
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(a) op < s. (b) op = s.

(c) op > s.
Fig. 3. Illustration of Observation 2.

Definition 5 (Chord). Given a circle C , a chord is a line segment whose two endpoints lie on the circle C .

Definition 6 (Circular Sector). A circular sector of a circle C is a region bounded by a chord and an arc of the circle C lying
between the chord’s endpoints.

Definition 7 (Sagitta). Given a circular sector, its sagitta is the line segment perpendicular to the chord between the
midpoint of that chord and the arc of circle.

The relationship between chord and sagitta is given by the following property:

Property 4. Given a circular sector, its sagitta x (x > 0) and its chord y, the length of the radius r of the unique circle which will
fit around the two lines is given by:

r =
y2

8x
+

x
2

Proof. Whether r is larger than x or not, from the Pythagorean Theorem, we know that:

r2 = (r − x)2 +

 y
2

2

Hence, we have:

r2 = r2 − 2rx + x2 +

 y
2

2

Then, we get:

2rx = x2 +

 y
2

2

From above, we deduce that

r =
x2

2x
+

(
y
2 )

2

2x
=

y2

8x
+

x
2

�

Observation 2. Given a circle C and its radius r and given a circular sector K , its chord ch, its sagitta s and o the intersection of
ch and s, we have

1. If r < s then for every point p on the arc of K , op < s.
2. If r = s then for every point p on the arc of K , op = s.
3. If r > s then for every point p on the arc of K , op > s.

Observation 2 is depicted in Fig. 3.

Observation 3. Let C and r be a circle centered at c and its radius, respectively. Given a circular sector of C, its two chord endpoints
A and B, and its sagitta s, we have:

If r > s then the sector S in {△(AcB), ∇(AcB)} which does not contain s is a concave sector.
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Fig. 4. An example illustrating the extra assumptions used in Case b of the proof of Lemma 7.

In the following lemma, assuming at least one robot ∈ P (t) ∩ SEC(P (t)) moves in straight line toward the center c of
SEC(t), we show that if, during the computation step (t, t + 1), we do not obtain at most two maximal points and the set of
robots located on the boundary of SEC remains unchanged then the radius of SEC is reduced by at leastmin( ϵ

2 ,
ϵ2

4Rad(SEC(P (t))) )

(recall that ϵ is a constant defined at the end of Section 2.1).

Lemma 7. LetP (t) be a configuration such that |MaxP | ≥ 3. According to Algorithm 1, if at least one robot∈ P (t)∩SEC(P (t))
moves in straight line toward the center c of SEC(t), then:

|MaxP (t + 1)| ≥ 3 ∧ SEC(P (t + 1)) ∩ P (t + 1) = SEC(P (t)) ∩ P (t)

H⇒ Rad(SEC(P (t + 1))) ≤ Rad(SEC(P (t))) − min


ϵ

2
,

ϵ2

4Rad(SEC(P (t)))


.

Proof. According to Algorithm 1, when |MaxP (t + 1)| ≥ 3, the robots that are allowed to move, can only move toward
the center of SEC . Thus, the fact that all the robots on the circumference of SEC(P (t)) remains on the circumference of
SEC(P (t + 1)) is possible only if the radius of SEC(P (t + 1)) is closer than the radius of SEC(P (t)). So, in the rest of this
proof, we show that the radius is reduced by at least min( ϵ

2 ,
ϵ2

4Rad(SEC(P (t))) ) during the computation step (t, t + 1).
From assumption, at least one robot ∈ P (t) ∩ SEC(P (t)) moves in straight line toward the center c of SEC(t). This

implies that every robot inside SEC(t), if any, is located at the center of SEC and thus, remains so during the computation
step (t, t + 1). So, it is enough to focus on the robots located on the boundary of SEC only. In this way, we have only two
cases to consider:

1. All the robots allowed tomove at time t are at the same position p1 on SEC(P (t)). From hypothesis, at least one robot
r ∈ P (t) ∩ SEC(P (t)) moves in straight line toward the center c of SEC(t). So, r is located at p1 at time t . Besides, all the
robots located at p1 have moved toward the center of SEC at time t . Indeed, if there exists one robot on p1 which remains
so during the computation step (t, t + 1) that would imply that SEC(P (t)) is not smaller than SEC(P (t + 1)) and thus,
SEC(P (t+1))∩P (t+1) ≠ SEC(P (t))∩P (t) because r hasmoved inside SEC . That would be a contradiction. So, all the
robots located at p1 at time t have moved inside SEC toward the center of SEC . Denote by p2 the new position occupied
at time t + 1 by the slowest robot among those who were located at p1. Again, we need to consider two cases:
(a) There are only two distinct positions that are occupied on SEC at time t . In this case, these two positions are on the

same diameter (opposite positions), and p1 is one of them. So, we know that the diameter of SEC is reduced by at least
ϵ during the computation step (t, t + 1). Therefore, we deduce that Rad(SEC(P (t + 1))) ≤ Rad(SEC(P (t))) −

ϵ
2 .

(b) There are at least three distinct positions that are occupied on SEC at time t . For the sake of this case, we need to
have some extra notations—refer to Fig. 4.
* the center of SEC(P (t)) and SEC(P (t + 1)) are c1 and c2, respectively.
* K1 denotes the circular sector such that the arc of circle passes through p1 and the two chords endpoints A and B are
the two distinct occupied positions on SEC(P (t)) such that A is adjacent to p1 on SEC(P (t)) in counterclockwise
and B is adjacent to A on SEC(P (t)) in counterclockwise. K2 denotes the circular sector whose the arc of circle
passes through p2 and such that the two chords endpoints are A and B, i.e., the sames than K1.

* Sagittas s1 and s2 denote the sagitta of K1 and K2, respectively.
* The midpoint of chord [A; B] is called o. k denotes the endpoint of s2 on SEC(P (t + 1)) which is opposite to o.
* The radii r1 and r2 stand for Rad(SEC(P (t))) and Rad(SEC(P (t + 1))), respectively.
Clearly, s1 ≥ Rad(SEC(P (t))). Indeed, if this would not be true, that would imply from Observation 3 that there is
a concave sector S in {△(Ac1B), ∇(Ac1B)} such that there is no point in arc(SEC(P ), S) ∩ P (because A and B are
adjacent on SEC), which would contradict Property 1. So, we can deduce c1 is located at s1. In the sameway, we know
that s2 ≥ Rad(SEC(P (t + 1))). Thus c2 is on s2. So, in the following, we first prove that s1 − s2 ≥ ϵ. Then, we prove
that Rad(SEC(P (t + 1))) ≤ Rad(SEC(P (t))) −

ϵ2

4Rad(SEC(P (t))) .
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1. (s1 − s2 ≥ ϵ). Since r1 > r2, we deduce that:
oc1 > oc2

Now, consider circular sector K3 whose the arc of circle passes through p2 and such that the chord is the line
segment perpendicular to s1 and passing through c1 and bounded by SEC(P (t + 1)). Seeing that s3 = c1k < r2,
from Observation 2:

c1p2 > c1k
And thus:

c1p2 − c1k > 0
Besides:

r1 = c1p2 + p2p1
Since p2p1 ≥ ϵ, we have:

r1 ≥ c1p2 + ϵ
However, we also have:

r1 = c1k + (s1 − s2)
So,

c1k + (s1 − s2) ≥ c1p2 + ϵ
Then,

s1 − s2 ≥ c1p2 − c1k + ϵ
As mentioned previously, c1p2 − c1k > 0. Thus:

s1 − s2 ≥ ϵ

2. (Rad(SEC(P (t + 1))) ≤ Rad(SEC(P (t))) −
ϵ2

4Rad(SEC(P (t))) ). From Property 4: r1 =
AB2

s1
+

s1
2 and r2 =

AB2

s2
+

s2
2 .

Hence:

r1 − r2 =
AB

2

s1
+

s1
2

−
AB

2

s2
−

s2
2

Since s1 − s2 ≥ ϵ > 0, we can state s1 − s2 = σ > 0. Thus:

r1 − r2 =
AB

2

s1
+

s1
2

−
AB

2

s1 − σ
−

s1 − σ

2
=

AB
2

s1
−

AB
2

s1 − σ
+

σ

2
Which expands to:

r1 − r2 =
AB

2
8(s1 − σ) − AB

2
8s1

8s18(s1 − σ)
+

σ

2
By simplifying, we get:

r1 − r2 =
σ

2
−

σAB
2

8s1(s1 − σ)
Since s2 ≥ r2, we can say that s1 − σ ≥ r2. Moreover, chord [A; B] cannot be greater than the diameter of

SEC(P (t + 1)), i.e., AB ≤ 2r2. So, AB ≤ 2r2 ≤ 2(s1 − σ) and we obtain:

r1 − r2 ≥
σ

2
−

σ(2(s1 − σ))2

8s1(s1 − σ)
=

σ

2
−

4σ(s1 − σ)2

8s1(s1 − σ)
Therefore:

r1 − r2 ≥
σ

2
−

σ(s1 − σ)

2s1
=

σ

2
∗


1 −

s1 − σ

s1


So:

r1 − r2 ≥
σ

2
∗


σ

s1


=

σ 2

2s1
Howeverσ = s1−s2 ≥ ϵ. Besides, s1 is smaller than or equal to the diameter, i.e., s1 ≤ 2r1 = 2Rad(SEC(P (t))).
Consequently:

σ 2

2s1
≥

ϵ2

4Rad(SEC(P (t)))
Finally, we can state:

r1 − r2 ≥
ϵ2

4Rad(SEC(P (t)))
2. All the robots allowed tomove at time t are on at least two distinct positions on SEC(P (t)). Clearly, in the worst case

the radius of SEC is reduced as much as the case where all the robots allowed to move at time t are located at the same
position p1 on SEC(P (t)). So,

Rad(SEC(P (t + 1))) ≤ Rad(SEC(P (t))) − min


ϵ

2
,

ϵ2

4Rad(SEC(P (t)))


�

Lemma 8. Let P be a configuration such that |MaxP | ≥ 3. According to Algorithm 1, in every execution starting from P , all the
robots gather at the same position in finite time.
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Proof. Assume by contradiction that there exists a time t such that for all t ′ ≥ t |MaxP (t ′)| ≥ 3. From Lemma 6
we know that for all t ′ ≥ t SEC(P (t ′ + 1)) ∩ P (t ′ + 1) = SEC(P (t ′)) ∩ P (t ′). So, for every i, if at least one robot
∈ SEC(P (t ′ + i)) ∩ P (t ′ + i) moves in straight line toward the center of SEC(P (t ′ + i)) then from Lemma 7 we deduce:

Rad(SEC(P (t ′ + i + 1))) ≤ Rad(SEC(P (t ′ + i))) − min


ϵ

2
,

ϵ2

4Rad(SEC(P (t ′ + i)))


However, according to Algorithm 1, when |MaxP | ≥ 3, the robots that are allowed to move, can only move toward the

center of SEC . So, for every i,

Rad(SEC(P (t ′))) ≥ Rad(SEC(P (t ′ + i)))

Consequently, for every i

min


ϵ

2
,

ϵ2

4Rad(SEC(P (t ′)))


≤ min


ϵ

2
,

ϵ2

4Rad(SEC(P (t ′ + i)))


So, from t ′ on, each time a robot located on the boundary of SEC moves toward the center of SEC , the radius of SEC is reduced
by an increasingly large value.

So, by fairness, we deduce that the robots gather at the same point in finite time: this is a contradiction with the fact that
for all t ′ ≥ t |MaxP (t ′)| ≥ 3. In subsequence, there exists time t ′′ such that |MaxP (t ′′)| ≤ 2 and from Lemmas 3 and 4, we
deduce that Lemma 8 holds. �

4. Conclusion

Assuming strong multiplicity detection, we shown it is possible to solve the self-stabilizing gathering problem with n
weak robots in SSM if, and only if, n is odd. Our positive result is constructive, as we present an algorithm working with an
odd number of robots.

Note that our results do not state that strong multiplicity detection is a necessary condition to solve the self-stabilizing
gathering problem. As a matter of fact, we guess that our algorithm could work with other forms of multiplicity detection,
for instance a function D such that, for every pair of positions p1, p2, D returns−1, 0, or 1 depending on the number of robots
located at p1 is either strictly smaller than, equal to, or greater than p2. In future works, we would like to investigate this
problem in the fully asynchronous model (Corda).
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