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A role for the Ankyrin repeat containing protein Ankrd17 in Nod1- and
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Innate immune responses induced by the pattern-recognition receptors Nod1 and Nod2 play pivotal
roles to combat infection and to instruct adaptive immunity. Here we identify Ankrd17 as a novel
binding partner of Nod2 and show that its N-terminal domain mediates Nod2 binding. Knock-down
and overexpression analysis revealed that Ankrd17 is functionally involved in Nod2- and Nod1-
mediated responses in human myeloid and epithelial cells. In HeLa cells Ankrd17 contributed to
pro-inflammatory responses induced by Shigella flexneri, however not to type I interferon responses
induced by Sendai virus. In conclusion, this reveals a novel function for Ankrd17 in anti-bacterial
innate immune pathways.

Structured summary of protein interactions:
NOD2 and Ankrd17 colocalize by fluorescence microscopy (View interaction)
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1. Introduction Tight regulation of Nod2 activity is achieved in part by interac-
Innate immune recognition of microbes is mediated by multiple
germ-line encoded receptors of the host, termed pattern recogni-
tion receptors (PRRs) [1]. Important intracellular PRRs are the
members of the nucleotide-binding domain and leucine-rich re-
peat containing (NLR) family. One of the best studied examples
of NLR–PRRs being Nod1 and Nod2. Both proteins are activated
by bacterial peptidoglyan (PGN) subunits and induce NF-jB and
MAPK pathways in host cells that result in the production of pro-
inflammatory cytokines and antimicrobial peptides [2].

Nod2 gained particular attention as it was the first susceptibil-
ity gene linked to early onset of the inflammatory bowel disease
Crohn’s disease. Beside loss-of function mutations in Nod2 that
are associated with Crohn’s disease, gain-of function mutations
in Nod2 have been genetically linked to Blau Syndrome, a rare
hereditary autoinflammatory disease [3].

The molecular details of the core signal transduction cascade
used by Nod1 and Nod2 are pretty well defined. After activation
of Nod1/2 by PGN, the kinase RIP2 is recruited and multiple
ubiquitination events mediated by the baculovirus inhibitor of
apoptosis proteins XIAP, cIAP1 and cIAP2 and likely other ubiquitin
ligases trigger activation and recruitment of the TAK1 kinase
complex that results in phosphorylation of MAPKKs and the IKK
complex, ultimately inducing NF-jB and MAPK activation [4–6].
tion with negative regulatory proteins including Erbin, SHIP-1,
JNKBP1, CAD, Beta-PIX, CD147 and AAMP [7–14] and by proteins
that enhance Nod2-mediated responses such as the chaperons
Hsp90 and SGT-1 [15,16] and FRMPD2 [17].

Ankrd17 was first identified in a gene-trapping approach as a
marker for early liver development in the mouse [18]. It belongs to
the family of ankyrin repeat-containing proteins and displays two
distinct arrays of 15 and 10 ankyrin repeats in its amino-terminal re-
gion. Ankyrin repeats serve as protein–protein interaction modules
and are involved in diverse biological processes including the regula-
tion of the pro-inflammatory NF-jB signaling cascade [19].

Ankrd17 has been shown to contribute to DNA replication in the
S-phase of the cell cycle in human cells [20]. In contrast, Ankrd17
knock-out mice die early in embryogenesis, displaying profound
defects in the vascular development without obvious cell-division
defects [21]. Notably, a function of Ankrd17 in cell-autonomous
anti-viral innate immune regulation has recently been reported
[22], underscoring a role of Ankrd7 in innate immunity.

Here we revealed a novel role of Ankrd17 in Nod1- and Nod2-
mediated innate immune responses.
2. Materials and methods

2.1. Cell lines

HEK293T and HeLa cells were cultured in DMEM (Biochrom),
and THP1 and THP1 blue (Invivogen, France) in VLE RPMI 1640
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(Biochrom) each containing 10% heat-inactivated FBS, 2 mM gluta-
mine, and 100 U/ml each penicillin and streptomycin in 5% CO2 at
37 �C. THP1 blue cells were additionally selected with 100 lg/ml
Zeocin (Invivogen). All cell-lines were continuously tested for ab-
sence of mycoplasma contamination by PCR.

2.2. Plasmids and reagents

Flag-tagged Ankrd17 encoding expression vector [20] was a gift
from Xin Ye (Chinese Academy of Sciences, Beijing). Myc-Ankrd17
and the indicated fragments of Ankrd17 were obtained by subclon-
ing this Ankrd17 coding sequence by PCR-cloning into a pCDNA3.1
vector containing an N-terminal triple myc-tag using the following
primer (50–30): Ankrd17 FL fl_fwd: GCGCGGTACCTATGGAGAAGGC-
GACGGTTCC, Ankrd17_rev_n: GCGCGCGGCCGCTCAGCCAAGCTGG
TTCATATGCA , Ankrd17 n-terminal: Ankrd17_fl_fwd and An-
krd17_752_rev: GCGCGCGGCCGCTACAGTGCTTGAACTGGTACAC-
GAG. Ankrd17 c-terminal: Ankrd17_752_fwd: GCGCGGTACCACCC
ATGGTTGTTCCACCTCAG and Ankrd17_rev_n.

Plasmids encoding FLAG-Nod1 and FLAG-Nod2 are described in
[10,23]. A TLR2 expression vector (pUNO1-hTLR2) was obtained
from Invivogen. Sendai virus (hen egg allantoid fluid) was obtained
from Charles River Laboratories. For stimulation 160 hemaggluti-
nation units (HAU)/ml were used for the HeLa cells. TriDAP,
MDP, LPS, Pam3CSK4 and TNF were obtained from Invivogen.

2.3. Indirect immunoflourescence microscopy

Cells were first transfected with 1 lg myc-tagged Ankrd17
using Lipofectamine 2000 (Invitrogen). After overnight incubation,
cells were transfected with 1 lg FLAG-Nod2 plasmid using Lipo-
fectamine 2000 (Invitrogen). After 16–24 h incubation cells were
fixed and processed as described in [24].

Antibodies used: mouse anti-myc antibody 9E10 (Sigma), rabbit
anti-mouse Alexa-Fluor 546 (Invitrogen), mouse anti-Nod2 6F6
[25], rabbit anti-rat Alexa-Fluor 488 (Invitrogen). DNA was stained
using DAPI. Images were acquired on an Olympus Cell-R micro-
scope and processed using ImageJ.

2.4. siRNA treatment

siRNA-based knockdown in HeLa and THP1 cells was performed
as described in [26]. siRNAs used: Ankrd17_52 described in [20]
synthesized by Qiagen, Ankrd17_69: SI04361371 (Qiagen) and All-
Stars negative control (Qiagen).

2.5. Bacterial infection and gentamycin protection assays

For the infection with Shigella flexneri, HeLa cells were seeded in
24-well plates. Bacterial infection of the cells was performed using
the S. flexneri strain M90T afaE as described previously [27]. Genta-
mycin (100 lg/ml) was added to the cells 30 min after addition of
the bacteria. As control a non-invasive derivative (BS176 afaE) was
used [28].

2.6. Co-immunoprecipitation and immunoblot analysis

Immunoprecipitations and immunoblots were conducted
essentially as described previously [10]. Cells were transiently
transfected with Ankrd17 constructs for 24 h and subsequently
with Nod1 and Nod2 expression plasmids for another 24 h. Protein
complexes were immunoprecipitated using 9E10-agarose (Santa
Cruz). Antibodies used: mouse anti-FLAG M2 (Stratagene), rabbit
anti-myc (Santa Cruz), rabbit anti-p38 (Cell Signaling) and mouse
anti-p-p38 (Cell Signaling), HRP-conjugated goat anti-mouse IgG
(Bio-Rad) and HRP-conjugated goat anti-rabbit IgG (Bio-Rad).
2.7. Luciferase reporter assays

Activation of inflammatory pathways was measured using a
modification of the luciferase reporter assay described previously
[29]. The cells were stimulated immediately after transfection as
indicated. After 16 h of incubation, the cells were lysed, and the
luciferase activity was measured. Luciferase activity was normal-
ized to b-galactosidase activity. The means and standard deviations
were calculated from triplets.

2.8. RNA preparation and RT-PCR

Total RNA was extracted from cells using the RNeasy kit (Qia-
gen). 1 lg of RNA was reverse transcribed using the First-Strand
cDNA synthesis kit (Fermentas).

For quantitative PCR analyses, 50 ng cDNA was analyzed in a to-
tal volume of 25 ll using the iQ SYBR Green Supermix (Bio-Rad),
according to the manufacturer’s protocol. All quantitative PCR
reactions were run on a Bio-Rad iQ5 cycler, and data were evalu-
ated by the iQ5 system software (version 2.0) using the DDCT
method.

For amplification of fragments, the following primers were used
(50-30): Ankrd17_fwd: AATGTTGCCACCACTCTTCC, Ankrd17_rev:
TGCAGCTGTGCATTCTTTTC, IL8_fwd: ATGACTTC-
CAAGCTGGCCGTGGCT, IL8_rev: TCTCAGCCCTCTTCAAAAACTTCTC,
IFN-beta_fwd: ACTGCCTCAAGGACAGGATG, IFN-beta_rev:
GGCCTTCAGGTAATGCAGAA [30]. Primer for Nod1, Nod2 and GAP-
DH are described in [31].

2.9. Measurement of cytokines

CCL5, IL-8 and IL-6 was measured in the supernatants using the
corresponding ELISA kits (Duoset, R&D Systems) according to the
manufacturer’s conditions.

2.10. Statistical analysis

The data were analyzed using two-sided Student’s t test with
Microsoft Excel. The differences were regarded as significant (⁄)
when P < 0.05 and highly significant (��) when P < 0.005.
3. Results

3.1. The N-terminal part of Ankrd17 binds to Nod2

We recently conducted a yeast-two hybrid screen using human
Nod2 as bait. This work identified several candidates as Nod2 bind-
ing proteins, including AAMP and Erbin that we and others verified
as Nod2-binding partners with regulatory functions in Nod2 sig-
naling [7,10]. Among the candidates of the initial screen was also
an N-terminal fragment of the human Ankrd17 protein that covers
most of the first N-terminal ankyrin repeat region of this protein
(Fig. 1A).

In order to validate Ankrd17 as a binding partner of Nod2, we
conducted co-immunoprecipitation experiments in HEK293T cells
co-expressing FLAG-tagged Nod1 or Nod2 together with myc-
tagged Ankrd17 or a C-terminal truncation mutant thereof. We ob-
served that both Ankrd17 as well as the N-terminal fragment of
Ankrd17 (aa1-752), covering the region identified in the Y2H
screen, showed interaction with Nod2 but no strong binding to
Nod1 (Fig. 1B).

We found ectopically expressed Ankrd17 to be localized mainly
in the cytoplasm of HeLa cells. Ankrd17 showed a partial co-local-
ization with ectopically expressed Nod2 in particular at sites near
the plasma membrane (Fig. 1C).
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Fig. 1. Ankrd17 interacts with Nod2. (A) Schematic representation of the Ankrd17 proteins used. Ankyrin repeats are represented by gray boxes and are indicated by
numbers. (B) Co-immunoprecipitation of ectopically expressed Ankrd17 with Nod1 and Nod2 in HEK293T cells. HEK293T cells were transiently transfected with FLAG-Nod1
and FLAG-Nod2 together with myc-Ankrd17 or a amino-terminal fragment (N-term) of Ankrd17. Ankrd17 constructs were immunoprecipitated (IP) by anti-myc antibody and
co-precipitated Nod2 and Nod1 detected by immunoblot (IB), EV: empty vector. (C) Indirect immunofluorescence microscopy of HeLa cells transiently transfected with FLAG-
Ankrd17 (red) and myc-Nod2 (green). DNA is stained in blue by DAPI. Bar = 10 lm. (D) Relative expression of Ankrd17 mRNA in different human cell lines. RT-PCR products
with primers specific for Ankrd17 and GAPDH (as control) are shown. (E) Ankrd17 and IL-8 mRNA levels in THP1 cells treated for 6 h with PMA (100 nM), TNF (50 ng/ml),
Pam3CSK4 (100 ng/ml), TriDAP (10 lg/ml), MDP (10 lM) or LPS (100 ng/ml). Quantitative PCR data, normalized for GAPDH expression relative to non-treated cells (CTL) set
to 1 is shown as mean + S.D. (n = 3).
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Ankrd17 was expressed in all human cell lines we tested,
including myeloid THP1 cells that are known to also express func-
tional Nod2 [31] (Fig. 1D). Ankrd17 mRNA expression was not sig-
nificantly changed by differentiation of myeloid THP1 cells into
macrophage-like cells by phorbol 12-myristate 13-acetate (PMA)
or by stimulation of these cells with the TLR2 and TLR4 ligands



2140 M. Menning, T.A. Kufer / FEBS Letters 587 (2013) 2137–2142
or Nod1/2 elicitors although all these treatments led to the ex-
pected strong induction of IL-8 mRNA (Fig. 1E).

3.2. Ankrd17 affects Nod1- and Nod2-mediated pro-inflammatory
responses

Next, in order to elucidate if Ankrd17 contributed to Nod2-
mediated signaling, we overexpressed Ankrd17 in HEK293T hu-
man embryonic kidney cells (HEK293T) together with Nod1 and
Nod2. Nod1/2 were activated by TriDAP and MDP and Nod1/2-
mediated NF-jB activation was measured by luciferase gene-re-
porter assays. We observed that Ankrd17 significantly increased
both Nod1- and Nod2- but not TLR2-mediated NF-jB activation
in a dose-dependent manner (Fig. 2A).
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was not decreased by the Ankrd17 siRNAs (Fig. 2B). The Ankrd17
specific siRNA duplexes efficiently reduced Ankrd17 although did
not affect Nod1 or Nod2 expression (Fig. 2C). SiRNA-mediated
Ankrd17 knock-down also reduced MDP and TriDAP mediated IL-
8 secretion in differentiated THP1 cells, that did not contain the re-
porter (Fig. 2D). Also Nod2-mediated p38 activation [32] was
strongly reduced in cells treated with the Ankrd17 specific siRNA
30–60 min after stimulation (Fig. 2E).

3.3. Ankrd17 affects bacterial induced pro-inflammatory cytokine
release but not viral induced type I interferon responses

To corroborate a role of Ankrd17 in Nod-mediated innate im-
mune responses we next tested the influence of Ankrd17 knock-
down on the cytokine response of HeLa cells after infection with
the invasive Gram-negative pathogen S. flexneri, a well defined trig-
ger of Nod1- and Nod2-mediated signaling [10,33]. To this end, we
infected HeLa cells that had been treated for 48 h with either of
two Ankrd17-specific siRNAs or a non-targeting siRNA as control
with the invasive S. flexneri strain M90T afaE. Reduction of endoge-
nous Ankrd17 mRNA levels by either siRNA duplex resulted in sig-
nificantly impaired IL-8 secretion compared to cells treated with a
non-targeting control siRNA (Fig. 3A). In contrast, infection of the
cells with the non invasive, S. flexneri strain BS176 afaE did not trig-
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4. Discussion

We report here on a novel role of Ankrd17 in Nod1- and Nod2-
mediated innate immune pathways suggesting a more general
involvement of Ankrd17 in innate immune signaling.
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How Ankrd17 contributes at the molecular level to Nod1 and
Nod2 signaling remains elusive. As Nod1-mediated responses were
affected by Ankrd17, but Ankrd17 did not bind to Nod1 in our as-
says suggests that Ankrd17 might regulate other factors needed for
Nod1 and Nod2 mediated responses. Still, as Ankrd17 did not affect
TLR2 and TLR4-mediated NF-jB activation such a factor would be
specific for the Nod1/2 pathway. The presence of anykrin repeats in
Ankrd17, which serve as interaction modules of the IKK kinase
complex makes it tempting to speculate that Ankrd17 might serve
to bridge IKK to other factors involved in Nod1/2 signaling. Candi-
dates for such proteins include Rip2, as well as the ubiquitin ligases
XIAP and cIAP1,2 that have recently been reported to be critical for
Rip2-induced NF-jB activation [4,5].

A recent paper showed that Ankrd17 also contributes to innate
immune responses by regulating the viral dsRNA receptor Rig-I
[22]. The authors of this study show that Ankrd17 binds to the
RLRs Rig-I and MDA5 and their adaptor proteins and provide evi-
dence that Ankrd17 enhances Rig-I and MDA5-mediated responses
by promoting the interaction of RLRs with VISA. Of note, the inter-
action with Rig-I was mapped to the second ankyrin-repeat region,
whereas as 1–752 of Ankrd17 mediate the interaction with Nod2.
Wang et al. showed that knock-down of Ankrd17 in colon epithe-
lial cells impairs Sendai virus-induced type I interferon responses
[22]. We however, observed that Ankrd17 only marginally at best,
contributed to Sendai virus induced type I interferon responses in
HeLa cells. This discrepancy might be explained by the cell type
used, i.e. that HeLa cells, in contrast to colon cell lines express
other RNA sensing PRRs including TLR3, that might bypass Rig-I
mediated signaling. Of note, according to database entries and
our own unpublished results, Ankrd17 is expressed as at least
two isoforms. So differential expression of these could also well ex-
plain the apparently diverse contributions of Ankrd17 to anti-viral
and anti-bacterial innate immunity in different cell-lines. Future
studies will help to define the molecular details of the involvement
of Ankrd17 in these processes.

In conclusion, our data puts Ankrd17 on the growing list of pro-
teins that contribute to Nod1 and Nod2 signaling. Targeting
Ankrd17 might thus be an option for the development of new
strategies to counteract diseases related to misfunctional Nod2,
such as Blau Syndrome and Crohn’s disease.
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