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1. INTRODUCTION

Zemanian [14] extended the Hankel transformation

(had)(x) = [ ()b dy. =172 (L)

to distributions belonging to H,, the dual of test function space H,
consisting of all complex-valued infinitely differentiable functions ¢ de-
fined on I = (0, ) satisfying

v (P) = sup <®,  VnkeN, (12)

xel

k
x”(x_1 %) x H TV (x)

It was shown by Zemanian that the Hankel transformation %, is an
automorphism on the space H, and the generalized Hankel transforma-
tion /), is an automorphism on H,.
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The pseudo-differential operator associated with the Bessel operator
studied in [9-11] is defined by

(h, o 6)(x) = f:(%)l/zfﬂ(%)a(x,f)(h,ﬁb)df, ¢ €H, (13)

where the symbol a(x, £) is defined as follows.
The function a(x, £€): C*(I X I) - C belongs to class H™ if and only if
for each g € N, there exists D = D such that

a,m,q,y

ﬂd v ﬂd “
(x dx) € ag) 09
where m is a fixed real number.

For 1 < p <, we define L/(I) as the Banach space of all measurable
functions f on I which satisfy

(1+x)° <D(1+ &))", (1.4)

- 1/p
£, = (fo x““/zlf(x)l”dx) <, (15)

Now, let f € Li(I), g € LZ(I), and define its associated function by

(=) =(x.3) = [ ()D(x.y.2)dz. 0 <x y <, (16)

where

D,(x,y,2) = f:fw1/2(xt)1/2JM(xt)(yz)”zfﬂ(yz)(zt)l/zfﬂ(zt) dt.
(1.7)

Then the Hankel convolution defined by

(f#8)(x) = [ f(x.9)8(y) dy (18)
satisfies the following norm inequality [9]

I f#gll, <l flhligll,. (1.9)

The Hankel convolution has been extended to distributions by Marrero
and Betancor [6] and Betancor and Rodriguez-Mesa [1].

The L*-boundedness of the classical pseudo-differential operator has
been investigated by Fefferman [2], Kato [4], Nagase [7], Wong [12], and
others. Wong’s analysis depends heavily on a result of Hormander [3]. In
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this paper an analogue of Hormander’s result is established first then the
proof of the main theorem on the L/-boundedness of the p.d.o. i, , is
constructed. Using this L/-boundedness property we prove that 4, , is a
bounded linear operator from

m,p _s 0,p LR 2N s—m,p
W W, and WP > WETmr,

These spaces are defined in [11].
We shall use notation and terminology of [14]. The differential operators
N,, M,, and S, are defined by

d
NM=NIL’X=x”““/Z(E)x w=172 (1.10)
[ YRR Y [l IRV 111
=M, . =x o X (1.11)
d* 1 — 4u?
SM=SM,X=MMNM=W +T. (1.12)
From [14, p. 139] we have the following relations for any ¢ € H,,
h,u,+l( _xd)) =Np,h‘u,¢ (1'13)
hM(NMd)) = —yh,¢ (1.14)
h(S,d) = (-y)'h,d (1.15)
d\* k d\" d\*"
-1 —p-1/2 _ k -1 -1
[ ) G - EO(V)(X )l
X (x7*%p(x)). (1.16)

The next result is due to Koh and Zemanian [5]

r d r+j
Spcd(x) = ijx21+ﬂ+1/2(x1—) (x~*~V2%(x)), (1.17)
j=0 dx

where bj are certain constants.

2. AN INTEGRAL REPRESENTATION

In this section we obtain an integral representation for the p.d.o. 4, ,
which will be useful in the proof of the L7-boundedness result.
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LEMMA 2.1.  Assume that the symbol a(x, £) is defined by (1.4) with
m = 0. Let
K(x,z) =f0 (26)2I(28) € %a(x, £) dE, (2.1)

as a distribution in H,(I). Then,
() for each x € I, K(x, ) is a function defined on I;
(ii) for each sufficiently large positive integer k, there exists a positive
constant C,, ;. , such that |K(x, z)| < Cu’k,q(l +x)7I(1 + z?) 7k,
Proof. Let k be a positive integer greater than 1. Then using the
formula (1.15) we get

K(x.2) = [ (€)' /,(26) € V(. £) dé
- j:(zf)l/zlu(zg)(l +22) (1=, ) (E42a(x, £)) dé

Now using formula (1.17) we can write
* —k
K(x,2) = [0 (26)'21(26)(1 + 2%)

k

L (K)-1spe (e at, f))) d

- Lx(zf)l/zJM(zf)(l +22)7F

k r d r+j
Xrgo go(l;) 1) §21+u+1/2b (f df) a(x,g)dg,

0, using (1.4), it follows that K(x, z) is a continuous

Since a(x, é) € H
function, and

( ))/ (1+§)2,+M+1/2(1+ )

HM%

k
IK(x,2)l <A, (1+2%) ( Y

(1+ f)_Z(”’)dg

r+j
k r w» A
<4,(1+2) " +x)q( XX lbjl(lﬁ))fo (1+ &7
r=0j=0
X Dr+j(1 + 5)72(r+j)d§

choosing r > w/2 + §, where D,,; is a constant.
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Thus there exists a positive constant C, , , such that

IK(x,2)| < C, (1 +22) (1 +x)7"

THEOREM 2.2.  For each fived x €I and ¢ € H(I), p > —1/2, the
p.d.o. can be expressed in the form

(h0)0) = [ [KCe2)Dmr ) o) @ (22)

where K(x,z) = h (&£#*'?a(x, £)) in the distributional sense.

Proof. We recall from [6, p. 354] that 7,, 0 <x <x,, is a continuous
linear mapping from H, into itself. Hence h,(7 ¢) is well defined for
¢ € H,. Moreover, in view of definition (1.8),

h(r8)(€) = [ (26)21,(26)(n0)(2) d2
- [0 00 [ 40Dy ) ) e
= : : z 12 z X Z)az
= [ o &y [ (26)771(26)D,(x,y.2) d

= [C ) ) (56) 1) () dy
= (x6) 7T (xE) E 2 (h,)(£);
so that
(h,®)(£) = ((x£)20,(x8)) €441 2h,(1,0)(£) € H,.
Now, define the p.d.o. hﬂ,a in the sense of distribution as
(hu,a®)(x) = ((x6) 2T (x8)a(x, £), (h, $)(£))
= ((x£)"?T(x€)a(x, §),

((x€)"20,(x€)) €12 (7, 8)(£))
= (& a(x, &), h(1,0)(£))
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= (h, (6471 %a(x, €)), (1.4)(2))
= (K(x,2),(7.¢)(2))

= [[K(x.2)(nd)(2) dz
- /:K(x’ Z)(/omDﬂ(x’y’ z)$(y) dy) dz

- /:(/:K(x,z)DM(x,y,Z) dz)¢(y) dy.

3. THE L7-BOUNDEDNESS THEOREM

THEOREM 3.1. Let € C*(I), k = 1, be such that there is a positive
constant B for which

g
‘(f‘ ) 0(¢)

—Za

<B(1+¢) a<k/2. (3.1)

If
f(x) = f:(xg)l/zJM(xg)gwl/ze(g) dg (3.2)

thenfe LI(I), 1 <p <o, u>—1/2.

Proof. Proceeding as in the proof of Lemma 2.1 we obtain

k r o
Fl< 1+ % Z(’;)|bj|/() (x&) /2T (x| g2 mr 12

r=0j=0

_d
fd—

< (1+x%)" ; ;( ) M,].(/OOO(Hg)”‘z’“/zdg

<B, , (1+ xz)f
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choosing r > w/2 + 3. Therefore, for k > 1 we have

—k
”f(x)HL'f(I) < BM,kH(l +X2) ”L,f(l) < ®

as k may be chosen large enough. |

THEOREM 3.2.  Let 0 be the same as in Theorem 3.1; then for 1 < p < oo,
there exists a positive constant C = C(p, u) such that

||(hM,9¢)(x)||L;;(1) < CligllLpcns o< H,.

Proof. By definition we have
(B o®)(x) =h,'[0(€)(h,d)](x), ¢ EH,.
Now, assume that there exists f such that

h ' [0(€)(h,d)(6)](x) = (f#)(x).
Then invoking inequality (1.9) and Theorem 3.1 we get
(A, 0 S gery <[ (€44 720( ) e lbllgan
< Cldllign, ¢ <H,.
i

The following theorem contains the basic results on L?(I)-bounded-
ness.

THEOREM 3.3.  Let a(x, &) be a symbol in H®. Then for 1 < p < % and
w=—1/2,h, ;. LI(I) - LP(I) is a bounded linear operator.

Proof. We write I = (0,) as a union of intervals with disjoint interi-
ors, 1.e.,

I= U Q.

meN,
where Q,, = [m, m + 1]. Let 5 be a smooth function on R such that
n(x) =0 forxe€ (-, —1) U (2,)
=1 forxe]0,1]

and

< % Vk=0,1,2,....

d k
(XIE) xfu—l/zn(x)
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Define
a,(x,&) =n(x —m)a(x,§), (x,&) el X

Then by [9] for ¢ € HM(I ), we have
(Pa, @) (x) = n(x —m)(h, ,¢)(x) € H,(I).

and obviously,
[ ()72 de < [(1(h,, 6) (022 de. (33)
O 0

Since a,,(x, ¢£) has compact support with respect to x, it follows from the
inversion formula for Hankel transformation and Fubini’s theorem that

(0, )(%) = [ ()02, (5. £)(h, #)(£) di
= [ () (x6)
([0 20 () 0. €) a2 (1, 8) )
- fox(x/\)l/zju(x)\)

X (fooo(x§)1/2JM(x§)(hﬂam)()\, €)(h,d)(£) d§) da,
(3.4)

where
(h,a,)(A, €) = f:(x)t)l/zJ#(x)\)am(x, £) dx. (3.5)

The following estimate will be needed in the proof of the theorem.

LEMMA 3.4. For all « € Ny and N € N, there is a positive constant
C,. n» depending upon a and N only such that

<C, v +&)72°0+ 2N (3.6)

_1d *
(g 53) (han) (A £)

where A, €, € 1.
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Proof. Let B € N, be arbitrary. Then proceeding as in the proof of
Lemma 2.1 we have

(e ) hane)
—(—AZ)B(gli aﬁ( NI (N a,(x, €) de
= 4z o X W(xXA)a, (x,
d\% =
=(_A2)B(§1d—§) /O(x)\)l/zju(x)\)a(x,f)n(x—m)dx

d\“
(5_ f) / (XA)I/ZJ,L(X)\)Sf,x[a(X,f)n(x—m)]dx

Now using the formula (1.17) and estimate (1.4) with m = 0 and the fact
that |x'/%J (x)] is bounded by a constant A, for all x, we have

‘( o[ e 1d§) (h“am)()\,f)‘

ox (x_l %) n(x = m)

Xx2 (14 x) T dx

IA

L1l

B . o .
< Z Z (J)Au,j,r,m(l"‘f)_zaf (1+X)_q+2]+2M+IdX
j=0r=0\" 0

<Ay, (1+&)7°

since the integral is finite as g may be chosen large enough. Setting 8 = 0
and B = N in turn we get the desired inequality:

<Cu y(L+ &)1+ 22N

1 55) (hanre)
|

Now, this lemma and Theorem 3.2 imply that the operator ¢ — sz, 2 b,
defined on H, by

(hun@)(x) = [ (x6)" 2 1,(x6) (y, (A ) (h,)(£) d (37
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can be extended as a bounded linear operator on LZ(I). Moreover,
proceeding as in the proof of Theorem 3.1 and using Lemma 3.4, for any
positive integers N and k, we have

Ih;1(§M+l/2(huam)()\r f))| < Bp,,k,N(l +x2)—k(1 + AZN)_l.

Hence, using (1.9) we get
H(ﬁwd’)(x)uq(n
= {fome1/2|h;](§“+1/2(huam)(/\’ 5)#¢)(x)|l’ dx}l/p

< || h;zl(gp”—]/z(huam)(/\? g)) ||LL||¢||L£

-1 —k
<B, 1+ 2% 1 +x2)

gl (3.8)
Therefore, using (3.4) and (3.8) we get

(B0 &) ()

LD

- fwxuﬂ/z
0

ol 1/
sAMfO ([ xﬂ+1/2|(ﬁw¢)(x)|f’dx) "

]:(m)l/zfu(m)(ﬁmA¢>)(x) dA

P 1/p
g

0

' * -1
s@&wu(ﬂmw)dwwmm

< CM,NZN‘I(fO (1+ )" dA)IIcﬁIILg;

< B, wldllipn, ¢ H(I). (3.9)

Now, let Q% =[m,m + 2] and Q¥* =[m,m + 3] for m € N,. Let
€ Cy(I) be such that 0 < ¢(x) < 1 for all x €I, supp ¢y € Q*, and
y(x) =1 in a neighbourhood x € Q%. Write ¢ = ¢, + ¢,, where ¢, =
Y and ¢, = (1 — ).

Then

hp,ad) = h’p.,ad)l + h’u,ad)Z‘
Let us set

I, = me|(hM,ad’)(x)|pxu+1/2 dx
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I, = fQ |(h#’a¢2)(x)|pxn+1/2 dx.

m

L= [ (e a)(2) + (B o) (0)1Px*TV2dx. (3.10)
o

m

By Theorem 2.2 and Lemma 2.1 there is a positive constant C,, y such that
forall x € Q,,

|(hu,a¢2)(x)|

IA

/I_Q*(foook(x,y)DM(x,y, z) dy)¢2(z) dz

J (j;m|k(x’y)|DM(xsy,Z)d}’)|¢2(z)|dz

-05

J

[le(foxCM,N(l + x)*q(1 +y2)*kDM(x,y, z) dy)|q'>2(z)| dz)

<C,y(1+ m)_q(j;_Q (j:(l +y2)_kDM(x,y,z) dy)|¢2(z)|dz).

Since, x € Q,, therefore,

Then

(1+x) "< +m) "

|(huya¢2)(x)|

<20, (1 + m)“’([ow(f;(l +32) 7 Dy(x,,2) dy)ld)(z)l dz)

< C, N(1+m) " (f#1e)(x),
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where f= (1 +y?)7%, k > 1. Therefore,

fQ I(h“’aqbz)(x)lpx“”/z dx

< (C"%N)p(l + m)fqP/‘Q I(f#Iq'JI)(x)lp)C"H/zdx

< (1 +m) " )(IFl) (1l (3.11)
Then from (3.9), using (3.10) we have

.[Q |(hu,u¢)(x)|pxﬂ+1/2 dx < (1 + m)7qufL»N,P(”¢”Lﬁm)p'
Summing over m, we have

[ d) e < 200+, )

o]

X+ m)“’)(||¢||L5<,>)”. (3.12)

X

m=0

Since g may be chosen large, we get the desired inequality for all
XS HM(I). Moreover, HM(I) is dense in L{L’(I) [11, p. 108] and the result
(3.11) can be extended to all ¢ € L2(1). 1

4. AN APPLICATION

In this section an application of Theorem 3.3 is given.

THEOREM 4.1. Let a(x, £) be a symbol in H", s € R, w = —1/2, and
1 <p <. Then the p.d.o. h, , is a bounded linear operator W, ¥ — WMO”’
and also from

5P _y JWS—m,p
WP = W =m,

Proof. We consider at first the following linear operators:
—s. s, 0,
Hyss Wor = W0
.0 0,
hy oH s W0 > WP

s—m. 0,p_) s—m,p
HS™m: WO — Ws=mp,
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The first and third operators are bounded [11, p. 101] and the second
operator is bounded by Theorem 3.3. Therefore H; "h, ,H/" " is a
bounded linear operator from WS P into stm P Also by [11 p 101] the
operators H;'~*: W>? — W™r and H~ . WP W™ are isomet-
ric and onto. I{ence hy o W™ — V@pp must be a bounded linear
operator.

To prove the second part we note that H;" *h,, , is a pseudo-differential
operator with symbol in H°. Hence we can find a positive constant B such
that

(7, o) (Os=m, p = IH (R, () ()N, < Blidlls,, Vo WP
1
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