L^p_μ -Boundedness of the Pseudo-differential Operator Associated with the Bessel Operator

R. S. Pathak

metadata, citation and similar papers at core.ac.uk

and

S. K. Upadhyay

Department of Mathematics, L. S. College, Muzaffarpur, India

Submitted by William F. Ames

Received August 16, 1999

An L^p_μ -boundedness result for the pseudo-differential operator associated with the Bessel operator is obtained. © 2001 Academic Press

Key Words: L^p_μ -boundedness; Hankel transformation; pseudo-differential operator.

1. INTRODUCTION

Zemanian [14] extended the Hankel transformation

$$(h_{\mu}\phi)(x) = \int_0^{\infty} (xy)^{1/2} J_{\mu}(xy) \phi(y) dy, \qquad \mu \ge -1/2 \qquad (1.1)$$

to distributions belonging to H'_{μ} , the dual of test function space H_{μ} consisting of all complex-valued infinitely differentiable functions ϕ defined on $I=(0,\infty)$ satisfying

$$\gamma_{n,k}^{\mu}(\phi) = \sup_{x \in I} \left| x^n \left(x^{-1} \frac{d}{dx} \right)^k x^{-\mu - 1/2} \phi(x) \right| < \infty, \quad \forall n, k \in \mathbb{N}_0. (1.2)$$

It was shown by Zemanian that the Hankel transformation h_{μ} is an automorphism on the space H_{μ} and the generalized Hankel transformation h'_{μ} is an automorphism on H'_{μ} .

The pseudo-differential operator associated with the Bessel operator studied in [9–11] is defined by

$$(h_{\mu,a}\phi)(x) = \int_0^\infty (x\xi)^{1/2} J_{\mu}(x\xi) a(x,\xi) (h_{\mu}\phi) d\xi, \qquad \phi \in H_{\mu} \quad (1.3)$$

where the symbol $a(x, \xi)$ is defined as follows.

The function $a(x, \xi)$: $C^{\infty}(I \times I) \to \mathbb{C}$ belongs to class H^m if and only if for each $q \in \mathbb{N}_0$ there exists $D = D_{\alpha, m, q, \gamma}$ such that

$$(1+x)^{q} \left| \left(x^{-1} \frac{d}{dx} \right)^{\gamma} \left(\xi^{-1} \frac{d}{d\xi} \right)^{\alpha} a(x,\xi) \right| \le D(1+\xi)^{m-2\alpha}, \quad (1.4)$$

where m is a fixed real number.

For $1 \le p < \infty$, we define $L^p_\mu(I)$ as the Banach space of all measurable functions f on I which satisfy

$$||f||_p = \left(\int_0^\infty x^{\mu+1/2} |f(x)|^p \, dx\right)^{1/p} < \infty. \tag{1.5}$$

Now, let $f \in L^1_\mu(I)$, $g \in L^p_\mu(I)$, and define its associated function by

$$(\tau_x f)(y) = f(x, y) = \int_0^\infty f(z) D_\mu(x, y, z) dz, \quad 0 < x, y < \infty, \quad (1.6)$$

where

$$D_{\mu}(x,y,z) = \int_{0}^{\infty} t^{-\mu-1/2} (xt)^{1/2} J_{\mu}(xt) (yt)^{1/2} J_{\mu}(yt) (zt)^{1/2} J_{\mu}(zt) dt.$$
(1.7)

Then the Hankel convolution defined by

$$(f\#g)(x) = \int_0^\infty f(x,y)g(y) \, dy \tag{1.8}$$

satisfies the following norm inequality [9]

$$||f \# g||_{p} \le ||f||_{1} ||g||_{p}. \tag{1.9}$$

The Hankel convolution has been extended to distributions by Marrero and Betancor [6] and Betancor and Rodriguez-Mesa [1].

The L^p -boundedness of the classical pseudo-differential operator has been investigated by Fefferman [2], Kato [4], Nagase [7], Wong [12], and others. Wong's analysis depends heavily on a result of Hörmander [3]. In

this paper an analogue of Hörmander's result is established first then the proof of the main theorem on the L^p_μ -boundedness of the p.d.o. $h_{\mu,\,a}$ is constructed. Using this L^p_μ -boundedness property we prove that $h_{\mu,\,a}$ is a bounded linear operator from

$$W^{m,p}_{\mu} \to W^{0,p}_{\mu}$$
 and $W^{s,p}_{\mu} \to W^{s-m,p}_{\mu}$.

These spaces are defined in [11].

We shall use notation and terminology of [14]. The differential operators N_{μ} , M_{μ} , and S_{μ} are defined by

$$N_{\mu} = N_{\mu, x} = x^{\mu + 1/2} \left(\frac{d}{dx}\right) x^{-\mu - 1/2}$$
 (1.10)

$$M_{\mu} = M_{\mu, x} = x^{-\mu - 1/2} \left(\frac{d}{dx}\right) x^{\mu + 1/2} \tag{1.11}$$

$$S_{\mu} = S_{\mu,x} = M_{\mu}N_{\mu} = \frac{d^2}{dx^2} + \frac{1 - 4\mu^2}{4x^2}.$$
 (1.12)

From [14, p. 139] we have the following relations for any $\phi \in H_{\mu}$,

$$h_{\mu+1}(-x\phi) = N_{\mu}h_{\mu}\phi \tag{1.13}$$

$$h_{\mu}(N_{\mu}\phi) = -yh_{\mu}\phi \tag{1.14}$$

$$h_{\mu}(S_{\mu}\phi) = (-y)^{2}h_{\mu}\phi$$
 (1.15)

$$\left(x^{-1} \frac{d}{dx}\right)^{k} \left(x^{-\mu - 1/2} \psi \phi\right) = \sum_{\nu=0}^{k} {k \choose \nu} \left(x^{-1} \frac{d}{dx}\right)^{\nu} \psi \left(x^{-1} \frac{d}{dx}\right)^{k-\nu} \times \left(x^{-\mu - 1/2} \phi(x)\right). \tag{1.16}$$

The next result is due to Koh and Zemanian [5]

$$S_{\mu,x}^{r}\phi(x) = \sum_{j=0}^{r} b_{j} x^{2j+\mu+1/2} \left(x^{-1} \frac{d}{dx}\right)^{r+j} \left(x^{-\mu-1/2}\phi(x)\right), \quad (1.17)$$

where b_j are certain constants.

2. AN INTEGRAL REPRESENTATION

In this section we obtain an integral representation for the p.d.o. $h_{\mu, a}$ which will be useful in the proof of the L^p_μ -boundedness result.

LEMMA 2.1. Assume that the symbol $a(x, \xi)$ is defined by (1.4) with m = 0. Let

$$K(x,z) = \int_0^\infty (z\xi)^{1/2} J_\mu(z\xi) \xi^{\mu+1/2} a(x,\xi) d\xi, \qquad (2.1)$$

as a distribution in $H'_{\mu}(I)$. Then,

- (i) for each $x \in I$, $K(x, \cdot)$ is a function defined on I;
- (ii) for each sufficiently large positive integer k, there exists a positive constant $C_{\mu,k,q}$ such that $|K(x,z)| \le C_{\mu,k,q} (1+x)^{-q} (1+z^2)^{-k}$.

Proof. Let k be a positive integer greater than 1. Then using the formula (1.15) we get

$$K(x,z) = \int_0^\infty (z\xi)^{1/2} J_\mu(z\xi) \xi^{\mu+1/2} a(x,\xi) d\xi$$

=
$$\int_0^\infty (z\xi)^{1/2} J_\mu(z\xi) (1+z^2)^{-k} (1-S_{\mu,\xi})^k (\xi^{\mu+1/2} a(x,\xi)) d\xi.$$

Now using formula (1.17) we can write

$$K(x,z) = \int_0^\infty (z\xi)^{1/2} J_\mu(z\xi) (1+z^2)^{-k}$$

$$\times \left(\sum_{r=0}^k {k \choose r} (-1)^r S_{\mu,\xi}^r (\xi^{\mu+1/2} a(x,\xi)) \right) d\xi$$

$$= \int_0^\infty (z\xi)^{1/2} J_\mu(z\xi) (1+z^2)^{-k}$$

$$\times \sum_{r=0}^k \sum_{j=0}^r {k \choose r} (-1)^r \xi^{2j+\mu+1/2} b_j \left(\xi^{-1} \frac{d}{d\xi}\right)^{r+j} a(x,\xi) d\xi.$$

Since $a(x, \xi) \in H^0$, using (1.4), it follows that K(x, z) is a continuous function, and

$$|K(x,z)| \le A_{\mu} (1+z^{2})^{-k} \left(\sum_{r=0}^{k} \sum_{j=0}^{r} |b_{j}| {k \choose r} \right) \int_{0}^{\infty} (1+\xi)^{2j+\mu+1/2} (1+x)^{-q}$$

$$\times D_{r+j} (1+\xi)^{-2(r+j)} d\xi$$

$$\le A_{\mu} (1+z^{2})^{-k} (1+x)^{-q} \left(\sum_{r=0}^{k} \sum_{j=0}^{r} |b_{j}| {k \choose r} \right) \int_{0}^{\infty} (1+\xi)^{2j+\mu+1/2}$$

$$\times D_{r+j} (1+\xi)^{-2(r+j)} d\xi$$

choosing $r > \mu/2 + \frac{3}{4}$, where D_{r+j} is a constant.

Thus there exists a positive constant $C_{\mu,k,q}$ such that

$$|K(x,z)| \le C_{\mu,k,q} (1+z^2)^{-k} (1+x)^{-q}.$$

THEOREM 2.2. For each fixed $x \in I$ and $\phi \in H_{\mu}(I)$, $\mu \geq -1/2$, the p.d.o. can be expressed in the form

$$(h_{\mu,a}\phi)(x) = \int_0^\infty \left(\int_0^\infty K(x,z) D_{\mu}(x,y,z) \, dz \right) \phi(y) \, dy, \qquad (2.2)$$

where $K(x, z) = h_{\mu}(\xi^{\mu+1/2}a(x, \xi))$ in the distributional sense.

Proof. We recall from [6, p. 354] that τ_x , $0 < x < x_0$, is a continuous linear mapping from H_{μ} into itself. Hence $h_{\mu}(\tau_x \phi)$ is well defined for $\phi \in H_{\mu}$. Moreover, in view of definition (1.8),

$$h_{\mu}(\tau_{x}\phi)(\xi) = \int_{0}^{\infty} (z\xi)^{1/2} J_{\mu}(z\xi)(\tau_{x}\phi)(z) dz$$

$$= \int_{0}^{\infty} (z\xi)^{1/2} J_{\mu}(z\xi) \left(\int_{0}^{\infty} \phi(y) D_{\mu}(x,y,z) dy \right) dz$$

$$= \int_{0}^{\infty} \phi(y) dy \int_{0}^{\infty} (z\xi)^{1/2} J_{\mu}(z\xi) D_{\mu}(x,y,z) dz$$

$$= \int_{0}^{\infty} \xi^{-\mu - 1/2} (x\xi)^{1/2} J_{\mu}(x\xi) (y\xi)^{1/2} J_{\mu}(y\xi) \phi(y) dy$$

$$= (x\xi)^{1/2} J_{\mu}(x\xi) \xi^{-\mu - 1/2} (h_{\mu}\phi)(\xi);$$

so that

$$(h_{\mu}\phi)(\xi) = ((x\xi)^{1/2}J_{\mu}(x\xi))^{-1}\xi^{\mu+1/2}h_{\mu}(\tau_{x}\phi)(\xi) \in H_{\mu}.$$

Now, define the p.d.o. $h_{\mu,a}$ in the sense of distribution as

$$(h_{\mu,a}\phi)(x) = \langle (x\xi)^{1/2} J_{\mu}(x\xi) a(x,\xi), (h_{\mu}\phi)(\xi) \rangle$$

$$= \langle (x\xi)^{1/2} J_{\mu}(x\xi) a(x,\xi),$$

$$((x\xi)^{1/2} J_{\mu}(x\xi))^{-1} \xi^{\mu+1/2} h_{\mu}(\tau_{x}\phi)(\xi) \rangle$$

$$= \langle \xi^{\mu+1/2} a(x,\xi), h_{\mu}(\tau_{x}\phi)(\xi) \rangle$$

$$= \langle h_{\mu}(\xi^{\mu+1/2}a(x,\xi)), (\tau_{x}\phi)(z) \rangle$$

$$= \langle K(x,z), (\tau_{x}\phi)(z) \rangle$$

$$= \int_{0}^{\infty} K(x,z)(\tau_{x}\phi)(z) dz$$

$$= \int_{0}^{\infty} K(x,z) \left(\int_{0}^{\infty} D_{\mu}(x,y,z) \phi(y) dy \right) dz$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} K(x,z) D_{\mu}(x,y,z) dz \right) \phi(y) dy.$$

3. THE L^p_μ -BOUNDEDNESS THEOREM

Theorem 3.1. Let $\theta \in C^k(I)$, $k \ge 1$, be such that there is a positive constant B for which

$$\left| \left(\xi^{-1} \frac{d}{d\xi} \right)^{\alpha} \theta(\xi) \right| \le B(1 + \xi)^{-2\alpha}, \qquad \alpha \le k/2.$$
 (3.1)

If

$$f(x) = \int_0^\infty (x\xi)^{1/2} J_\mu(x\xi) \xi^{\mu+1/2} \theta(\xi) d\xi$$
 (3.2)

then $f \in L_{\mu}^{p}(I)$, $1 \le p < \infty$, $\mu \ge -1/2$.

Proof. Proceeding as in the proof of Lemma 2.1 we obtain

$$|f(x)| \leq (1+x^{2})^{-k} \sum_{r=0}^{k} \sum_{j=0}^{r} {k \choose r} |b_{j}| \int_{0}^{\infty} |(x\xi)^{1/2} J_{\mu}(x\xi)| \xi^{2j+\mu+1/2}$$

$$\times \left| \left(\xi^{-1} \frac{d}{d\xi} \right)^{r+j} \theta(\xi) \right| d\xi$$

$$\leq (1+x^{2})^{-k} \sum_{r=0}^{k} \sum_{j=0}^{r} {k \choose r} A_{\mu,j} \left(\int_{0}^{\infty} (1+\xi)^{\mu-2r+1/2} d\xi \right)$$

$$\leq B_{\mu,k} (1+x^{2})^{-k},$$

choosing $r > \mu/2 + \frac{3}{4}$. Therefore, for k > 1 we have

$$||f(x)||_{L^p_\mu(I)} \le B_{\mu,k} ||(1+x^2)^{-k}||_{L^p_\mu(I)} < \infty$$

as k may be chosen large enough.

THEOREM 3.2. Let θ be the same as in Theorem 3.1; then for $1 \le p < \infty$, there exists a positive constant $C = C(p, \mu)$ such that

$$\|(h_{\mu,\,\theta}\phi)(x)\|_{L^p_\mu(I)} \le C\|\phi\|_{L^p_\mu(I)}, \qquad \phi \in H_\mu.$$

Proof. By definition we have

$$(h_{\mu,\,\theta}\phi)(x) = h_{\mu}^{-1} [\theta(\xi)(h_{\mu}\phi)](x), \qquad \phi \in H_{\mu}.$$

Now, assume that there exists f such that

$$h_{\mu}^{-1} [\theta(\xi)(h_{\mu}\phi)(\xi)](x) = (f\#\phi)(x).$$

Then invoking inequality (1.9) and Theorem 3.1 we get

$$\| \left(h_{\mu,\,\theta} \,\phi(x) \|_{L^{p}_{\mu}(I)} \leq \| h_{\mu}^{-1} \left(\xi^{\,\mu+1/2} \theta(\,\xi\,) \right) \|_{L^{1}_{\mu}(I)} \| \phi \|_{L^{p}_{\mu}(I)}$$

$$\leq C \| \phi \|_{L^{p}_{\mu}(I)}, \qquad \phi \in H_{\mu}.$$

The following theorem contains the basic results on $L^p_\mu(I)$ -boundedness.

THEOREM 3.3. Let $a(x, \xi)$ be a symbol in H^0 . Then for $1 and <math>\mu \ge -1/2$, $h_{\mu,a}$: $L^p_{\mu}(I) \to L^p_{\mu}(I)$ is a bounded linear operator.

Proof. We write $I = (0, \infty)$ as a union of intervals with disjoint interiors, i.e.,

$$I=\bigcup_{m\in N_0}Q_m,$$

where $Q_m = [m, m + 1]$. Let η be a smooth function on **R** such that

$$\eta(x) = 0 \quad \text{for } x \in (-\infty, -1) \cup (2, \infty)$$

$$= 1 \quad \text{for } x \in [0, 1]$$

and

$$\left| \left(x^{-1} \frac{d}{dx} \right)^k x^{-\mu - 1/2} \eta(x) \right| < \infty \qquad \forall k = 0, 1, 2, \dots.$$

Define

$$a_m(x,\xi) = \eta(x-m)a(x,\xi), \quad (x,\xi) \in I \times I.$$

Then by [9] for $\phi \in H_{\mu}(I)$, we have

$$(h_{\mu, a_m} \phi)(x) = \eta(x - m)(h_{\mu, a} \phi)(x) \in H_{\mu}(I).$$

and obviously,

$$\int_{O_m} |(h_{\mu,a}\phi)(x)|^p x^{\mu+1/2} dx \le \int_0^\infty |(h_{\mu,a_m}\phi)(x)|^p x^{\mu+1/2} dx. \quad (3.3)$$

Since $a_m(x, \xi)$ has compact support with respect to x, it follows from the inversion formula for Hankel transformation and Fubini's theorem that

$$(h_{\mu,a_{m}}\phi)(x) = \int_{0}^{\infty} (x\xi)^{1/2} J_{\mu}(x\xi) a_{m}(x,\xi) (h_{\mu}\phi)(\xi) d\xi$$

$$= \int_{0}^{\infty} (x\xi)^{1/2} J_{\mu}(x\xi)$$

$$\times \left(\int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda) (h_{\mu}a_{m})(\lambda,\xi) d\lambda \right) (h_{\mu}\phi)(\xi) d\xi$$

$$= \int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda)$$

$$\times \left(\int_{0}^{\infty} (x\xi)^{1/2} J_{\mu}(x\xi) (h_{\mu}a_{m})(\lambda,\xi) (h_{\mu}\phi)(\xi) d\xi \right) d\lambda,$$

$$(3.4)$$

where

$$(h_{\mu}a_m)(\lambda,\xi) = \int_0^\infty (x\lambda)^{1/2} J_{\mu}(x\lambda) a_m(x,\xi) dx.$$
 (3.5)

The following estimate will be needed in the proof of the theorem.

LEMMA 3.4. For all $\alpha \in \mathbb{N}_0$ and $N \in \mathbb{N}_0$, there is a positive constant $C_{\alpha,N}$, depending upon α and N only such that

$$\left| \left(\xi^{-1} \frac{d}{d\xi} \right)^{\alpha} (h_{\mu} a_{m}) (\lambda, \xi) \right| \leq C_{\alpha, N} (1 + \xi)^{-2\alpha} (1 + \lambda^{2N})^{-1}, \quad (3.6)$$

where $\lambda, \xi, \in I$.

Proof. Let $\beta \in \mathbb{N}_0$ be arbitrary. Then proceeding as in the proof of Lemma 2.1 we have

$$(-\lambda^{2})^{\beta} \left(\xi^{-1} \frac{d}{d\xi}\right)^{\alpha} (h_{\mu}a_{m})(\lambda,\xi)$$

$$= (-\lambda^{2})^{\beta} \left(\xi^{-1} \frac{d}{d\xi}\right)^{\alpha} \int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda) a_{m}(x,\xi) dx$$

$$= (-\lambda^{2})^{\beta} \left(\xi^{-1} \frac{d}{d\xi}\right)^{\alpha} \int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda) a(x,\xi) \eta(x-m) dx$$

$$= \left(\xi^{-1} \frac{d}{d\xi}\right)^{\alpha} \int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda) S_{\mu,x}^{\beta} \left[a(x,\xi) \eta(x-m)\right] dx.$$

Now using the formula (1.17) and estimate (1.4) with m=0 and the fact that $|x^{1/2}J_{\mu}(x)|$ is bounded by a constant A_{μ} for all x, we have

$$\left| (-\lambda^{2})^{\beta} \left(\xi^{-1} \frac{d}{d\xi} \right)^{\alpha} (h_{\mu} a_{m}) (\lambda, \xi) \right|$$

$$\leq \sum_{j=0}^{\beta} \sum_{r=0}^{j} {j \choose r} \int_{0}^{\infty} \left| \left(x^{-1} \frac{d}{dx} \right)^{\alpha} \eta(x-m) \right| |b_{j}| A_{\mu} (1+\xi)^{-2\alpha}$$

$$\times x^{2j+\mu+1/2} (1+x)^{-q} dx$$

$$\leq \sum_{j=0}^{\beta} \sum_{r=0}^{j} {j \choose r} A_{\mu,j,r,m} (1+\xi)^{-2\alpha} \int_{0}^{\infty} (1+x)^{-q+2j+2\mu+1} dx$$

$$\leq A_{\beta,\mu,m} (1+\xi)^{-2\alpha},$$

since the integral is finite as q may be chosen large enough. Setting $\beta = 0$ and $\beta = N$ in turn we get the desired inequality:

$$\left| \left(\xi^{-1} \frac{d}{d\xi} \right)^{\alpha} (h_{\mu} a_m) (\lambda, \xi) \right| \leq C_{\alpha, N} (1 + \xi)^{-2\alpha} (1 + \lambda^{2N})^{-1}.$$

Now, this lemma and Theorem 3.2 imply that the operator $\phi \to \tilde{h}_{\mu,\,\lambda}\phi$, defined on H_μ by

$$\left(\tilde{h}_{\mu,\lambda}\phi\right)(x) = \int_0^\infty (x\xi)^{1/2} J_{\mu}(x\xi) \left(h_{\mu}a_m\right)(\lambda,\xi) \left(h_{\mu}\phi\right)(\xi) d\xi \tag{3.7}$$

can be extended as a bounded linear operator on $L_{\mu}^{p}(I)$. Moreover, proceeding as in the proof of Theorem 3.1 and using Lemma 3.4, for any positive integers N and k, we have

$$|h_{\mu}^{-1}(\xi^{\mu+1/2}(h_{\mu}a_m)(\lambda,\xi))| \leq B_{\mu,k,N}(1+x^2)^{-k}(1+\lambda^{2N})^{-1}.$$

Hence, using (1.9) we get

$$\begin{split} & \left\| \left(\tilde{h}_{\mu,\lambda} \phi \right) (x) \right\|_{L_{\mu}^{N}(I)} \\ &= \left\{ \int_{0}^{\infty} x^{\mu + 1/2} |h_{\mu}^{-1} (\xi^{\mu + 1/2} (h_{\mu} a_{m}) (\lambda, \xi) \# \phi) (x)|^{p} dx \right\}^{1/p} \\ &\leq \left\| h_{\mu}^{-1} (\xi^{\mu + 1/2} (h_{\mu} a_{m}) (\lambda, \xi)) \right\|_{L_{\mu}^{1}} \|\phi\|_{L_{\mu}^{p}} \\ &\leq B_{\mu,k,N} (1 + \lambda^{2N})^{-1} \| (1 + x^{2})^{-k} \|_{L_{\mu}^{1}} \|\phi\|_{L_{\mu}^{p}}. \end{split}$$

$$(3.8)$$

Therefore, using (3.4) and (3.8) we get

$$\begin{split} & \| (h_{\mu, a_{m}}, \phi)(x) \|_{L_{\mu}^{N}(I)} \\ & = \left\{ \int_{0}^{\infty} x^{\mu + 1/2} \middle| \int_{0}^{\infty} (x\lambda)^{1/2} J_{\mu}(x\lambda) \Big(\tilde{h}_{\mu, \lambda} \phi \Big)(x) \, d\lambda \middle|^{p} \, dx \right\}^{1/p} \\ & \leq A_{\mu} \int_{0}^{\infty} \left(\int_{0}^{\infty} x^{\mu + 1/2} \middle| \Big(\tilde{h}_{\mu, \lambda} \phi \Big)(x) \middle|^{p} \, dx \right)^{1/p} \, d\lambda \\ & \leq A_{\mu} B'_{\mu, N} \left(\int_{0}^{\infty} (1 + \lambda^{2N})^{-1} \, d\lambda \right) \| \phi \|_{L_{\mu}^{p}(I)} \\ & \leq C_{\mu, N} 2^{N-1} \left(\int_{0}^{\infty} (1 + \lambda^{2})^{-N} \, d\lambda \right) \| \phi \|_{L_{\mu}^{p}} \\ & \leq \beta_{\mu, N} \| \phi \|_{L_{\mu}^{p}(I)}, \qquad \phi \in H_{\mu}(I). \end{split}$$

$$(3.9)$$

Now, let $Q_m^* = [m, m+2]$ and $Q_m^{**} = [m, m+3]$ for $m \in \mathbb{N}_0$. Let $\psi \in C_0^{\infty}(I)$ be such that $0 \le \psi(x) \le 1$ for all $x \in I$, supp $\psi \subseteq Q_m^*$, and $\psi(x) = 1$ in a neighbourhood $x \in Q_m^*$. Write $\phi = \phi_1 + \phi_2$, where $\phi_1 = \psi \phi$ and $\phi_2 = (1 - \psi)\phi$.

Then

$$h_{\mu,a}\phi = h_{\mu,a}\phi_1 + h_{\mu,a}\phi_2.$$

Let us set

$$I_m = \int_{O_m} |(h_{\mu,a}\phi)(x)|^p x^{\mu+1/2} dx$$

and

$$J_m = \int_{Q_m} |(h_{\mu,a}\phi_2)(x)|^p x^{\mu+1/2} dx.$$

Then

$$I_m = \int_{Q_m} |(h_{\mu,a}\phi_1)(x) + (h_{\mu,a}\phi_2)(x)|^p x^{\mu+1/2} dx.$$
 (3.10)

By Theorem 2.2 and Lemma 2.1 there is a positive constant $C_{\mu,N}$ such that for all $x \in Q_m$,

$$\begin{split} &|(h_{\mu,a}\phi_{2})(x)|\\ &\leq \left|\int_{I-\mathcal{Q}_{m}^{*}} \left(\int_{0}^{\infty} k(x,y) D_{\mu}(x,y,z) \, dy\right) \phi_{2}(z) \, dz\right|\\ &\leq \left|\int_{I-\mathcal{Q}_{m}^{*}} \left(\int_{0}^{\infty} |k(x,y)| D_{\mu}(x,y,z) \, dy\right) |\phi_{2}(z)| \, dz\right|\\ &\leq \left(\int_{I-\mathcal{Q}_{m}^{*}} \left(\int_{0}^{\infty} C_{\mu,N}(1+x)^{-q} (1+y^{2})^{-k} D_{\mu}(x,y,z) \, dy\right) |\phi_{2}(z)| \, dz\right)\\ &\leq C_{\mu,N} (1+m)^{-q} \left(\int_{I-\mathcal{Q}_{m}^{*}} \left(\int_{0}^{\infty} (1+y^{2})^{-k} D_{\mu}(x,y,z) \, dy\right) |\phi_{2}(z)| \, dz\right). \end{split}$$

Since, $x \in Q_m$ therefore,

$$\left(1+x\right)^{-q} \le \left(1+m\right)^{-q}.$$

Then

$$\begin{split} &|(h_{\mu,a}\phi_2)(x)|\\ &\leq 2C_{\mu,N}(1+m)^{-q} \bigg(\int_0^\infty \bigg(\int_0^\infty (1+y^2)^{-k} D_\mu(x,y,z) \, dy \bigg) |\phi(z)| \, dz \bigg)\\ &\leq C'_{\mu,N}(1+m)^{-q} \big(f\#|\phi| \big)(x), \end{split}$$

where $f = (1 + y^2)^{-k}, k > 1$. Therefore,

$$\int_{Q_{m}} |(h_{\mu,a}\phi_{2})(x)|^{p} x^{\mu+1/2} dx$$

$$\leq (C'_{\mu,N})^{p} (1+m)^{-qp} \int_{Q_{m}} |(f\#|\phi|)(x)|^{p} x^{\mu+1/2} dx$$

$$\leq (1+m)^{-qp} (C'_{\mu,N}) (||f||_{L^{1}_{u(1)}})^{p} (||\phi||_{L^{p}_{u(1)}})^{p}.$$
(3.11)

Then from (3.9), using (3.10) we have

$$\int_{O_m} |(h_{\mu,a}\phi)(x)|^p x^{\mu+1/2} dx \le (1+m)^{-qp} D_{\mu,N,P} (\|\phi\|_{L^p_{\mu(I)}})^p.$$

Summing over m, we have

$$\int_{0}^{\infty} |(h_{\mu,a}\phi)(x)|^{p} x^{\mu+1/2} dx \leq 2^{p} (1 + D_{\mu,N,p})$$

$$\times \left(\sum_{m=0}^{\infty} (1+m)^{-qp} \right) (\|\phi\|_{L_{\mu(I)}^{p}})^{p}. \quad (3.12)$$

Since q may be chosen large, we get the desired inequality for all $\phi \in H_{\mu}(I)$. Moreover, $H_{\mu}(I)$ is dense in $L_{\mu}^{p}(I)$ [11, p. 108] and the result (3.11) can be extended to all $\phi \in L_{\mu}^{p}(I)$.

4. AN APPLICATION

In this section an application of Theorem 3.3 is given.

THEOREM 4.1. Let $a(x, \xi)$ be a symbol in H^m , $s \in \mathbb{R}$, $\mu \ge -1/2$, and $1 . Then the p.d.o. <math>h_{\mu,a}$ is a bounded linear operator $W_{\mu}^{m,p} \to W_{\mu}^{0,p}$ and also from

$$W^{s,p}_{\mu} \rightarrow W^{s-m,p}_{\mu}$$
.

Proof. We consider at first the following linear operators:

$$\begin{split} H_{\mu}^{-s} \colon W_{\mu}^{s,\,p} &\to W_{\mu}^{0,\,p} \\ h_{\mu,\,a} H_{\mu}^{m} \colon W_{\mu}^{0,\,p} &\to W_{\mu}^{0,\,p} \\ H_{\mu}^{s-m} \colon W_{\mu}^{0,\,p} &\to W_{\mu}^{s-m,\,p} \,. \end{split}$$

The first and third operators are bounded [11, p. 101] and the second operator is bounded by Theorem 3.3. Therefore $H_{\mu}^{s-m}h_{\mu,a}H_{\mu}^{m-s}$ is a bounded linear operator from $W_{\mu}^{s,p}$ into $W_{\mu}^{s-m,p}$. Also by [11, p. 101] the operators $H_{\mu}^{m-s}\colon W_{\mu}^{s,p}\to W_{\mu}^{m,p}$ and $H_{\mu}^{s-m}\colon W_{\mu}^{0,p}\to W_{\mu}^{s-m,p}$ are isometric and onto. Hence $h_{\mu,a}\colon W_{\mu}^{m,p}\to W_{\mu}^{0,p}$ must be a bounded linear operator.

To prove the second part we note that $H_{\mu}^{m-s}h_{\mu,a}$ is a pseudo-differential operator with symbol in H^s . Hence we can find a positive constant B such that

$$\|(h_{\mu,a}\phi)(x)\|_{s-m,p} = \|H_{\mu}^{m-s}(h_{\mu,a}\phi)(x)\|_{p} \le B\|\phi\|_{s,p} \qquad \forall \phi \in W_{\mu}^{s,p}.$$

REFERENCES

- 1. J. J. Betancor and L. Rodriguez-Mesa, Hankel convolution on distribution spaces with exponential growth, *Studia Math.* **121** (1996), 35–52.
- C. Fefferman, L^p-bounds for pseudo-differential operators, Israel J. Math. 14 (1973), 413–417.
- 3. L. Hörmander, Estimates for translation invariant operators in L^p -spaces, *Acta Math*. **104** (1960), 93–140.
- T. Kato, Boundedness of some pseudo-differential operators, *Osaka J. Math.* 13 (1976), 1–9.
- E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945–957.
- I. Marrero and J. J. Betancor, Hankel convolution of generalized functions. *Rend. Mat. Ser.* (7) 15 (1995), 351–380.
- M. Nagase, The L^p-boundedness of pseudo-differential operator with nonregular symbols, Comm. Partial Differential Equations 2 (1971), 1045–1061.
- R. S. Pathak, "Integral Transforms of Generalized Functions and Their Applications," Gordon & Breach, New York, 1997.
- R. S. Pathak and P. K. Pandey, A class of pseudo-differential operator associated with Bessel operators, J. Math. Anal. Appl. 196 (1995), 736–747.
- R. S. Pathak and S. K. Upadhyay, Pseudo-differential operators involving Hankel transformation, J. Math. Anal. Appl. 213 (1997), 133–147.
- 11. R. S. Pathak and P. K. Pandey, Sobolev type spaces associated with Bessel operators, *J. Math. Anal. Appl.* **215** (1997), 95–111.
- M. W. Wong, "An Introduction to Pseudo-differential Operators," World Scientific, Singapore, 1991.
- S. Zaidman, "Distributions and Pseudo-Differential Operators," Longman, Essex, England, 1991.
- 14. A. H. Zemanian, "Generalized Integral Transformations," Interscience, New York, 1968.