Associated graded rings of one-dimensional analytically irreducible rings II

Valentina Barucci ${ }^{\text {a }}$, Ralf Fröberg ${ }^{\text {b,* }}$
a Dipartimento di Matematica, Università di Roma 1, Piazzale Aldo Moro 2, 00185 Roma, Italy
${ }^{\text {b }}$ Matematiska Institutionen, Stockholms Universitet, 10691 Stockholm, Sweden

ARTICLE INFO

Article history:

Received 31 October 2010
Available online 1 February 2011
Communicated by Luchezar L. Avramov

MSC:

13A30

Keywords:
One-dimensional ring
Associated graded ring
Analytically irreducible

Abstract

Lance Bryant noticed in his thesis (Bryant, 2009 [3]), that there was a flaw in our paper (Barucci and Fröberg, 2006 [2]). It can be fixed by adding a condition, called the BF condition in Bryant (2009) [3]. We discuss some equivalent conditions, and show that they are fulfilled for some classes of rings, in particular for our motivating example of semigroup rings. Furthermore we discuss the connection to a similar result, stated in more generality, by Cortadellas and Zarzuela in [4]. Finally we use our result to conclude when a semigroup ring in embedding dimension at most three has an associated graded which is a complete intersection.

© 2011 Elsevier Inc. All rights reserved.

1. The BF condition

Let (R, m) be an equicharacteristic analytically irreducible and residually rational local one-dimensional domain of embedding dimension ν, multiplicity e and residue field k. For the problems we study we may, and will, without loss of generality suppose that R is complete. So our hypotheses are equivalent to supposing R is a subring of $k \llbracket t \rrbracket$ with $(R: k \llbracket t \rrbracket) \neq 0$. Since $k \llbracket t \rrbracket$, the integral closure of R, is a DVR, every nonzero element of R has a value, and we let $S=v(R)=\{v(r) ; r \in R, r \neq 0\}$. We denote by w_{0}, \ldots, w_{e-1} the Apery set of $v(R)$ with respect to e, i.e., the set of smallest values in $v(R)$ in each congruence class $(\bmod e)$, and we assume $w_{j} \equiv j(\bmod e)$.

If $x \in R$ is an element of smallest positive value, i.e. $v(x)=e$, then $x R$ is a minimal reduction of the maximal ideal, i.e. $m^{n+1}=x m^{n}$, for $n \gg 0$. Conversely each minimal reduction of the maximal

[^0]ideal is a principal ideal generated by an element x of value e. The smallest integer n such that $m^{n+1}=x m^{n}$ is called the reduction number and we denote it by r.

Observe that, if $v(x)=e$, then $\operatorname{Ap}_{e}(S)=S \backslash(e+S)=v(R) \backslash v(x R)$, therefore $w_{j} \notin v(x R)$, for $j=$ $0, \ldots, e-1$.

Consider the m-adic filtration $m \supset m^{2} \supset m^{3} \supset \cdots$. If $a \in R$, we set $\operatorname{ord}(a):=\max \left\{i \mid a \in m^{i}\right\}$. If $s \in S$, we consider the semigroup filtration $v(m) \supset v\left(m^{2}\right) \supset \cdots$ and set $\operatorname{vord}(s):=\max \left\{i \mid s \in v\left(m^{i}\right)\right\}$. If $a \in m^{i}$, then $v(a) \in v\left(m^{i}\right)$ and so $\operatorname{ord}(a) \leqslant \operatorname{vord}(v(a))$.

According to [3], we say that the m-adic filtration is essentially divisible with respect to the minimal reduction $x R$ if, whenever $u \in v(x R)$, then there is an $a \in x R$ with $v(a)=u$ and $\operatorname{ord}(a)=\operatorname{vord}(u)$. The m-adic filtration is essentially divisible if there exists a minimal reduction $x R$ such that it is essentially divisible with respect to $x R$.

We fix for all the paper the following notation. Set, for $j=0, \ldots, e-1, b_{j}=\max \left\{i \mid w_{j} \in v\left(m^{i}\right)\right\}$, and let $c_{j}=\max \left\{i \mid w_{j} \in v\left(m^{i}+x R\right)\right\}$. Note that the numbers b_{j} 's do not depend on the minimal reduction $x R$, on the contrary the c_{j} 's depend on $x R$.

Lemma 1.1. If I and J are ideals of R, then $v(I+J)=v(I) \cup v(J)$ is equivalent to $v(I \cap J)=v(I) \cap v(J)$.
Proof. Let $V=v(I+J) \backslash v(I \cap J)$. Then

$$
V=(v(I) \backslash v(I \cap J)) \cup(v(I+J) \backslash v(I))=(v(J) \backslash v(I \cap J)) \cup(v(I+J) \backslash v(J))
$$

and both unions are disjoint. Since $(I+J) / J \simeq I / I \cap J$, we get that $|v(I+J) \backslash v(J)|=|v(I) \backslash v(I \cap J)|$ and similarly that $|v(I+J) \backslash v(I)|=|v(J) \backslash v(I \cap J)|$. Suppose that $v(I \cap J) \subsetneq v(I) \cap v(J)$, i.e. that there is a value $v_{0} \in(v(I) \backslash v(I \cap J)) \cap(v(J) \backslash v(I \cap J))$. Thus $v_{0} \notin(v(I+J) \backslash v(J))$ and by cardinality reasons also $(v(I+J) \backslash v(I)) \cap(v(I+J) \backslash v(J)) \neq \emptyset$, i.e. $v(I+J) \supsetneq v(I) \cup v(J)$. The other implication is symmetric and we get the claim.

Proposition 1.2. Let $x R$ be a minimal reduction of m. Then the following conditions are equivalent:
(1) The m-adic filtration is essentially divisible with respect to $x R$.
(2) $v\left(m^{i} \cap x R\right)=v\left(m^{i}\right) \cap v(x R)$, for all $i \geqslant 0$.
(3) $v\left(m^{i}+x R\right)=v\left(m^{i}\right) \cup v(x R)$, for all $i \geqslant 0$.
(4) $b_{j}=c_{j}$ for $j=0, \ldots, e-1$.

Proof. (1) \Rightarrow (2): Let $i \geqslant 0$ and $u \in v\left(m^{i}\right) \cap v(x R)$. Then $u \in v(x R)$ and $\operatorname{vord}(u) \geqslant i$. By (1) there exists $a \in x R$ with $v(a)=u$ and $\operatorname{ord}(a)=\operatorname{vord}(u)$. Thus $a \in m^{i} \cap x R$ and so $v\left(m^{i} \cap x R\right) \supseteq v\left(m^{i}\right) \cap v(x R)$. Since the other inclusion is trivial, we get an equality.
(2) \Rightarrow (1): If $u \in v(x R)$ and $\operatorname{vord}(u)=i$, then $u \in v\left(m^{i}\right) \cap v(x R)$, and by (2), $u \in v\left(m^{i} \cap x R\right)$. So there is $a \in m^{i} \cap x R$ with $v(a)=u$. For such $a, i \leqslant \operatorname{ord}(a) \leqslant \operatorname{vord}(u)=i$, and so $\operatorname{ord}(a)=i$.

That (2) and (3) are equivalent follows from Lemma 1.1 with $I=m^{i}$ and $J=x R$.
(3) \Rightarrow (4): Since $m^{i} \subseteq m^{i}+x R$, we have $v\left(m^{i}\right) \subseteq v\left(m^{i}+x R\right)$, so $b_{j} \leqslant c_{j}$. Suppose that $b_{j}<c_{j}$ for some j. Then $w_{j} \in v\left(m^{c_{j}}+x R\right) \backslash v\left(m^{c_{j}}\right)$. Since $w_{j} \notin v(x R)$, we get that $v\left(m^{c_{j}}\right) \cup v(x R)$ is strictly included in $v\left(m^{c_{j}}+x R\right)$.
(4) \Rightarrow (3): If $u \in v\left(m^{i}+x R\right) \backslash v(x R)$, then $u \in v(R) \backslash v(x R)=\operatorname{Ap}_{e} v(R)$, so $u=w_{j}$ for some j. Then $w_{j} \in v\left(m^{i}+x R\right) \backslash v\left(m^{i}\right)$, so $b_{j}<c_{j}$.

Observe that if $R=k \llbracket t^{n_{1}}, \ldots, t^{n_{v}} \rrbracket$ is a semigroup k-algebra and I, J are ideals generated by monomials, then $v(I \cap J)=v(I) \cap v(J)$ (and $v(I+J)=v(I) \cup v(J))$. This follows from the fact that if $I=\left(t^{i_{1}}, \ldots, t^{i_{k}}\right)$ is generated by monomials, then $v(I)=\left\langle i_{1}, \ldots, i_{k}\right\rangle$. So, if we choose for the maximal ideal of R a monomial minimal reduction, by Proposition 1.2 we have that the m-adic filtration is essentially divisible with respect to such a reduction. If we choose a different minimal reduction this is not always the case, as the following example shows.

Example. Let $R=k \llbracket t^{6}, t^{7}, t^{15} \rrbracket$. By what we observed above, the m-adic filtration is essentially divisible with respect to the minimal reduction $t^{6} R$. On the contrary, it is not essentially divisible with respect to the minimal reduction $\left(t^{6}+t^{7}\right) R$, because $v\left(m^{3}+\left(t^{6}+t^{7}\right) R\right) \nsubseteq v\left(m^{3}\right) \cup v\left(\left(t^{6}+t^{7}\right) R\right)$ and we can apply Proposition 1.2(3). As a matter of fact, $t^{21}-\left(t^{6}+t^{7}\right) t^{15} \in m^{3}+\left(t^{6}+t^{7}\right) R$, thus $22 \in v\left(m^{3}+\left(t^{6}+t^{7}\right) R\right)$, but $22 \notin v\left(m^{3}\right) \cup v\left(\left(t^{6}+t^{7}\right) R\right)$.

This example shows also that the numbers c_{j} 's depend on the minimal reduction. Considering $w_{4}=22$, with respect to the minimal reduction $t^{6} R$, we get $b_{4}=c_{4}=2$, but with respect to $\left(t^{6}+t^{7}\right) R$, we get $2=b_{4}<c_{4}=3$.

In [2], we called a set f_{0}, \ldots, f_{e-1} of elements of R an Apery basis if $v\left(f_{j}\right) \equiv j(\bmod e)$ and $\operatorname{ord}\left(f_{j}\right)=b_{j}$, for all $j, j=0, \ldots, e-1$ and claimed that for all $i \geqslant 0, m^{i}$ is a free W-module generated by elements of the form $x^{h_{j}} f_{j}$, where $x R$ is a minimal reduction of m and $W=k \llbracket x \rrbracket$. In [3] Lance Bryant showed that this is not always true, considering the example $R=k \llbracket t^{6}, t^{8}+t^{9}, t^{19} \rrbracket$ with $\operatorname{char}(k)=0$. Here $e=6$ and $v(R)$ has Apery set $0,8,16,19,27,29$. Setting: $x=t^{6}, W=k \llbracket t^{6} \rrbracket$ and $f_{0}=1, f_{1}=t^{8}+t^{9}, f_{2}=t^{16}+2 t^{17}+t^{18}, f_{3}=t^{19}, f_{4}=t^{27}+t^{28}, f_{5}=t^{29}$ he gets $m^{3}=$ $x^{3} f_{0} W+x^{2} f_{1} W+x f_{2} W+g W+x f_{4} W+x f_{5} W$ where $g=\left(t^{8}+t^{9}\right)^{3}-\left(t^{6}\right)^{4}=3 t^{25}+3 t^{26}+t^{27} \in m^{3}$. On the other hand $x^{h} f_{3}=t^{6} t^{19}=t^{25} \in m^{2} \backslash m^{3}$.

According to [3], we say that the m-adic filtration satisfies the BF condition if there exists a minimal reduction $x R$ of m and a set of elements $\left\{f_{0}, \ldots, f_{e-1}\right\}$ of R with $v\left(f_{j}\right)=w_{j}$ such that each power of m is a free $k \llbracket x \rrbracket$-module generated by elements of the form $x^{h_{j}} f_{j}$.

The BF condition depends on the choice of the elements $\left\{f_{0}, \ldots, f_{e-1}\right\}$ and on the reduction. In [2] we noted that, if $R=k \llbracket t^{4}, t^{6}+t^{7}, t^{13} \rrbracket$, with $\operatorname{char}(k) \neq 2$, then $\mathrm{Ap}_{4}(v(R))=\{0,6,13,15\}$ and setting $f_{0}=1, f_{1}=t^{6}+t^{7}, f_{2}=2 t^{13}+t^{14}, f_{3}=t^{15}, x=t^{4}, W=k \llbracket t^{4} \rrbracket$, we get that each power of the maximal ideal is a free W-module generated by elements of the form $x^{h_{j}} f_{j}$. For example:

$$
\begin{gathered}
m=x f_{0} W+f_{1} W+f_{2} W+f_{3} W, \\
m^{2}=x^{2} f_{0} W+x f_{1} W+f_{2} W+x f_{3} W, \\
m^{3}=x m^{2}=x^{3} f_{0} W+x^{2} f_{1} W+x f_{2} W+x f_{3} W .
\end{gathered}
$$

If we replace f_{2} with t^{13}, since $t^{13} \in m \backslash m^{2}$, we don't have the free basis of the requested form for m^{2}. Thus this example shows that the BF condition depends on the choice of the elements $\left\{f_{0}, \ldots, f_{e-1}\right\}$. To show that the BF condition depends on the reduction, we can consider the example above, $R=$ $k \llbracket t^{6}, t^{7}, t^{15} \rrbracket$. We get that $f_{0}=0, f_{1}=t^{7}, f_{2}=t^{14}, f_{3}=t^{15}, f_{4}=t^{22}, f_{5}=t^{29}$ is an Apery basis but, choosing the minimal reduction $x R=\left(t^{6}+t^{7}\right) R, m^{4}$ is not a free $k \llbracket x \rrbracket$-module generated by elements of the form $x^{h_{j}} f_{j}$, because $\mathrm{Ap}_{6}\left(v\left(m^{4}\right)\right)=\{24,25,26,27,28,35\}$ and an element of the form $x^{h_{j}} f_{j}$ of value 28 is $\left(t^{6}+t^{7}\right) t^{22}$, which is not in m^{4}.

Proposition 1.3. Let $W=k \llbracket x \rrbracket$, where $x R$ is a minimal reduction of m and let f_{0}, \ldots, f_{e-1} be elements of R with $v\left(f_{j}\right) \equiv j(\bmod e)$. Then the following conditions are equivalent:
(1) For all $i \geqslant 0, m^{i}$ is a free W-module generated by elements of the form $\chi^{h_{j}} f_{j}$.
(2) For all $i \geqslant 0, \operatorname{Ap}_{e}\left(v\left(m^{i}\right)\right)=\left\{v\left(x^{h_{j}} f_{j}\right)\right\}$ for some $x^{h_{j}} f_{j} \in m^{i}, j=0, \ldots, e-1$.
(3) If $\sum_{j=0}^{e-1} d_{j}(x) f_{j} \in m^{i}$ with $d_{j}(x) \in W$ for all j, then $d_{j}(x) f_{j} \in m^{i}$ for each j.

Proof. (1) \Rightarrow (3): Let $a=\sum_{j=0}^{e-1} d_{j}(x) f_{j} \in m^{i}$. Since $\left\{x^{h_{j}} f_{j}\right\}$ is a free basis for m^{i}, we also have $a=$ $\sum_{j=0}^{e-1} d_{j}^{\prime}(x) x^{h_{j}} f_{j}$ for some $d_{j}^{\prime}(x)$, and $d_{j}(x)=d_{j}^{\prime}(x) x^{h_{j}}$. Now $x^{h_{j}} f_{j} \in m^{i}$, so $d_{j}(x) f_{j} \in m^{i}$.
(3) \Rightarrow (2): Let $u \in \operatorname{Ap}_{e}\left(v\left(m^{i}\right)\right.$), so $u=v(a)$ for some $a \in m^{i}$. We have $a=\sum_{j=0}^{e-1} d_{j}(x) f_{j}$, with $d_{j}(x) f_{j} \in m^{i}$ for all j. Let $v(a) \equiv v\left(f_{j}\right)(\bmod e)$. Then $v(a)=v\left(d_{j}(x) f_{j}\right)$. Let $d_{j}(x)=\sum_{i \geqslant 1} k_{i} x^{i}$, with $k_{i} \in k, k_{l} \neq 0$. Then we claim that $\operatorname{ord}\left(d_{j}(x) f_{j}\right)=\operatorname{ord}\left(x^{l} f_{j}\right)$. Suppose that $x^{l} f_{j} \in m^{h} \backslash m^{h+1}$. Then
$d_{j}(x) f_{j} \in m^{h}$ since all summands do. If $d_{j}(x) f_{j} \in m^{h+1}$, then $k_{l} x^{l} f_{j}=d_{j}(x) f_{j}-\sum_{i \geqslant l+1} k_{i} x^{i} f_{j} \in m^{h+1}$, a contradiction. Thus $v(a)=v\left(x^{l} f_{j}\right), x^{l} f_{j} \in m^{i}$.
$(2) \Rightarrow(1)$: By Lemma 2.1(1) of [2].
Proposition 1.4. If the m-adic filtration satisfies the BF condition, it is essentially divisible.
Proof. Let $x R$ be a minimal reduction of m and let f_{0}, \ldots, f_{e-1} be elements in R satisfying the BF condition, i.e. condition (2) in Proposition 1.3. We claim that condition (2) in Proposition 1.2 is satisfied. Let $v \in v\left(m^{i}\right) \cap v(x R), v=v_{j}+l e$, with $v_{j} \in \operatorname{Ap}_{e}\left(v\left(m^{i}\right)\right)$, for some $l \geqslant 0$. We have $v_{j}=$ $v\left(x^{h_{j}} f_{j}\right)$, for some j. Thus $x^{h_{j}+l} f_{j} \in m^{i} \cap x R$ and $v\left(x^{h_{j}+l} f_{j}\right)=v$. Note that $h_{j}+l>0$.

There are several cases in which the BF condition holds.
Proposition 1.5. The BF condition holds for the m-adic filtration in each of the following cases:
(1) R is a semigroup k-algebra.
(2) The reduction number r is at most 2.
(3) The embedding dimension v is at most 2 .

Proof. (1): Let $R=k \llbracket t^{n_{1}}, \ldots, t^{n_{v}} \rrbracket$ and $\operatorname{Ap}(v(R))=\left\{w_{0}, \ldots, w_{e-1}\right\}$. Choosing the monomial Apery basis $f_{j}=t^{w_{j}}$, for $j=0, \ldots, e-1$ and the monomial minimal reduction $x R=t^{n_{1}} R=t^{e} R$, if $\operatorname{Ap}\left(v\left(m^{i}\right)\right)=$ $\left\{w_{0}+h_{0} e, \ldots, w_{e-1}+h_{e-1} e\right\}$, then m^{i} is a free $k \llbracket t^{e} \rrbracket$-module generated by $t^{e h_{j}} f_{j}=t^{h_{j} e+w_{j}}$.
(2): Let $x R$ is a minimal reduction of m and let f_{0}, \ldots, f_{e-1} be an Apery basis of R. Then the Apery sets of $v\left(m^{i}\right)$, with $i \leqslant 2$ can always be realized as in Proposition 1.3(2). In fact, for $v\left(m^{2}\right)$, note that $v\left(x^{2} f_{0}\right)=2 e \in \operatorname{Ap}\left(v\left(m^{2}\right)\right)$. Moreover, if $f_{j} \in m \backslash m^{2}$, then $v\left(x f_{j}\right) \in \operatorname{Ap}\left(v\left(m^{2}\right)\right)$ and if $f_{j} \in m^{2}$, then $v\left(f_{j}\right) \in \operatorname{Ap}\left(v\left(m^{2}\right)\right)$. If $i \geqslant 2$, then $m^{i+1}=x m^{i}$, which gives the claim.
(3): In the plane case, setting $m=\langle x, y\rangle$, using the Weierstrass Preparation Theorem, we noted in [1, Section 2] that R is a W-module generated by $1, y, y^{2}, \ldots, y^{e-1}$ and replacing each y^{j} with a suitable $y_{j}=y^{j}+\phi(x, y)\left(\phi(x, y) \in m^{j}\right)$, we get an Apery basis for R. Consider a power m^{i} of the maximal ideal. Using the above observation, m^{i} is generated as W-module by $x^{i}, x^{i-1} y, x^{i-2} y^{2}, \ldots, y^{i}, y^{i+1}, \ldots, y^{i(e-1)}$. Now working on the powers y^{j} as we do in [1], we can modify the generators, getting the e elements $x^{i}, x^{i-1} y, x^{i-2} y_{2}, \ldots, y_{e-1}$, which are still in m^{i}, are of the requested form and such that their values form an Apery set for $v\left(m^{i}\right)$.

Example. Consider $R=\mathbb{C} \llbracket t^{6}, t^{8}+t^{9} \rrbracket$. Setting $x=t^{6}, y=t^{8}+t^{9}$, as in [1], we can see that an Apery basis for R is $1, y, y_{2}=y^{2}, y_{3}=y^{3}-x^{4}=3 t^{25}+\cdots, y_{4}=y^{4}-x^{4} y=5 t^{33}+\cdots, y_{5}=$ $y^{5}-x^{4} y^{2}=5 t^{41}+\cdots$. Considering for example m^{3}, we see it is a free W-module generated by $x^{3}, x^{2} y, x y_{2}, y_{3}, y_{4}, y_{5}$.

2. The associated graded ring

Let $\operatorname{gr}(R)$ be the associated graded ring with respect to the m-adic filtration, $\operatorname{gr}(R)=\bigoplus_{i \geqslant 0} m^{i} / m^{i+1}$. The CM-ness of $\operatorname{gr}(R)$ is equivalent to the existence of a nonzerodivisor in the homogeneous maximal ideal. If such a nonzerodivisor exists, then x^{*}, the image of x in $\operatorname{gr}(R)$ (where x is any element of value e) is a nonzerodivisor. We fix this notation and denote by $\operatorname{Hilb}_{R}(z)=\sum_{i \geqslant 0} l_{R}\left(m^{i} / m^{i+1}\right) z^{i}$ the Hilbert series of R and by $\operatorname{Hilb}_{R / x R}(z)=\sum_{i \geqslant 0} l_{R}\left(m^{i}+x R / m^{i+1}+x R\right) z^{i}$ the Hilbert series of $R / x R$. Recall that

$$
(1-z) \operatorname{Hilb}_{R}(z) \leqslant \operatorname{Hilb}_{R / x R}(z)
$$

and the equality holds if and only if $\operatorname{gr}(R)$ is CM (cf. e.g. [3] or [4]).

We start noting that, if $\operatorname{gr}(R)$ is $C M$, then the conditions analyzed in the previous section are equivalent.

Proposition 2.1. If $\operatorname{gr}(R)$ is $C M$, then the m-adic filtration is essentially divisible if and only if it satisfies the $B F$ condition.

Proof. Suppose that the m-adic filtration is essentially divisible with respect to $x R$. We claim that there exist f_{0}, \ldots, f_{e-1} in R satisfying condition (2) of Proposition 1.3. If $n \geqslant r$, where r is the reduction number, then $m^{n} \subseteq x R$. Thus, if $u \in \operatorname{Ap}_{e}\left(v\left(m^{n}\right)\right), u \equiv j(\bmod e)$, then there exist $a \in R, a=x a^{\prime}$, with $v(a)=u$ and $\operatorname{ord}(a)=n$. We have $v\left(a^{\prime}\right)=u-e$ and $\operatorname{ord}\left(a^{\prime}\right)=\operatorname{ord}(a)-1$, because $\operatorname{gr}(R)$ is CM. Now there are two possibilities. If $v\left(a^{\prime}\right) \notin v(x R)$, i.e. $v\left(a^{\prime}\right)=w_{j}$, we choose $f_{j}=a^{\prime}$. If $v\left(a^{\prime}\right) \in v(x R)$, then, since R is essentially divisible, there exist $b \in x R, b=x b^{\prime}$, with $v(b)=v\left(a^{\prime}\right)$ and $\operatorname{ord}(b)=\operatorname{ord}\left(a^{\prime}\right)$. Moreover $b \in \operatorname{Ap}\left(v\left(m^{n-1}\right)\right)$, because otherwise $u-2 e \in v\left(m^{n-1}\right)$ and $u-e \in v\left(m^{n}\right)$, a contradiction. Continuing in this way we arrive to get the element f_{j} requested.

We denote by R^{\prime} the first neighborhood ring or the blowup of R, i.e. the overring $\bigcup_{n \geqslant 0}\left(m^{n}: m^{n}\right)$. It is well known that, if $v(x)=e, R^{\prime}=R\left[x^{-1} m\right]=\bigcup_{i \geqslant 0}\left\{y x^{-i} ; y \in m^{i}\right\}$, cf. [8]. Let $w_{0}^{\prime}, \ldots, w_{e-1}^{\prime}$ be the Apery set of $v\left(R^{\prime}\right)$ with respect to e, with $w_{j}^{\prime} \equiv j(\bmod e)$. For each $j, j=0, \ldots, e-1$, define as in [2] a_{j} by $w_{j}^{\prime}=w_{j}-a_{j} e$.

If $f_{j} \in m^{i}$, then $f_{j} x^{-i} \in R^{\prime}$, so $v\left(f_{j} x^{-i}\right)=w_{j}-i e \in v\left(R^{\prime}\right)$. It follows that $w_{j}-b_{j} e \in v\left(R^{\prime}\right)$. Since $w_{j}^{\prime}=w_{j}-a_{j} e$ is the smallest in $v\left(R^{\prime}\right)$, in its congruence class $(\bmod e)$, we have that $a_{j} \geqslant b_{j}$, for $j=0, \ldots, e-1$.

In [2, Theorem 2.6] we stated the following: The ring $\operatorname{gr}(R)$ is CM if and only if $a_{j}=b_{j}$, for $j=0, \ldots, e-1$.

As Lance Bryant pointed out, the proof of that theorem given in [2] works under the assumption that the m-adic filtration satisfies the BF condition.

Theorem 2.2. If R satisfies the BF condition then $\operatorname{gr}(R)$ is CM if and only if $a_{j}=b_{j}$, for $j=0, \ldots, e-1$.
Proof. If the BF condition is satisfied, the proof given in [2] holds.

In [4] T. Cortadellas and S . Zarzuela proved, in more general hypotheses for R, a criterion for the CM-ness of $\operatorname{gr}(R)$. They consider the microinvariants of J. Elias, i.e. the numbers ϵ_{j} which appear in the decomposition of the torsion module

$$
R^{\prime} / R=\bigoplus_{j=0}^{e-1} W / x^{\epsilon_{j}} W
$$

where R^{\prime} is the blowup, $x R$ a minimal reduction of m and $W=k \llbracket x \rrbracket$. With our hypotheses and notation, they show in particular that $\operatorname{gr}(R)$ is CM if and only if $c_{j}=\epsilon_{j}$, for $j=0, \ldots, e-1$ [4, Theorem 4.2]. Comparing their result with ours, we see that they are coherent but different. In fact, if the m-adic filtration satisfies the BF condition, then, for $j=0, \ldots, e-1, \epsilon_{j}=a_{j}$ by [2, Proposition 2.5] and $b_{j}=c_{j}$ by Propositions 1.2 and 1.4, so their result coincides with ours. The hypotheses on the ring in their result are more general, but the numbers c_{j} 's depend on the minimal reduction. On the other hand, the numbers a_{j} 's and b_{j} 's which we consider do not depend on the minimal reduction and in our criterion the CM-ness of $\operatorname{gr}(R)$ can be read off just looking at the semigroup filtration $v\left(m^{0}\right) \supset v(m) \supset v\left(m^{2}\right) \supset \cdots$. As a matter of fact, since $R^{\prime}=x^{-n} m^{n}$, for $n \gg 0, v\left(R^{\prime}\right)=v\left(m^{n}\right)-n e$, for $n \gg 0$, so the a_{j} 's which relate the Apery sets of $v(R)$ and $v\left(R^{\prime}\right)$, can be read in the semigroup filtration $\left\{v\left(m^{i}\right)\right\}_{i \geqslant 0}$.

We give now some applications. Given an analytically irreducible ring satisfying our hypotheses, we denote by $a_{j}(R)$ and $b_{j}(R)$ the numbers defined above.

Proposition 2.3. Let R and T be rings satisfying the BF condition, with the same multiplicity e and with $a_{j}(R)=a_{j}(T), b_{j}(R)=b_{j}(T)$, for $j=0, \ldots, e-1$. If $\operatorname{gr}(R)$ is $C M$, then also $\operatorname{gr}(T)$ is $C M$ and R and T have the same Hilbert series.

Proof. Since $\operatorname{gr}(R)$ is CM, by Theorem 2.2, $a_{j}(R)=b_{j}(R)$, for $j=0, \ldots, e-1$. So also $a_{j}(T)=b_{j}(T)$, for $j=0, \ldots, e-1$ and $\operatorname{gr}(T)$ is CM. If $x R$ (respectively $y T$) is a minimal reduction of the maximal ideal of R (respectively of T), then, since $b_{j}(R)=c_{j}(R)$ and $b_{j}(T)=c_{j}(T)$ (cf. Proposition 1.2), the Hilbert series of $R / x R$ and $T / y T$ are the same. Since $\operatorname{Hilb}_{R / x R}(z)=(1-z) \operatorname{Hilb}_{R}(z)$ and $\operatorname{Hilb}_{T / y T}(z)=$ $(1-z) \operatorname{Hilb}_{R}(z)$, also the Hilbert series of R and T are the same.

Sometimes we can use the BF condition to draw conclusions about when $\operatorname{gr}(R)$ is a complete intersection (CI). We will use that if $x \in R$ is a nonzerodivisor in R such that x^{*} is a nonzerodivisor in $\operatorname{gr}(R)$, then $\operatorname{gr}(R / x R)=\operatorname{gr}(R) /\left(x^{*}\right)[7$, Lemma (b)].

Example. If $R=k \llbracket X, Y \rrbracket /(f)$ is a plane branch, then $\operatorname{gr}(R)=k[X, Y] /\left(f^{*}\right)$, where f^{*} is the image of f in $\operatorname{gr}(R)$, so $\operatorname{gr}(R)$ is a complete intersection. The semigroups S for which $k \llbracket S \rrbracket$ is a CI were determined in [5]. If $\operatorname{gr}(k \llbracket S \|)$ is a CI, then necessarily $k \llbracket S \rrbracket$ is a CI [9, Corollary 2.4]. If S is generated by three elements and is a CI, the generators are of the form $n a, n b, n_{1} a+n_{2} b, a<b$ [6] or (with an easier proof) [10, Lemma 1]. Then

$$
k \llbracket S \rrbracket=k \llbracket X, Y, Z \rrbracket /\left(X^{b}-Y^{a}, Z^{n}-X^{n_{1}} Y^{n_{2}}\right) .
$$

It is determined in [7] when $\operatorname{gr}(k \llbracket S \rrbracket)$ is a Cl when S is 3-generated. The result is:
(a) $S=\left\langle n a, n b, n_{1} a\right\rangle$.
(b) $S=\left\langle n a, n b, n_{1} a+n_{2} b\right\rangle, n a<n_{1} a+n_{2} b<n b, n \leqslant n_{1}+n_{2}$.
(c) $S=\left\langle n a, n b, n_{1} a+n_{2} b\right\rangle, n a<n b<n_{1} a+n_{2} b, n \leqslant n_{1}+n_{2}$.

Let $x=t^{n a}, y=t^{n b}, z=t^{n_{1} a+n_{2} b}$.
In case (a), if $n<n_{1}, \operatorname{gr}(k \llbracket S \rrbracket /(x)) \cong k[Y, Z] /\left(Y^{a}, Z^{n}\right)$. An Apery basis for $k \llbracket S \rrbracket$ is $\left\{y^{i} z^{j} ; 0 \leqslant i<a\right.$, $0 \leqslant j<n\}$. Suppose $R=k \llbracket t^{n a}, g_{2}, g_{3} \rrbracket$ with $v\left(g_{2}\right)=n b, v\left(g_{3}\right)=n_{1} a$, and that $\left\{g_{2}^{i} g_{3}^{j} ; 0 \leqslant i<a\right.$, $0 \leqslant j<n\}$ is an Apery basis for R, and that R satisfies the BF condition. Then $x=t^{n a}$ is a minimal reduction also of the maximal ideal of R, and the a_{j} 's and b_{j} 's are the same for $k \llbracket S \rrbracket$ and R, so $\operatorname{gr}(R)$ is CM, and in particular x^{*} is a nonzerodivisor in $\operatorname{gr}(R)$. We have that $\operatorname{gr}(R)$ is a CI if and only if $\operatorname{gr}(R / x R)=\operatorname{gr}(R) /\left(x^{*}\right)$ is a CI. Since $v\left(g_{2}^{i} g_{3}^{j}\right) \notin v(x R)$ if $0 \leqslant i<a, 0 \leqslant j<n$, and they all have values in different congruence classes $(\bmod v(x))$, we get that $\operatorname{gr}(R) /\left(x^{*}\right) \cong \operatorname{gr}(k \llbracket S \rrbracket) /\left(x^{*}\right) \cong k[Y, Z] /\left(Y^{a}, Z^{n}\right)$. Thus $\operatorname{gr}(R)$ is a Cl. A concrete example is $R=k \llbracket t^{6}, t^{8}+c t^{13}+d t^{19}, t^{9} \rrbracket, c, d \in k$.

If $n_{1}<n$, then $\operatorname{gr}(k \llbracket S \rrbracket /(z))=k[X, Y] /\left(Y^{a}, X^{n_{1}}\right)$, and $\left\{y^{i} X^{j} ; 0 \leqslant i<a, 0 \leqslant j<n_{1}\right\}$ is an Apery basis for $k \llbracket S \rrbracket$. Suppose $R=k \llbracket t^{n_{1} a}, g_{2}, g_{3} \rrbracket$ with $v\left(g_{2}\right)=n a, v\left(g_{3}\right)=n b$, and that $\left\{g_{3}^{i} g_{2}^{j} ; 0 \leqslant i<a\right.$, $\left.0 \leqslant j<n_{1}\right\}$ is an Apery basis for R, and that R satisfies the BF condition. As above we get that $\operatorname{gr}(R)$ is a CI. A concrete example is $k \llbracket t^{6}, t^{9}+c t^{11}, t^{4} \rrbracket, c \in k$.

In case (b) an Apery basis is $\left\{y^{i} z^{j} ; 0 \leqslant i<a, 0 \leqslant j<n\right\}$. Suppose $R=k \llbracket t^{n a}, g_{2}, g_{3} \rrbracket, v\left(g_{2}\right)=$ $n_{1} a+n_{2} b, v\left(g_{3}\right)=n b$, and that $\left\{g_{3}^{i} g_{2}^{j} ; 0 \leqslant i<a, 0 \leqslant j<n\right\}$ is an Apery set for R, and that R satisfies the BF condition. Reasoning as above, we get that $\operatorname{gr}(R)$ is a CI. A concrete example is $k \llbracket t^{6}, t^{7}+$ $c t^{11}, t^{9} \rrbracket, c \in k$.

In case (c) an Apery basis is $\left\{y^{i} z^{j} ; 0 \leqslant i<a, 0 \leqslant j<n\right\}$. Suppose $R=k \llbracket t^{n a}, g_{2}, g_{3} \rrbracket, v\left(g_{2}\right)=n b$, $v\left(g_{3}\right)=n_{1} a+n_{2} b$, and that $\left\{g_{2}^{i} g_{3}^{j} ; 0 \leqslant i<a, 0 \leqslant j<n\right\}$ is an Apery set for R, and that R satisfies the BF condition. Reasoning as above, we get that $\operatorname{gr}(R)$ is a CI. A concrete example is $k \llbracket t^{4}, t^{6}, t^{7}+c t^{9} \rrbracket$, $c \in k$.

We end with some questions:

1. Does the converse of Proposition 1.4 hold?
2. Is Theorem 2.2 true, without assuming the BF condition?
3. Is always $\epsilon_{j}=a_{j}$, for $j=0, \ldots, e-1$ without assuming the BF condition?

References

[1] V. Barucci, M. D’Anna, R. Fröberg, On plane algebroid curves, in: Commutative Ring Theory and Applications, Fez, 2001, in: Lect. Notes Pure Appl. Math., vol. 231, Dekker, New York, 2003.
[2] V. Barucci, R. Fröberg, Associated graded rings of one-dimensional analytically irreducible rings, J. Algebra 304 (2006) 349358.
[3] L. Bryant, Filtered numerical semigroups and applications to one-dimensional rings, PhD thesis, Purdue Univ., 2009.
[4] T. Cortadellas, S. Zarzuela, Apery and micro-invariants of a one-dimensional Cohen-Macaulay local ring and invariants of its tangent cone, J. Algebra 328 (2011) 94-113.
[5] C. Delorme, Sous-monoïdes d'intersection complète de N, Ann. Sci. Ecole Norm. Sup. (4) 9 (1) (1976) 145-154.
[6] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970) 175-193.
[7] J. Herzog, When is a regular sequence super regular?, Nagoya Math. J. 83 (1981) 183-195.
[8] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971) 649-685.
[9] P. Valabrega, G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978) 93-101.
[10] K. Watanabe, Some examples of one-dimensional Gorenstein domains, Nagoya Math. J. 49 (1973) 101-109.

[^0]: * Corresponding author.

 E-mail addresses: barucci@mat.uniroma1.it (V. Barucci), ralff@math.su.se (R. Fröberg).

