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Lance Bryant noticed in his thesis (Bryant, 2009 [3]), that there
was a flaw in our paper (Barucci and Fröberg, 2006 [2]). It can
be fixed by adding a condition, called the BF condition in Bryant
(2009) [3]. We discuss some equivalent conditions, and show
that they are fulfilled for some classes of rings, in particular
for our motivating example of semigroup rings. Furthermore we
discuss the connection to a similar result, stated in more generality,
by Cortadellas and Zarzuela in [4]. Finally we use our result to
conclude when a semigroup ring in embedding dimension at most
three has an associated graded which is a complete intersection.
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1. The BF condition

Let (R,m) be an equicharacteristic analytically irreducible and residually rational local one-dimen-
sional domain of embedding dimension ν , multiplicity e and residue field k. For the problems we
study we may, and will, without loss of generality suppose that R is complete. So our hypotheses are
equivalent to supposing R is a subring of k[[t]] with (R : k[[t]]) �= 0. Since k[[t]], the integral closure
of R , is a DVR, every nonzero element of R has a value, and we let S = v(R) = {v(r); r ∈ R, r �= 0}.
We denote by w0, . . . , we−1 the Apery set of v(R) with respect to e, i.e., the set of smallest values in
v(R) in each congruence class (mod e), and we assume w j ≡ j (mod e).

If x ∈ R is an element of smallest positive value, i.e. v(x) = e, then xR is a minimal reduction of
the maximal ideal, i.e. mn+1 = xmn , for n � 0. Conversely each minimal reduction of the maximal
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ideal is a principal ideal generated by an element x of value e. The smallest integer n such that
mn+1 = xmn is called the reduction number and we denote it by r.

Observe that, if v(x) = e, then Ape(S) = S \ (e + S) = v(R) \ v(xR), therefore w j /∈ v(xR), for j =
0, . . . , e − 1.

Consider the m-adic filtration m ⊃ m2 ⊃ m3 ⊃ · · · . If a ∈ R , we set ord(a) := max{i | a ∈ mi}. If
s ∈ S , we consider the semigroup filtration v(m) ⊃ v(m2) ⊃ · · · and set vord(s) := max{i | s ∈ v(mi)}.
If a ∈ mi , then v(a) ∈ v(mi) and so ord(a) � vord(v(a)).

According to [3], we say that the m-adic filtration is essentially divisible with respect to the minimal
reduction xR if, whenever u ∈ v(xR), then there is an a ∈ xR with v(a) = u and ord(a) = vord(u).
The m-adic filtration is essentially divisible if there exists a minimal reduction xR such that it is essen-
tially divisible with respect to xR .

We fix for all the paper the following notation. Set, for j = 0, . . . , e − 1, b j = max{i | w j ∈ v(mi)},
and let c j = max{i | w j ∈ v(mi + xR)}. Note that the numbers b j ’s do not depend on the minimal
reduction xR , on the contrary the c j ’s depend on xR .

Lemma 1.1. If I and J are ideals of R, then v(I + J ) = v(I) ∪ v( J ) is equivalent to v(I ∩ J ) = v(I) ∩ v( J ).

Proof. Let V = v(I + J ) \ v(I ∩ J ). Then

V = (
v(I) \ v(I ∩ J )

) ∪ (
v(I + J ) \ v(I)

) = (
v( J ) \ v(I ∩ J )

) ∪ (
v(I + J ) \ v( J )

)

and both unions are disjoint. Since (I + J )/ J 
 I/I ∩ J , we get that |v(I + J ) \ v( J )| = |v(I) \ v(I ∩ J )|
and similarly that |v(I + J ) \ v(I)| = |v( J ) \ v(I ∩ J )|. Suppose that v(I ∩ J ) � v(I) ∩ v( J ), i.e. that
there is a value v0 ∈ (v(I) \ v(I ∩ J ))∩ (v( J) \ v(I ∩ J )). Thus v0 /∈ (v(I + J ) \ v( J)) and by cardinality
reasons also (v(I + J ) \ v(I)) ∩ (v(I + J ) \ v( J )) �= ∅, i.e. v(I + J ) � v(I) ∪ v( J ). The other implication
is symmetric and we get the claim. �
Proposition 1.2. Let xR be a minimal reduction of m. Then the following conditions are equivalent:

(1) The m-adic filtration is essentially divisible with respect to xR.
(2) v(mi ∩ xR) = v(mi) ∩ v(xR), for all i � 0.
(3) v(mi + xR) = v(mi) ∪ v(xR), for all i � 0.
(4) b j = c j for j = 0, . . . , e − 1.

Proof. (1) ⇒ (2): Let i � 0 and u ∈ v(mi) ∩ v(xR). Then u ∈ v(xR) and vord(u) � i. By (1) there exists
a ∈ xR with v(a) = u and ord(a) = vord(u). Thus a ∈ mi ∩ xR and so v(mi ∩ xR) ⊇ v(mi)∩ v(xR). Since
the other inclusion is trivial, we get an equality.

(2) ⇒ (1): If u ∈ v(xR) and vord(u) = i, then u ∈ v(mi)∩ v(xR), and by (2), u ∈ v(mi ∩ xR). So there
is a ∈ mi ∩ xR with v(a) = u. For such a, i � ord(a) � vord(u) = i, and so ord(a) = i.

That (2) and (3) are equivalent follows from Lemma 1.1 with I = mi and J = xR .
(3) ⇒ (4): Since mi ⊆ mi + xR , we have v(mi) ⊆ v(mi + xR), so b j � c j . Suppose that b j < c j for

some j. Then w j ∈ v(mc j + xR) \ v(mc j ). Since w j /∈ v(xR), we get that v(mc j ) ∪ v(xR) is strictly
included in v(mc j + xR).

(4) ⇒ (3): If u ∈ v(mi + xR) \ v(xR), then u ∈ v(R) \ v(xR) = Ape v(R), so u = w j for some j. Then
w j ∈ v(mi + xR) \ v(mi), so b j < c j . �

Observe that if R = k[[tn1 , . . . , tnν ]] is a semigroup k-algebra and I , J are ideals generated by mono-
mials, then v(I ∩ J ) = v(I) ∩ v( J ) (and v(I + J ) = v(I) ∪ v( J )). This follows from the fact that if
I = (ti1 , . . . , tik ) is generated by monomials, then v(I) = 〈i1, . . . , ik〉. So, if we choose for the maximal
ideal of R a monomial minimal reduction, by Proposition 1.2 we have that the m-adic filtration is
essentially divisible with respect to such a reduction. If we choose a different minimal reduction this
is not always the case, as the following example shows.
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Example. Let R = k[[t6, t7, t15]]. By what we observed above, the m-adic filtration is essentially divis-
ible with respect to the minimal reduction t6 R . On the contrary, it is not essentially divisible with
respect to the minimal reduction (t6 + t7)R , because v(m3 + (t6 + t7)R) � v(m3) ∪ v((t6 + t7)R)

and we can apply Proposition 1.2(3). As a matter of fact, t21 − (t6 + t7)t15 ∈ m3 + (t6 + t7)R , thus
22 ∈ v(m3 + (t6 + t7)R), but 22 /∈ v(m3) ∪ v((t6 + t7)R).

This example shows also that the numbers c j ’s depend on the minimal reduction. Considering
w4 = 22, with respect to the minimal reduction t6 R , we get b4 = c4 = 2, but with respect to (t6 +t7)R ,
we get 2 = b4 < c4 = 3.

In [2], we called a set f0, . . . , fe−1 of elements of R an Apery basis if v( f j) ≡ j (mod e) and
ord( f j) = b j , for all j, j = 0, . . . , e − 1 and claimed that for all i � 0, mi is a free W -module gen-
erated by elements of the form xh j f j , where xR is a minimal reduction of m and W = k[[x]]. In [3]
Lance Bryant showed that this is not always true, considering the example R = k[[t6, t8 + t9, t19]]
with char(k) = 0. Here e = 6 and v(R) has Apery set 0,8,16,19,27,29. Setting: x = t6, W = k[[t6]]
and f0 = 1, f1 = t8 + t9, f2 = t16 + 2t17 + t18, f3 = t19, f4 = t27 + t28, f5 = t29 he gets m3 =
x3 f0W + x2 f1W + xf2W + gW + xf4W + xf5W where g = (t8 + t9)3 − (t6)4 = 3t25 + 3t26 + t27 ∈ m3.
On the other hand xh f3 = t6t19 = t25 ∈ m2 \ m3.

According to [3], we say that the m-adic filtration satisfies the BF condition if there exists a minimal
reduction xR of m and a set of elements { f0, . . . , fe−1} of R with v( f j) = w j such that each power
of m is a free k[[x]]-module generated by elements of the form xh j f j .

The BF condition depends on the choice of the elements { f0, . . . , fe−1} and on the reduction. In [2]
we noted that, if R = k[[t4, t6 + t7, t13]], with char(k) �= 2, then Ap4(v(R)) = {0,6,13,15} and setting
f0 = 1, f1 = t6 + t7, f2 = 2t13 + t14, f3 = t15, x = t4, W = k[[t4]], we get that each power of the
maximal ideal is a free W -module generated by elements of the form xh j f j . For example:

m = xf0W + f1W + f2W + f3W ,

m2 = x2 f0W + xf1W + f2W + xf3W ,

m3 = xm2 = x3 f0W + x2 f1W + xf2W + xf3W .

If we replace f2 with t13, since t13 ∈ m\m2, we don’t have the free basis of the requested form for m2.
Thus this example shows that the BF condition depends on the choice of the elements { f0, . . . , fe−1}.
To show that the BF condition depends on the reduction, we can consider the example above, R =
k[[t6, t7, t15]]. We get that f0 = 0, f1 = t7, f2 = t14, f3 = t15, f4 = t22, f5 = t29 is an Apery basis but,
choosing the minimal reduction xR = (t6 + t7)R , m4 is not a free k[[x]]-module generated by elements
of the form xh j f j , because Ap6(v(m4)) = {24,25,26,27,28,35} and an element of the form xh j f j of
value 28 is (t6 + t7)t22, which is not in m4.

Proposition 1.3. Let W = k[[x]], where xR is a minimal reduction of m and let f0, . . . , fe−1 be elements of R
with v( f j) ≡ j (mod e). Then the following conditions are equivalent:

(1) For all i � 0, mi is a free W -module generated by elements of the form xh j f j .
(2) For all i � 0, Ape(v(mi)) = {v(xh j f j)} for some xh j f j ∈ mi , j = 0, . . . , e − 1.

(3) If
∑e−1

j=0 d j(x) f j ∈ mi with d j(x) ∈ W for all j, then d j(x) f j ∈ mi for each j.

Proof. (1) ⇒ (3): Let a = ∑e−1
j=0 d j(x) f j ∈ mi . Since {xh j f j} is a free basis for mi , we also have a =

∑e−1
j=0 d′

j(x)xh j f j for some d′
j(x), and d j(x) = d′

j(x)xh j . Now xh j f j ∈ mi , so d j(x) f j ∈ mi .

(3) ⇒ (2): Let u ∈ Ape(v(mi)), so u = v(a) for some a ∈ mi . We have a = ∑e−1
j=0 d j(x) f j , with

d j(x) f j ∈ mi for all j. Let v(a) ≡ v( f j) (mod e). Then v(a) = v(d j(x) f j). Let d j(x) = ∑
i�l ki xi , with

ki ∈ k, kl �= 0. Then we claim that ord(d j(x) f j) = ord(xl f j). Suppose that xl f j ∈ mh \ mh+1. Then
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d j(x) f j ∈ mh since all summands do. If d j(x) f j ∈ mh+1, then klxl f j = d j(x) f j − ∑
i�l+1 ki xi f j ∈ mh+1,

a contradiction. Thus v(a) = v(xl f j), xl f j ∈ mi .
(2) ⇒ (1): By Lemma 2.1(1) of [2]. �

Proposition 1.4. If the m-adic filtration satisfies the BF condition, it is essentially divisible.

Proof. Let xR be a minimal reduction of m and let f0, . . . , fe−1 be elements in R satisfying the
BF condition, i.e. condition (2) in Proposition 1.3. We claim that condition (2) in Proposition 1.2 is
satisfied. Let v ∈ v(mi) ∩ v(xR), v = v j + le, with v j ∈ Ape(v(mi)), for some l � 0. We have v j =
v(xh j f j), for some j. Thus xh j+l f j ∈ mi ∩ xR and v(xh j+l f j) = v . Note that h j + l > 0. �

There are several cases in which the BF condition holds.

Proposition 1.5. The BF condition holds for the m-adic filtration in each of the following cases:

(1) R is a semigroup k-algebra.
(2) The reduction number r is at most 2.
(3) The embedding dimension ν is at most 2.

Proof. (1): Let R = k[[tn1 , . . . , tnν ]] and Ap(v(R)) = {w0, . . . , we−1}. Choosing the monomial Apery ba-
sis f j = t w j , for j = 0, . . . , e −1 and the monomial minimal reduction xR = tn1 R = te R , if Ap(v(mi)) =
{w0 + h0e, . . . , we−1 + he−1e}, then mi is a free k[[te]]-module generated by teh j f j = th je+w j .

(2): Let xR is a minimal reduction of m and let f0, . . . , fe−1 be an Apery basis of R . Then the
Apery sets of v(mi), with i � 2 can always be realized as in Proposition 1.3(2). In fact, for v(m2), note
that v(x2 f0) = 2e ∈ Ap(v(m2)). Moreover, if f j ∈ m \ m2, then v(xf j) ∈ Ap(v(m2)) and if f j ∈ m2, then
v( f j) ∈ Ap(v(m2)). If i � 2, then mi+1 = xmi , which gives the claim.

(3): In the plane case, setting m = 〈x, y〉, using the Weierstrass Preparation Theorem, we
noted in [1, Section 2] that R is a W -module generated by 1, y, y2, . . . , ye−1 and replacing each
y j with a suitable y j = y j + φ(x, y) (φ(x, y) ∈ m j), we get an Apery basis for R . Consider a
power mi of the maximal ideal. Using the above observation, mi is generated as W -module by
xi, xi−1 y, xi−2 y2, . . . , yi, yi+1, . . . , yi(e−1) . Now working on the powers y j as we do in [1], we can
modify the generators, getting the e elements xi, xi−1 y, xi−2 y2, . . . , ye−1, which are still in mi , are of
the requested form and such that their values form an Apery set for v(mi). �
Example. Consider R = C[[t6, t8 + t9]]. Setting x = t6, y = t8 + t9, as in [1], we can see that an
Apery basis for R is 1, y, y2 = y2, y3 = y3 − x4 = 3t25 + · · · , y4 = y4 − x4 y = 5t33 + · · · , y5 =
y5 − x4 y2 = 5t41 + · · · . Considering for example m3, we see it is a free W -module generated by
x3, x2 y, xy2, y3, y4, y5.

2. The associated graded ring

Let gr(R) be the associated graded ring with respect to the m-adic filtration, gr(R)=⊕
i�0 mi/mi+1.

The CM-ness of gr(R) is equivalent to the existence of a nonzerodivisor in the homogeneous maximal
ideal. If such a nonzerodivisor exists, then x∗ , the image of x in gr(R) (where x is any element of
value e) is a nonzerodivisor. We fix this notation and denote by HilbR(z) = ∑

i�0 lR(mi/mi+1)zi the

Hilbert series of R and by HilbR/xR(z) = ∑
i�0 lR(mi + xR/mi+1 + xR)zi the Hilbert series of R/xR .

Recall that

(1 − z)HilbR(z) � HilbR/xR(z)

and the equality holds if and only if gr(R) is CM (cf. e.g. [3] or [4]).
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We start noting that, if gr(R) is CM, then the conditions analyzed in the previous section are
equivalent.

Proposition 2.1. If gr(R) is CM, then the m-adic filtration is essentially divisible if and only if it satisfies the BF
condition.

Proof. Suppose that the m-adic filtration is essentially divisible with respect to xR . We claim that
there exist f0, . . . , fe−1 in R satisfying condition (2) of Proposition 1.3. If n � r, where r is the reduc-
tion number, then mn ⊆ xR . Thus, if u ∈ Ape(v(mn)), u ≡ j (mod e), then there exist a ∈ R , a = xa′ ,
with v(a) = u and ord(a) = n. We have v(a′) = u − e and ord(a′) = ord(a) − 1, because gr(R) is CM.
Now there are two possibilities. If v(a′) /∈ v(xR), i.e. v(a′) = w j , we choose f j = a′ . If v(a′) ∈ v(xR),
then, since R is essentially divisible, there exist b ∈ xR , b = xb′ , with v(b) = v(a′) and ord(b) = ord(a′).
Moreover b ∈ Ap(v(mn−1)), because otherwise u − 2e ∈ v(mn−1) and u − e ∈ v(mn), a contradiction.
Continuing in this way we arrive to get the element f j requested. �

We denote by R ′ the first neighborhood ring or the blowup of R , i.e. the overring
⋃

n�0(m
n : mn).

It is well known that, if v(x) = e, R ′ = R[x−1m] = ⋃
i�0{yx−i; y ∈ mi}, cf. [8]. Let w ′

0, . . . , w ′
e−1 be

the Apery set of v(R ′) with respect to e, with w ′
j ≡ j (mod e). For each j, j = 0, . . . , e − 1, define as

in [2] a j by w ′
j = w j − a je.

If f j ∈ mi , then f j x−i ∈ R ′ , so v( f j x−i) = w j − ie ∈ v(R ′). It follows that w j − b je ∈ v(R ′). Since
w ′

j = w j − a je is the smallest in v(R ′), in its congruence class (mod e), we have that a j � b j , for
j = 0, . . . , e − 1.

In [2, Theorem 2.6] we stated the following: The ring gr(R) is CM if and only if a j = b j , for
j = 0, . . . , e − 1.

As Lance Bryant pointed out, the proof of that theorem given in [2] works under the assumption
that the m-adic filtration satisfies the BF condition.

Theorem 2.2. If R satisfies the BF condition then gr(R) is CM if and only if a j = b j , for j = 0, . . . , e − 1.

Proof. If the BF condition is satisfied, the proof given in [2] holds. �
In [4] T. Cortadellas and S. Zarzuela proved, in more general hypotheses for R , a criterion for the

CM-ness of gr(R). They consider the microinvariants of J. Elias, i.e. the numbers ε j which appear in
the decomposition of the torsion module

R ′/R =
e−1⊕

j=0

W /xε j W

where R ′ is the blowup, xR a minimal reduction of m and W = k[[x]]. With our hypotheses and
notation, they show in particular that gr(R) is CM if and only if c j = ε j , for j = 0, . . . , e − 1
[4, Theorem 4.2]. Comparing their result with ours, we see that they are coherent but different. In
fact, if the m-adic filtration satisfies the BF condition, then, for j = 0, . . . , e − 1, ε j = a j by [2, Proposi-
tion 2.5] and b j = c j by Propositions 1.2 and 1.4, so their result coincides with ours. The hypotheses on
the ring in their result are more general, but the numbers c j ’s depend on the minimal reduction. On
the other hand, the numbers a j ’s and b j ’s which we consider do not depend on the minimal reduc-
tion and in our criterion the CM-ness of gr(R) can be read off just looking at the semigroup filtration
v(m0) ⊃ v(m) ⊃ v(m2) ⊃ · · · . As a matter of fact, since R ′ = x−nmn , for n � 0, v(R ′) = v(mn) − ne,
for n � 0, so the a j ’s which relate the Apery sets of v(R) and v(R ′), can be read in the semigroup
filtration {v(mi)}i�0.

We give now some applications. Given an analytically irreducible ring satisfying our hypotheses,
we denote by a j(R) and b j(R) the numbers defined above.
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Proposition 2.3. Let R and T be rings satisfying the BF condition, with the same multiplicity e and with
a j(R) = a j(T ), b j(R) = b j(T ), for j = 0, . . . , e − 1. If gr(R) is CM, then also gr(T ) is CM and R and T have
the same Hilbert series.

Proof. Since gr(R) is CM, by Theorem 2.2, a j(R) = b j(R), for j = 0, . . . , e − 1. So also a j(T ) = b j(T ),
for j = 0, . . . , e − 1 and gr(T ) is CM. If xR (respectively yT ) is a minimal reduction of the maximal
ideal of R (respectively of T ), then, since b j(R) = c j(R) and b j(T ) = c j(T ) (cf. Proposition 1.2), the
Hilbert series of R/xR and T /yT are the same. Since HilbR/xR(z) = (1 − z)HilbR(z) and HilbT /yT (z) =
(1 − z)HilbR(z), also the Hilbert series of R and T are the same. �

Sometimes we can use the BF condition to draw conclusions about when gr(R) is a complete
intersection (CI). We will use that if x ∈ R is a nonzerodivisor in R such that x∗ is a nonzerodivisor in
gr(R), then gr(R/xR) = gr(R)/(x∗) [7, Lemma (b)].

Example. If R = k[[X, Y ]]/( f ) is a plane branch, then gr(R) = k[X, Y ]/( f ∗), where f ∗ is the image
of f in gr(R), so gr(R) is a complete intersection. The semigroups S for which k[[S]] is a CI were
determined in [5]. If gr(k[[S]]) is a CI, then necessarily k[[S]] is a CI [9, Corollary 2.4]. If S is generated
by three elements and is a CI, the generators are of the form na,nb,n1a + n2b, a < b [6] or (with an
easier proof) [10, Lemma 1]. Then

k[[S]] = k[[X, Y , Z ]]/(Xb − Y a, Zn − Xn1 Y n2
)
.

It is determined in [7] when gr(k[[S]]) is a CI when S is 3-generated. The result is:

(a) S = 〈na,nb,n1a〉.
(b) S = 〈na,nb,n1a + n2b〉, na < n1a + n2b < nb, n � n1 + n2.
(c) S = 〈na,nb,n1a + n2b〉, na < nb < n1a + n2b, n � n1 + n2.

Let x = tna , y = tnb , z = tn1a+n2b .
In case (a), if n < n1, gr(k[[S]]/(x)) ∼= k[Y , Z ]/(Y a, Zn). An Apery basis for k[[S]] is {yi z j; 0 � i < a,

0 � j < n}. Suppose R = k[[tna, g2, g3]] with v(g2) = nb, v(g3) = n1a, and that {gi
2 g j

3; 0 � i < a,

0 � j < n} is an Apery basis for R , and that R satisfies the BF condition. Then x = tna is a mini-
mal reduction also of the maximal ideal of R , and the a j ’s and b j ’s are the same for k[[S]] and R , so
gr(R) is CM, and in particular x∗ is a nonzerodivisor in gr(R). We have that gr(R) is a CI if and only if
gr(R/xR) = gr(R)/(x∗) is a CI. Since v(gi

2 g j
3) /∈ v(xR) if 0 � i < a, 0 � j < n, and they all have values in

different congruence classes (mod v(x)), we get that gr(R)/(x∗) ∼= gr(k[[S]])/(x∗) ∼= k[Y , Z ]/(Y a, Zn).
Thus gr(R) is a CI. A concrete example is R = k[[t6, t8 + ct13 + dt19, t9]], c,d ∈ k.

If n1 < n, then gr(k[[S]]/(z)) = k[X, Y ]/(Y a, Xn1 ), and {yi x j; 0 � i < a, 0 � j < n1} is an Apery
basis for k[[S]]. Suppose R = k[[tn1a, g2, g3]] with v(g2) = na, v(g3) = nb, and that {gi

3 g j
2; 0 � i < a,

0 � j < n1} is an Apery basis for R , and that R satisfies the BF condition. As above we get that gr(R)

is a CI. A concrete example is k[[t6, t9 + ct11, t4]], c ∈ k.
In case (b) an Apery basis is {yi z j; 0 � i < a, 0 � j < n}. Suppose R = k[[tna, g2, g3]], v(g2) =

n1a +n2b, v(g3) = nb, and that {gi
3 g j

2; 0 � i < a, 0 � j < n} is an Apery set for R , and that R satisfies
the BF condition. Reasoning as above, we get that gr(R) is a CI. A concrete example is k[[t6, t7 +
ct11, t9]], c ∈ k.

In case (c) an Apery basis is {yi z j; 0 � i < a, 0 � j < n}. Suppose R = k[[tna, g2, g3]], v(g2) = nb,
v(g3) = n1a +n2b, and that {gi

2 g j
3; 0 � i < a, 0 � j < n} is an Apery set for R , and that R satisfies the

BF condition. Reasoning as above, we get that gr(R) is a CI. A concrete example is k[[t4, t6, t7 + ct9]],
c ∈ k.
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We end with some questions:

1. Does the converse of Proposition 1.4 hold?
2. Is Theorem 2.2 true, without assuming the BF condition?
3. Is always ε j = a j , for j = 0, . . . , e − 1 without assuming the BF condition?
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