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Arﬁc{e history: Lance Bryant noticed in his thesis (Bryant, 2009 [3]), that there
Received 31 October 2010 was a flaw in our paper (Barucci and Froberg, 2006 [2]). It can
Available online 1 February 2011 be fixed by adding a condition, called the BF condition in Bryant

Communicated by Luchezar L. Avramoy (2009) [3]. We discuss some equivalent conditions, and show

that they are fulfilled for some classes of rings, in particular

Il\gs:éo for our motivating example of semigroup rings. Furthermore we
discuss the connection to a similar result, stated in more generality,
Keywords: by Cortadellas and Zarzuela in [4]. Finally we use our result to
One-dimensional ring conclude when a semigroup ring in embedding dimension at most
Associated graded ring three has an associated graded which is a complete intersection.
Analytically irreducible © 2011 Elsevier Inc. All rights reserved.

1. The BF condition

Let (R, m) be an equicharacteristic analytically irreducible and residually rational local one-dimen-
sional domain of embedding dimension v, multiplicity e and residue field k. For the problems we
study we may, and will, without loss of generality suppose that R is complete. So our hypotheses are
equivalent to supposing R is a subring of k[[t]] with (R : k[[t]])) # 0. Since k[[t]], the integral closure
of R, is a DVR, every nonzero element of R has a value, and we let S=v(R) ={v(r); reR, r+#0}.
We denote by wy, ..., we_1 the Apery set of v(R) with respect to e, i.e., the set of smallest values in
V(R) in each congruence class (mod e), and we assume w; = j (mod e).

If x € R is an element of smallest positive value, i.e. v(x) =e, then xR is a minimal reduction of
the maximal ideal, i.e. m"*! = xm", for n>> 0. Conversely each minimal reduction of the maximal
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ideal is a principal ideal generated by an element x of value e. The smallest integer n such that
m™1 = xm" is called the reduction number and we denote it by r.

Observe that, if v(x) =e, then Ap,(S) =S\ (e 4+ S) = v(R) \ v(xR), therefore w; ¢ v(xR), for j =
0,...,e—1.

Consider the m-adic filtration m >m% >m3 > ---. If a € R, we set ord(a) := max{i | a € mi}. If
s € S, we consider the semigroup filtration v(m) D v(m?) O --- and set vord(s) := max({i | s € v(m')}.
If a e m, then v(a) € v(m') and so ord(a) < vord(v(a)).

According to [3], we say that the m-adic filtration is essentially divisible with respect to the minimal
reduction xR if, whenever u € v(xR), then there is an a € xR with v(a) = u and ord(a) = vord(u).
The m-adic filtration is essentially divisible if there exists a minimal reduction xR such that it is essen-
tially divisible with respect to xR.

We fix for all the paper the following notation. Set, for j=0,...,e —1, bj =max{i | wj € v(m')},
and let ¢c; =max{i | wj € v(m! 4+ xR)}. Note that the numbers bj's do not depend on the minimal
reduction xR, on the contrary the c;’s depend on xR.

Lemma 1.1. If I and ] are ideals of R, then v(I + J) = v(I) U v(]) is equivalent to v(IN J) =v(I) Nv(]).

Proof. Let V=v(I+ J)\ v(IN J). Then

V=wM\vadnD)Uvd+N\vD)=vH\vAdnD)U(vd+ D\ v()

and both unions are disjoint. Since (I + J)/J ~1/IN J, we get that |[v(I+ )\ v(])|=|v()\vI N ])|
and similarly that |v(I + J) \ v(D| = |v(J) \ v(I N J)|. Suppose that v(IN J) C v(I) Nv(]J), i.e. that
there is a value vo e (v(D\vU N )N )\ v(dN]J)). Thus vo ¢ (v(I+ J)\ v(J)) and by cardinality
reasons also (v(I+ H)\vD)) N+ H\v(]) #9, ie. v(I+ J) 2 v(I)Uv(]). The other implication
is symmetric and we get the claim. O

Proposition 1.2. Let xR be a minimal reduction of m. Then the following conditions are equivalent:

(1) The m-adic filtration is essentially divisible with respect to xR.
(2) v(mt N xR) = v(m') N v(xR), foralli > 0.

(3) v(m! +xR) = v(m') U v(xR), for all i > 0.

(4) bj=cjfor j=0,...,e —1.

Proof. (1) = (2): Let i >0 and u € v(m') N v(xR). Then u € v(xR) and vord(u) > i. By (1) there exists
a € xR with v(a) = u and ord(a) = vord(u). Thus a € m' N xR and so v(m! NxR) 2 v(m') N v(xR). Since
the other inclusion is trivial, we get an equality.

(2)= (1): If u € v(xR) and vord(u) =i, then u € v(m’)Nv(xR), and by (2), u € v(m: NxR). So there
is a e m' N xR with v(a) = u. For such a, i < ord(a) < vord(u) =i, and so ord(a) = .

That (2) and (3) are equivalent follows from Lemma 1.1 with I =m! and J = xR.

(3) = (4): Since m' € m' + xR, we have v(m') C v(m' 4+ xR), so bj < c;j. Suppose that b; < c; for
some j. Then w; € v(m% + xR) \ v(m%). Since w; ¢ v(xR), we get that v(m®) U v(xR) is strictly
included in v(m® + xR).

(4)= (3): If u € v(m' 4+ xR) \ v(xR), then u € v(R) \ v(xR) = Ap, V(R), s0 u = w; for some j. Then
wj € v(m! + xR) \ v(mb), so bj<cj. O

Observe that if R =k[[t", ..., t™] is a semigroup k-algebra and I, J are ideals generated by mono-
mials, then v(IN J) =v({)Nv(J) (and v(I + J) = v(I) U v(J)). This follows from the fact that if
I=(t'", ..., tk) is generated by monomials, then v(I) = (i1, ..., ix). So, if we choose for the maximal
ideal of R a monomial minimal reduction, by Proposition 1.2 we have that the m-adic filtration is
essentially divisible with respect to such a reduction. If we choose a different minimal reduction this
is not always the case, as the following example shows.
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Example. Let R = k[[t6, ¢7, t1°]). By what we observed above, the m-adic filtration is essentially divis-
ible with respect to the minimal reduction t®R. On the contrary, it is not essentially divisible with
respect to the minimal reduction (t% 4 t7)R, because v(m> + (¢5 +t7)R) € v(m3) U v((t® +t7)R)
and we can apply Proposition 1.2(3). As a matter of fact, t2! — (t6 +t7)t1> e m3 + (t® + t7)R, thus
22 e v(m3 + (t8 +t7)R), but 22 ¢ v(m3) U v((t® +t7)R).

This example shows also that the numbers c;'s depend on the minimal reduction. Considering
w4 = 22, with respect to the minimal reduction t5R, we get b4 = c4 = 2, but with respect to (t5+t7)R,
we get 2=Dby <cq4=3.

In [2], we called a set fo,..., fe—1 of elements of R an Apery basis if v(fj) = j (mod e) and
ord(fj) =bj, for all j, j=0,...,e —1 and claimed that for all i >0, m! is a free W-module gen-
erated by elements of the form x/i fj» where xR is a minimal reduction of m and W = k[[x]]. In [3]
Lance Bryant showed that this is not always true, considering the example R = k[[t®, t8 + 2, 1]
with char(k) = 0. Here e = 6 and v(R) has Apery set 0,8, 16,19, 27, 29. Setting: x = t6, W = k[[t5]]
and fo=1, fi=t84+1% f=t1%+2017 418 f3=1¢19, f4 =¥ + 1?8, f5s =12 he gets m* =
oW +x2 fIW +x2W + gW 4+ xf4W +xfsW where g = (t8 +1%)3 — (t5)% =3t2° 4326 + 27 e m>.
On the other hand x" f3 = t5¢19 = t25 e m2 \ m3.

According to [3], we say that the m-adic filtration satisfies the BF condition if there exists a minimal

reduction xR of m and a set of elements {fo, ..., fe_1} of R with v(fj) = w; such that each power
of m is a free k[[x]-module generated by elements of the form x"i fi-
The BF condition depends on the choice of the elements { fo, ..., fe—1} and on the reduction. In [2]

we noted that, if R = k[[t4, t® 4 7, t13]), with char(k) # 2, then Ap,4(v(R)) = {0, 6,13, 15} and setting
fo=1, fi=t0 +1t7, fo =2t13 414 f3 =115, x =t W =k[[t*], we get that each power of the
maximal ideal is a free W-module generated by elements of the form x"i f j. For example:

m=xfoW + fiW + oW + fsW,
m2 =X2f0W +xf1W + LW +xfsW,
m? =xm? = x> foW + X2 fiW + xfLW + xfsW.

If we replace f, with t!3, since '3 e m\m?, we don’t have the free basis of the requested form for m?.
Thus this example shows that the BF condition depends on the choice of the elements {fo, ..., fe—1}.
To show that the BF condition depends on the reduction, we can consider the example above, R =
k[[t, t7,t15]. We get that fo =0, fi =t7, fo =t14 fa=t1, f4=1t*, fs =t% is an Apery basis but,
choosing the minimal reduction xR = (t6 4+ t7)R, m* is not a free k[[x]l-module generated by elements
of the form xMi fj» because Apg(v(m?*)) = {24, 25, 26, 27, 28, 35} and an element of the form xhi fj of
value 28 is (t® + t7)t22, which is not in m*.

Proposition 1.3. Let W = k[[x]], where xR is a minimal reduction of m and let fo, ..., fe—1 be elements of R
with v(f;) = j (mod e). Then the following conditions are equivalent:

(1) Foralli >0, m is a free W-module generated by elements of the form xi fi-
(2) Foralli> 0, Ap,(v(m')) = {v(x'i f)} for some x"i fj em!, j=0,...,e — 1.
(3) IfZ‘;;(l) dj(x)fj e m' withdj(x) € W forall j, thend;(x) f; € m' for each j.

Proof. (1) = (3): Let a = Z‘;;g)dj(x)fj em!. Since {x“ffj} is a free basis for mi, we also have a =
Z‘;;(l) d}(x)xhi f; for some d(x), and d;(x) = d;.(x)th. Now xMi fj emi, so dj(x) fj e m'.

(3) = (2): Let u € Ap,(v(m')), so u = v(a) for some a € m'. We have a = Z‘;;(l)dj(x)fj, with
dj(x)fj em' for all j. Let v(a) = v(fj) (mod e). Then v(a) = v(d;(x)fj). Let d;(x) = Zi;lkixl' with
ki € k, k; # 0. Then we claim that ord(d;(x) f}) = ord(x’fj). Suppose that x’fj emh \mh“. Then
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dix) fje mh since all summands do. If dix) fje m"t1, then klxlfj =d;x)fj— Zi>l+] k,-xifj emh*1,
a contradiction. Thus v(a) = v(x'f}), ¥ fj e m'.
(2)= (1): By Lemma 2.1(1) of [2]. O

Proposition 1.4. If the m-adic filtration satisfies the BF condition, it is essentially divisible.
Proof. Let xR be a minimal reduction of m and let fy,..., fe-1 be elements in R satisfying the
BF condition, i.e. condition (2) in Proposition 1.3. We claim that condition (2) in Proposition 1.2 is
satisfied. Let v € v(m') N v(xR), v =v;j + le, with v; € Ap,(v(m')), for some [ > 0. We have v; =
v(x1i f}), for some j. Thus "+ fj e m' NxR and v(x"*!f;) = v. Note that hj +1>0. O

There are several cases in which the BF condition holds.
Proposition 1.5. The BF condition holds for the m-adic filtration in each of the following cases:
(1) R is asemigroup k-algebra.
(2) The reduction number r is at most 2.

(3) The embedding dimension v is at most 2.

Proof. (1): Let R =k[[t™,...,t™] and Ap(v(R)) = {wqy, ..., We_1}. Choosing the monomial Apery ba-

sis fj=t"i, for j=0,...,e—1 and the monomial minimal reduction xR =t" R =t*°R, if Ap(v(m')) =
{wo +hoe, ..., We_1 + he_1e}, then m' is a free k[[t°]-module generated by t€fi f; = thie*i.
(2): Let xR is a minimal reduction of m and let fy,..., fe_1 be an Apery basis of R. Then the

Apery sets of v(m'), with i <2 can always be realized as in Proposition 1.3(2). In fact, for v(m?), note
that v(x? fo) = 2e € Ap(v(m?)). Moreover, if fj € m\m?, then v(xf;) € Ap(v(m?)) and if f; € m?, then
v(fj) € Ap(v(m?)). If i > 2, then m'*! = xm!, which gives the claim.

(3): In the plane case, setting m = (x,y), using the Weierstrass Preparation Theorem, we
noted in [1, Section 2] that R is a W-module generated by 1,y, y%, ...,y ! and replacing each
y) with a suitable y; = y/ + ¢(x,y) (¢(x,y) € m/), we get an Apery basis for R. Consider a
power m' of the maximal ideal. Using the above observation, m' is generated as W-module by
X xiTly xi=2y2 oyl oyl yi=1D Now working on the powers y/ as we do in [1], we can
modify the generators, getting the e elements x', x~1y, xi=2y, ..., y._1, which are still in m!, are of
the requested form and such that their values form an Apery set for v(m'). O

Example. Consider R = C[[t, 8 + t°]. Setting x =5, y =3 + ¢, as in [1], we can see that an
Apery basis for R is 1,y,y2 = y2,y3 =93 —x* =3t + ... yu=y* —xy =53 + ... y5 =
y> — x*y? =5t41 4+ ... Considering for example m3, we see it is a free W-module generated by
X, Y, Xy2, V3, Ya, V5.

2. The associated graded ring

Let gr(R) be the associated graded ring with respect to the m-adic filtration, gr(R):@,;omi/m"“.
The CM-ness of gr(R) is equivalent to the existence of a nonzerodivisor in the homogeneous maximal
ideal. If such a nonzerodivisor exists, then x*, the image of x in gr(R) (where x is any element of
value e) is a nonzerodivisor. We fix this notation and denote by Hilbg(z) = Zigolg(m'/ml“)z’ the
Hilbert series of R and by Hilbgxr(2) = Y ;5 lr(m' + XR/m'™ + xR)z' the Hilbert series of R/xR.
Recall that

(1 — 2)Hilbg(2) < Hile/xR (2)

and the equality holds if and only if gr(R) is CM (cf. e.g. [3] or [4]).
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We start noting that, if gr(R) is CM, then the conditions analyzed in the previous section are
equivalent.

Proposition 2.1. If gr(R) is CM, then the m-adic filtration is essentially divisible if and only if it satisfies the BF
condition.

Proof. Suppose that the m-adic filtration is essentially divisible with respect to xR. We claim that
there exist fo,..., fe—1 in R satisfying condition (2) of Proposition 1.3. If n > r, where r is the reduc-
tion number, then m™ C xR. Thus, if u € Ap,(v(m")), u = j (mod e), then there exist a € R, a = xa’,
with v(a) = u and ord(a) =n. We have v(a’) = u — e and ord(a’) = ord(a) — 1, because gr(R) is CM.
Now there are two possibilities. If v(a’) ¢ v(xR), i.e. v(a) = wj, we choose f;=a’. If v(a’) € v(xR),
then, since R is essentially divisible, there exist b € xR, b = xb’, with v(b) = v(a’) and ord(b) = ord(a’).
Moreover b € Ap(v(m™™1)), because otherwise u — 2e € v(m™ 1) and u — e € v(m"), a contradiction.
Continuing in this way we arrive to get the element f; requested. O

We denote by R’ the first neighborhood ring or the blowup of R, i.e. the overring [ J,>q(m" : m").
It is well known that, if v(x) =e, R = R[x 'm] = U,}O{yx“'; y em'}, cf. [8]. Let wj,...,w, ; be
the Apery set of v(R’) with respect to e, with w; = j (mod e). For each j, j=0,...,e —1, define as
in [2] aj by w)=w; —aje.

If fjem, then fix' € R/, so v(fjx') = wj —ie € v(R)). It follows that wj — bje € v(R’). Since
w’=wj —aje is the smallest in v(R), in its congruence class (mod e), we have that a; > bj, for
j=0,...,e—1.

In [2, Theorem 2.6] we stated the following: The ring gr(R) is CM if and only if a; = b;, for
j=0,...,e—1.

As Lance Bryant pointed out, the proof of that theorem given in [2] works under the assumption
that the m-adic filtration satisfies the BF condition.

Theorem 2.2. If R satisfies the BF condition then gr(R) is CM ifand only ifaj = bj, for j=0,...,e — 1.
Proof. If the BF condition is satisfied, the proof given in [2] holds. O

In [4] T. Cortadellas and S. Zarzuela proved, in more general hypotheses for R, a criterion for the
CM-ness of gr(R). They consider the microinvariants of ]. Elias, i.e. the numbers €¢; which appear in
the decomposition of the torsion module

e—1
R/R=EPw/xiw

j=0

where R’ is the blowup, xR a minimal reduction of m and W = k[[x]]. With our hypotheses and
notation, they show in particular that gr(R) is CM if and only if c; =¢€j, for j=0,...,e — 1
[4, Theorem 4.2]. Comparing their result with ours, we see that they are coherent but different. In
fact, if the m-adic filtration satisfies the BF condition, then, for j=0,...,e—1, €; =a; by [2, Proposi-
tion 2.5] and b; = c¢; by Propositions 1.2 and 1.4, so their result coincides with ours. The hypotheses on
the ring in their result are more general, but the numbers c;’s depend on the minimal reduction. On
the other hand, the numbers a;’s and b;’s which we consider do not depend on the minimal reduc-
tion and in our criterion the CM-ness of gr(R) can be read off just looking at the semigroup filtration
v(m®) > v(m) D v(m?) O ---. As a matter of fact, since R’ =x~"m", for n>> 0, v(R’) = v(m") — ne,
for n>> 0, so the aj’s which relate the Apery sets of v(R) and v(R’), can be read in the semigroup
filtration {v(m')}io.

We give now some applications. Given an analytically irreducible ring satisfying our hypotheses,
we denote by a;(R) and b;(R) the numbers defined above.
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Proposition 2.3. Let R and T be rings satisfying the BF condition, with the same multiplicity e and with
aj(R) =a;(T),bj(R) =bj(T), for j=0,...,e — 1. If gr(R) is CM, then also gr(T) is CM and R and T have
the same Hilbert series.

Proof. Since gr(R) is CM, by Theorem 2.2, aj(R) =b;(R), for j=0,...,e —1. So also a;(T) =b;(T),
for j=0,...,e—1 and gr(T) is CM. If xR (respectively yT) is a minimal reduction of the maximal
ideal of R (respectively of T), then, since bj(R) =c;(R) and b;(T) = c;(T) (cf. Proposition 1.2), the
Hilbert series of R/xR and T/yT are the same. Since Hilbg/xr(z) = (1 — z) Hilbg (2) and Hilby,y7(2) =
(1 — 2) Hilbg (2), also the Hilbert series of R and T are the same. O

Sometimes we can use the BF condition to draw conclusions about when gr(R) is a complete
intersection (CI). We will use that if x € R is a nonzerodivisor in R such that x* is a nonzerodivisor in
gr(R), then gr(R/xR) = gr(R)/(x*) [7, Lemma (b)].

Example. If R =k[[X, Y]l/(f) is a plane branch, then gr(R) = k[X, Y]/(f*), where f* is the image
of f in gr(R), so gr(R) is a complete intersection. The semigroups S for which k[S] is a CI were
determined in [5]. If gr(k[[S])) is a CI, then necessarily k[[S]] is a CI [9, Corollary 2.4]. If S is generated
by three elements and is a CI, the generators are of the form na, nb, nya + nyb, a < b [6] or (with an
easier proof) [10, Lemma 1]. Then

KIST =KX, Y, ZD/(XP — Y9, 2" — X"y™).

It is determined in [7] when gr(k[S])) is a CI when S is 3-generated. The result is:

(a) S =(na,nb,nia).
(b) S = (na,nb,nia+ nyb), na <nja+nyb <nb, n <ny+ny.
(c) S ={(na,nb,nya + nyb), na <nb <nja+nyb, n <nqy+ny.

Let x =", y =" 7z =¢ma+tnb,

In case (a), if n <ny, gr(k[ST/(x)) =Kk[Y, Z1/(Y®, Z"). An Apery basis for k[S] is {y'z/; 0<i<a,
0 < j <n). Suppose R = k[[t", g, g3]| with v(g2) =nb, v(g3) = nia, and that {ghgl; 0<i<a,
0 < j <n} is an Apery basis for R, and that R satisfies the BF condition. Then x = t" is a mini-
mal reduction also of the maximal ideal of R, and the a;’s and bj’s are the same for k[[S] and R, so
gr(R) is CM, and in particular x* is a nonzerodivisor in gr(R). We have that gr(R) is a Cl if and only if
gr(R/xR) = gr(R)/(x*) is a CL Since v(ghg}) ¢ v(xR) if 0<i <a, 0< j <n, and they all have values in
different congruence classes (mod v(x)), we get that gr(R)/(x*) = gr(k[ST)/(x*) = k[Y, Z1/(Y9, Z™M).
Thus gr(R) is a CI. A concrete example is R = k[[t®, t8 + ct13 +dt19 %), c,d e k.

If n; <n, then grk[S1/(z)) = k[X,Y1/(Y% X™), and {y'xi; 0<i<a, 0<j<n;}is an Apery
basis for k[[S]]. Suppose R = k[[t"?, g3, g3]] with v(g2) =na, v(g3) =nb, and that {gégé; 0<i<a,
0 < j<ny}is an Apery basis for R, and that R satisfies the BF condition. As above we get that gr(R)
is a CI. A concrete example is k[[t®, t2 + ct!1, t4]], c e k.

In case (b) an Apery basis is {yfzj; 0<i<a, 0<j<n}. Suppose R =k[[t", g, g3]l, v(g2) =
nia+nab, v(gs) =nb, and that {gégé; 0<i<a, 0<j<n}isan Apery set for R, and that R satisfies
the BF condition. Reasoning as above, we get that gr(R) is a CL A concrete example is k[t5,t7 +
ct! 2], cek.

In case (c) an Apery basis is {yizf; 0<i<a, 0<j<n}.Suppose R =k[t", g2, g31l, v(g2) =nb,
v(gs) =nja+nyb, and that {ghgj; 0<i<a, 0< j <n} is an Apery set for R, and that R satisfies the
BF condition. Reasoning as above, we get that gr(R) is a Cl. A concrete example is k[[t?, t®, t7 + ct°]),
cek.
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We end with some questions:

1. Does the converse of Proposition 1.4 hold?
2. Is Theorem 2.2 true, without assuming the BF condition?
3. Is always €; =aj, for j=0,...,e —1 without assuming the BF condition?
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