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Abstract

Thurston conjectured that a closed triangulated 3-manifold in which every edge has degree 5 or 6, and
no two edges of degree 5 lie in a common 2-cell, has word-hyperbolic fundamental group. We establish
Thurston’s conjecture by proving that such a manifold admits a piecewise Euclidean metric of non-positive
curvature and the universal cover contains no isometrically embedded /at planes. The proof involves a mixture
of computer computation and techniques from small cancellation theory.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this article, we show that a class of closed triangulated 3-manifolds can be assigned a metric
of non-positive curvature. In addition to proving a conjecture of Thurston, our main result illustrates
the way in which the computer program developed by the 9rst and second authors [6] can be used
in conjunction with combinatorial methods to establish non-trivial results about 3-manifolds. The
class of triangulations we consider are de9ned as follows.
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De�nition 1.1 (5=6∗-triangulations). Let M be a closed triangulated 3-manifold and recall that the
degree of an edge is the number of closed tetrahedra which contain it. If every edge in M has
degree 5 or 6 then this is a 5=6-triangulation of M . The triangulation is called a 5=6∗-triangulation
if each 2-cell in M contains at most one edge of degree 5.

Thurston conjectured that every closed 3-manifold that admits a 5=6∗-triangulation has word-
hyperbolic fundamental group. We prove a slightly stronger version of this conjecture.

Theorem 1.2 (Main theorem). Every 5=6∗-triangulation of a closed 3-manifold M admits a piece-
wise Euclidean metric of non-positive curvature, where the universal cover M̃ contains no isomet-
rically embedded 3at planes. As a consequence, �1(M) is word hyperbolic.

Such triangulations are not as special as they might appear. Cooper and Thurston show that every
closed 3-manifold can be cellulated so that each 3-cell is a cube and each edge degree is 3, 4, or 5
[4]. Using similar techniques, Brady et al. show that every closed 3-manifold admits a triangulation
where each edge degree is 4, 5, or 6 [2]. The dual concept—5=6-triangulations where 2-cells contain
at most one edge of degree 6—is called a foam and is of interest in chemistry (see [9]).

Structure of the paper: In Sections 2 and 3 we use ideas resembling small cancellation the-
ory to investigate the 2-sphere triangulations that arise as vertex links in 5=6∗-triangulations of
3-manifolds. In Section 4, we review the general algorithm for determining curvature properties in
three-dimensional metric polyhedral complexes and establish an improved version of this algorithm
that uses a lemma of Bowditch to greatly simplify the calculations. We describe the piecewise Eu-
clidean metric we assign to a 5=6∗-triangulation of a 3-manifold in Section 5, and in Section 6
we compare the computational results for this metric with the combinatorial restrictions proved in
Section 3. Their mismatch enables us to establish our main result.

2. Diagrams and duals

In this section, we recall some standard de9nitions and introduce soccer diagrams, which are
closely associated with 5=6∗-triangulations of 3-manifolds. For background on disc diagrams see [8].

De�nition 2.1 (Disc diagram). A disc diagram D is a contractible combinatorial 2-complex together
with a speci9c planar embedding D → R2. If D is homeomorphic to a disc, D is non-singular,
otherwise it is singular.

De�nition 2.2 (Internal dual). Let D be a disc diagram in which all vertices of degree 2 lie on the
boundary cycle of D. The internal dual of D is a subspace of D which consists of a 0-cell at the
center of each 2-cell of D, a 1-cell passing through each internal 1-cell of D connecting the centers
of the 2-cells on either side, and a 2-cell for each interior 0-cell v. See Fig. 4 for an illustration.
A similar de9nition can be given when D is a triangulation of a 2-sphere, which results in a dual
cellulation.

The following lemma records the basic properties of internal duals. See [8, Lemma 5.6] for a
detailed proof.
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Lemma 2.3 (Dual properties). If D is a non-singular disc diagram and E is its internal dual, then
E is a contractible, but possibly singular, disc diagram. Moreover, if R is a 2-cell in D and v is
the corresponding 0-cell in E, then the number of components of @R ∩ @D equals the number of
components of the link of v.

Terminology 2.4 (Paths, loops, vertex degrees): Throughout this paper, paths and loops in a cell
complex are edge paths and loops. The degree of a vertex v is the number of edges incident with v.

De�nition 2.5 (Sphere triangulation). If M is a 5=6∗-triangulation of a 3-manifold, the link of a
vertex in M is a triangulation of a 2-sphere in which each vertex has degree 5 or 6 and no two
vertices of degree 5 are connected by an edge. A triangulated 2-sphere with both of these properties
is called a 5=6∗-triangulation of a 2-sphere.

De�nition 2.6 (Soccer diagram). Let D be a 5=6∗-triangulation of a 2-sphere and let E denote its
dual cellulation. Since vertices in D have degree 5 or 6, the dual consists of pentagons and hexagons;
since D is a triangulation, every vertex in E has degree 3; and since no two vertices degree 5 in D
are connected by an edge, no two pentagons in E share a common side. The cell structure E is called
a soccer tiling of the 2-sphere since the standard tiling of a soccer ball is a simple example with
all of these properties. A subcomplex of a soccer tiling of a 2-sphere, which is homeomorphic to a
disc, is called a soccer diagram. Notice that the embedding of a soccer diagram into the 2-sphere
determines a natural planar embedding as well. Thus soccer diagrams are disc diagrams and the
de9nition further implies that they are non-singular.

De�nition 2.7 (Left/right turn). Let P be an immersed directed path in a soccer tiling. If the sphere
is oriented then there is a well-de9ned notion of a left/right turn (the 2-cells are thought of as
convex and approximately regular). These are the only possibilities since every vertex has degree
3. The turn pattern for P is the sequence of left and right turns. For soccer diagrams we de9ne
a turn pattern by traversing the boundary cycle counterclockwise in the induced orientation. (Since
every vertex in @D has a connected link and is of degree 2 or 3, the boundary vertices of degree
2 correspond to left turns and those of degree 3 to right turns.) Finally, let nl and nr denote the
total number of left and right turns, respectively. The diHerence nl − nr is the combinatorial turning
angle.

The combinatorial turning angle is directly related to the number of pentagons D contains.

Lemma 2.8 (Turns and pentagons). If D is a soccer tiling of a 2-sphere then D contains exactly
twelve pentagons. Moreover, if D is a soccer diagram containing exactly p pentagons, the combi-
natorial turning angle is 6− p. Hence p6 6 implies nl¿ nr.

Proof. We sketch a proof using the combinatorial Gauss–Bonnet theorem: For any angle assignment,
the sum of the vertex curvatures plus the sum of the face curvatures is always 2� times the Euler
characteristic. (See for example [8, Section 4].) If we assign an angle of 2�=3 to each corner of each
2-cell, the hexagons have curvature 0, the pentagons have curvature �=3, the internal vertices have
curvature 0, the vertices located at left turns have curvature �=3 and the vertices located at right
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turns have curvature −�=3. Thus 2� ·2=(�=3) ·p for a soccer tiling, and 2� ·1=(�=3) · (p+nl−nr)
for a soccer diagram. Dividing by �=3 and rearranging yields the results.

Remark 2.9 (Limiting pentagons). If P is a simple closed-loop embedded in a soccer tiling D, then
it bounds two soccer diagrams D1 and D2 whose intersection is P and whose union is D. Since D
contains only 12 pentagons, P always bounds some soccer diagram with at most six pentagons.

De�nition 2.10 (Exposed path). If D is a soccer diagram whose turn pattern contains i− 1 consec-
utive left turns, then D contains a 2-cell R such that @R and @D share a path of length i. We call
this an exposed path of length i and R is the 2-cell which is exposed.

Corollary 2.11 (Alternating turns). If D is a soccer diagram with at most six pentagons, then either
D contains an exposed path of length 3, or the turn pattern is (rl)i for some i and D contains
exactly six pentagons.

Proof. By Lemma 2.8, nl¿ nr. If nl¿nr, two left turns must be adjacent, creating an exposed path
of length 3. On the other hand, if nl = nr, then the only way to avoid adjacent left turns is for the
left and right turns to alternate. This, in turn, implies exactly six pentagons by Lemma 2.8.

3. Small diagrams

In this section, we prove a key technical result about soccer diagrams with short boundary cycles,
Theorem 3.10. We begin by examining two processes by which soccer diagrams can be decomposed
into smaller soccer diagrams: cut paths and double duals.

De�nition 3.1 (Cut path). A soccer diagram D has a cut path if there are two soccer diagrams
D1; D2 such that D=D1 ∪D2 and D1 ∩D2 is a simple path P. See Fig. 1. If D has at least one cut
path, then it has a cut path of minimum length; in Fig. 1 this minimum is 2.

Lemma 3.2 (Cut paths exist). If D is a soccer diagram with at least two 2-cells then D has a cut
path. If, in addition, D has at most six pentagons then D has a cut path of length at most 4.

Fig. 1. A soccer diagram with several cut paths marked by thick lines.
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Fig. 2. Soccer diagrams with few 2-cells and no exposed path of length 4.

Fig. 3. Simplicial disc diagrams with at most 9ve vertices.

Proof. Choose a 2-cell R such that an edge of @R is contained in @D. Since D has more than
one 2-cell, @D and @R are distinct and there exists a subpath of @R which starts and ends in @D
and otherwise is contained in the interior of D. This is a cut path whose length is at most 5. If
the shortest cut path has length 5 then every 2-cell containing a edge of @D must be a hexagon
with exactly one edge in @D, but this would imply @D contains only right turns, contradicting
Lemma 2.8.

Lemma 3.3 (Small diagrams). If D is a soccer diagram with at most 9ve 2-cells, then D contains
a cut path of length at most 2. If in addition, D does not contain an exposed path of length at
least 4, then D is one of the two disc diagrams shown in Fig. 2.

Proof. Rather than analyze D directly, it is easier to analyze its internal dual E. By Lemma 2.3,
E is a (possibly singular) disc diagram with at most 9ve vertices and all of the possibilities for E
are shown in Fig. 3. Notice that every possibility for E contains either a vertex of degree 1, or a
triangle with a vertex of degree 2, and these lead to cut paths of length 1 and 2 in D.
To see the second assertion, notice that a vertex in E of degree 1 corresponds to a 2-cell R in

D such that only one edge of @R lies in the interior of D, hence, the remaining edges form an
exposed path of length ¿ 4. Similarly, if E contains a triangle in which two of its vertices have
degree 2, then these vertices correspond to 2-cells in D, at least one of which must be a hexagon.
This hexagon also creates an exposed path of length 4 in D.
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Fig. 4. Soccer diagrams with k 2-cells and minimal boundary lengths for k equals 1 up to 6. In each case, the 1-skeleton
of its internal dual has been superimposed.

There are only two diagrams in Fig. 3 that contain neither vertices of degree 1 nor triangles
with two vertices of degree 2 (i.e. the diagrams in the lower left-hand corner and lower right-hand
corner). In both cases, the vertices in E of degree 2 must correspond to pentagons in D in order
to avoid exposed paths of length 4, and the remaining vertices must correspond to hexagons since
they share sides with the pentagons. Thus there are exactly two possibilities for D, and these are
the ones shown in Fig. 2.

The remainder of the section is devoted to showing that soccer diagrams with more than 9ve
2-cells and at most six pentagons have long boundary cycles (Lemma 3.9). The proof of Lemma
3.9 proceeds by induction and the following lemma provides the basis step.

Lemma 3.4 (Minimum length). Let D be a soccer diagram with k 2-cells and at most six pen-
tagons. For k = 1; 2; 3; 4; 5; 6, the minimal length of @D is 5; 9; 11; 12; 14; 15, respectively.

Proof. In Fig. 4 we exhibit soccer diagrams that realize these values, so the only question is whether
there are diagrams with smaller boundary cycles. Let E be the internal dual of D. If k6 5, then E
is one of the diagrams listed in Fig. 3 and it is straightforward to enumerate all of the possibilities
for D given a speci9c E and to calculate that the diagrams shown in Fig. 4 have minimal length
boundary cycles for these values of k.

Now suppose k=6. If E contains either a vertex of degree 1 or a triangle with a vertex of degree
2, then D contains a 2-cell R which is separated from the rest of D by a cut path of length at
most 2. Removing R and the exposed portion of @R from D creates a new soccer diagram D′ with
exactly 9ve 2-cells, and |@D′|¿ 14. Since R is either a pentagon or a hexagon, reattaching R to D′
shows that |@D|¿ 15. The only six-vertex simplicial disc diagram E that does not contain a vertex
of degree 1 or a triangle with a vertex of degree 2 is the one whose 1-skeleton is superimposed
on the soccer diagram in the lower left-hand corner of Fig. 4. For this E, the internal vertex must
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Fig. 5. A soccer diagram whose double dual is not a soccer diagram because it is disconnected.

Fig. 6. A soccer diagram whose double dual is not a soccer diagram because it is non-singular.

correspond to a pentagon thereby forcing all of the other vertices to correspond to hexagons. In
other words, the soccer diagram shown is the only soccer diagram whose internal dual is E, and the
inequality follows.

The second process we investigate is the process of taking double duals.

Remark 3.5 (Double duals). Let D be a soccer diagram and let D′ be the internal dual of the internal
dual of D (i.e. its double dual). While it is true that D′ is a subcomplex of D (it is essentially D
minus the open star of its boundary), it is not automatically true that D′ itself is a soccer diagram,
since D′ need not be connected and it might be singular. These situations are illustrated in Figs. 5
and 6.

Lemma 3.6 (Double duals). Let D be a soccer diagram and let D′ be its double dual. If D′ is
disconnected, then D contains a cut path of length at most 2. If D′ is connected, but singular, then
the turn pattern for D contains either two consecutive left turns or two consecutive right turns.

Proof. Let E denote the dual of D. If D′ is disconnected, there are triangles in E that cannot be
connected by a sequence of triangles so that successive triangles share a common side. Since E
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itself is connected (Lemma 2.3), this implies that E contains a vertex v whose removal disconnects
E and separates one triangle from another. Let R be the 2-cell in D corresponding to v. By Lemma
2.3, @R ∩ @D is disconnected. Since vertices have degree at most three, the components of @R ∩ @D
are non-trivial paths. Thus, a portion of @R creates a cut path of length at most 2.
If D′ is connected but singular, at least one of two situations must occur: D′ contains a vertex of

degree 1 (a spur) and/or a vertex whose removal disconnects D′ (a cut vertex). Both possibilities
are illustrated in Fig. 6.

If v is a spur, then there are two edges of D \D′ incident with v that form a cut path separating
the 2-cell R of D containing these two edges from the rest of the diagram. Since |@R|¿ 5, this
creates an exposed path of length 3 and two consecutive left turns in the turn pattern of D.
Vertices in D′ have degree at most three, and cut vertices have disconnected links, so cut vertices

are always incident with an edge that is not in the boundary of a 2-cell of D′. By following a tree
of possibilities, we can always 9nd a spur in D′ or a vertex v that has a disconnected link and lies
in the boundary of a 2-cell of D′. There are two 2-cells in D \ D′ that contain v, and these 2-cells
must each have 2 edges incident with 2-cells in the ring D \ D′. Of the two 2-cells of D \ D′ that
contain v, at least one has |@R∩D′|¿ 3. Because vertices have degree at most three, and 9ve edges
of R are already accounted for, R must be a hexagon that shares only one edge with @D and the
vertices of this edge yield two consecutive right turns.

Corollary 3.7. If D is a soccer diagram whose turn pattern is (rl)i and whose shortest cut path
has length at least 3, then its double dual D′ is a soccer diagram. Moreover, |@D′|=2i−p where
p is the number of pentagons that contain an edge in @D.

Proof. By Lemma 3.6, D′ must be both connected and non-singular. Thus, it is homeomorphic to a
disc and consequently a soccer diagram. To prove the second assertion notice that there are exactly
i 2-cells in the ring of 2-cells removed from D to create D′. Moreover, each of these 2-cells has
two of its edges in @D and another two edges are shared with neighboring 2-cells in the ring. Thus,
each hexagon in the ring contributes two edges to @D′ and each pentagon contributes one.

Corollary 3.8 (Removing rings). Let D be a soccer diagram with at most six pentagons. If the
length of the shortest cut path is 4 then the double dual of D is a soccer diagram D′ containing
exactly six pentagons and |@D|= |@D′|.

Proof. If D contains an exposed path of length 3 then there would be a cut path of length less than
4. Thus exposed paths of length 3 cannot exist and by Corollary 2.11, the turn pattern for D is (rl)i

for some i, and D contains exactly six pentagons. As a consequence of the left/right alternation,
every 2-cell sharing an edge with @D actual shares two consecutive edges. Thus pentagons sharing
an edge with @D lead to cut paths of length less than 4 and all of 2-cells touching @D are hexagons.
The result now follows immediately from Corollary 3.7.

Our key technical result about soccer diagrams is that large diagrams have long boundary cycles.

Lemma 3.9 (Large implies long). If D is a soccer diagram with at least six 2-cells and at most
six pentagons, then |@D|¿ 15.



M. Elder et al. / Topology 42 (2003) 1241–1259 1249

Proof. We induct on the number of 2-cells. By Lemma 3.4 the statement is true for k = 6, so
suppose it is true for some k¿ 6 and let D be a soccer diagram with exactly (k + 1) 2-cells. By
Lemma 3.2, D contains a cut path of length at most 4. Let P be a cut path of minimal length and
consider the number of 2-cells in D1 and D2. Without loss of generality assume that D2 has at least
as many 2-cells as D1.

Case 1: If D1 has at least three 2-cells, then D2 has at least four 2-cells and by Lemma 3.4,
|@D1|+ |@D2|¿ 23. Since |P|6 4 and |@D|= |@D1|+ |@D2| − 2|P|, we conclude |@D|¿ 15.

Case 2: If D1 has two 2-cells, then D2 has at least 9ve, and by Lemma 3.4, |@D1|+ |@D2|¿ 23
and as in Case 1, |@D|¿ 15.

Case 3: If D1 has one 2-cell, then D2 has at least six, and by Lemma 3.4, |@D1|+ |@D2|¿ 20. If
|P|6 2, then |@D|¿ 16. If |P|=4, then by Corollary 3.8 @D has the same length as the boundary of
its double dual D′ which is itself a soccer diagram with at least six 2-cells. By induction |@D′|¿ 15,
and the inequality holds. Thus we may assume |P|=3. If |@D1|¿ 5 or |@D2|¿ 15, then |@D|¿ 15, so
we may also assume D1 is a pentagon and |@D2|=15. This would produce a soccer diagram D with
|@D|= 14. To summarize, the only way for the induction to fail is if there exists a soccer diagram
D with |@D|=14 whose shortest cut path has length 3 and separates a pentagon from the rest of D.

If the boundary of this hypothetical diagram contains an exposed path of length 3, then the 2-cell
it exposes is a hexagon, since otherwise there is a cut path of length 2. Removing this hexagon does
not change the length of the boundary, and it creates a diagram D′ with |@D′|¿ 15 by induction.
Thus exposed paths of length 3 do not occur. By Corollary 2.11 the turn pattern is (rl)i, D contains
exactly six pentagons, and i = 7 since |@D|= 14.

Let D′ denote the double dual of D. By Lemma 3.6, D′ is a soccer diagram with |@D′|6 13
since D contains at least one pentagon which shares an edge with @D. By the induction hypothesis
D′ has at most 9ve 2-cells and by Lemma 3.4 it actually has at most four. On the other hand, the
ring removed from D to create D′ only contained seven 2-cells and at most three of these could
be pentagons since the pentagons must be non-adjacent. Thus, D′ contains at least three pentagons.
Finally, the only soccer diagram with at most four 2-cells and at least three pentagons is a hexagon
with three pentagons attached to alternate edges. Since it is impossible to reconstruct D by attaching
a ring containing a pentagon to this D′, we conclude that D cannot exist.

Our key result about soccer diagrams follows immediately from Lemmas 3.3 and 3.9.

Theorem 3.10. If D is a soccer diagram with |@D|6 14, at most six pentagons, and no exposed
path of length 4, then D is one of the disc diagrams shown in Fig. 2.

4. Algorithm

In this section, we review and improve (via a result of Bowditch) the algorithm for testing the
curvature properties of 9nite piecewise Euclidean 3-complexes given in [6]. For background on
non-positive curvature and piecewise Euclidean complexes, see [3].

A geodesic in a geodesic metric space is short if its length is strictly less than 2� and very short
if strictly less than �. The original algorithm is based on the standard link condition for piecewise
Euclidean complexes.
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Fig. 7. The 2-complex and linear gallery described in Example 4.3.

Theorem 4.1 (Link condition). A piecewise Euclidean complex is non-positively curved if and only
if the link of each cell has no short closed geodesic.

Thus, deciding whether or not a piecewise Euclidean complex is non-positively curved depends
on checking piecewise spherical complexes for short geodesics. Geodesics of this type determine
complexes we call “circular galleries.” Rather than give a full technical de9nition of a circular
gallery, we give a rough de9nition and an example. The reader is referred to [5,6] for precise
details.

De�nition 4.2 (Galleries). If � is a geodesic in a piecewise spherical complex then the ordered list
of closed simplices through which � passes encodes a linear gallery determined by �. If � is a closed
geodesic, this list is given a cyclic rather than a linear ordering and the result is called the circular
gallery determined by �. Linear and circular galleries can also be determined by paths which are
merely close to geodesics.

Example 4.3. Let K be the two-dimensional piecewise spherical complex formed by attaching the
boundaries of two regular spherical tetrahedra along a 1-cell. The complex K is shown on the left
of Fig. 7 (where the spherical nature of the 2-cells has been left to the reader’s imagination). Let
� be the geodesic shown, which starts at x travels across the front of K , around the back, over the
top, and ends at y. The linear gallery determined by � is shown on the right.

In [5] the 9rst two authors prove that given any 9nite piecewise Euclidean complex there exists an
algorithm to decide if it is non-positively curved. In dimension 3 a second, more geometric algorithm
is available, which has been implemented as a computer program cat.g written in GAP [7].

The current version of the program is designed to be used with Euclidean tetrahedra whose edge
lengths are square-roots of rationals. This restriction enables the use of exact arithmetic since all of
the calculations can be carried out in an algebraic number 9eld. The program examines the circular
galleries that can occur in the link of a vertex. The links of other cells in 3-complexes are easy
to check without a computer. There are four types of two-dimensional piecewise spherical circular
galleries which need to be considered. If the geodesic passes through a vertex, the gallery is made
up of vertex-to-vertex segments called beads, which join together to form a necklace. If it does not
pass through a vertex, the gallery it determines is either a disc, an annulus, or a MPobius band. Since
disc galleries containing short closed geodesics can only exist in complexes in which the edge links
contain short closed geodesics, these need not be considered.

The number of spherical triangles in a circular gallery containing a short closed geodesic can be
bounded ahead of time using only the list of Euclidean tetrahedra. Roughly speaking the computer
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Fig. 8. An annular gallery, cut open and developed.

program proceeds by enumerating every feasible annular or MPobius gallery and every bead up to
this bound, cuts them open and develops them onto the 2-sphere calculating explicit coordinates as
it goes. Then it uses elementary linear algebra to check each for the existence of a short closed
geodesic. Details on the algorithm can be found in [6]; the program is available from the authors’
web-pages. The cutting open and developing process is illustrated in Fig. 8.

In the remainder of this section we show how the computations described in [6] can be simpli9ed
using a result by Brian Bowditch [1]. Throughout the remainder of the section let S denote a locally
CAT(1) space.

De�nition 4.4 (Unshrinkable). A closed geodesic � in S is shrinkable if there is a homotopy starting
at � such that the length of the closed curve is non-increasing as a function of time and ends at a
curve whose length is strictly less than its initial length. Notice that only the initial curve is required
to be a geodesic, so the equator on a standard metric 2-sphere is shrinkable. A closed geodesic that
is not shrinkable is unshrinkable. Even if a closed geodesic is not shrinkable, there may exist a
homotopy such that the length of the closed curve is unchanging as a function of time. In this case
we say that the curves at either end are equivalent.

In this terminology, Bowditch’s result can be restated as follows:

Lemma 4.5 (Unshrinkable). If S is a locally CAT(1) space that is not globally CAT(1), then the
length of the shortest closed geodesic is the same as the length of the shortest unshrinkable closed
geodesic.

This leads immediately to the following re9nement of the link condition.

Corollary 4.6 (Link condition). If S is a locally CAT(1) space that does not contain a short un-
shrinkable closed geodesic, then S is globally CAT(1). As a consequence, a piecewise Euclidean
complex is non-positively curved if and only if the link of each cell has no short unshrinkable
closed geodesic.

As the next three lemmas show, restricting to unshrinkable geodesics reduces the number of
galleries one needs to inspect.
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Fig. 9. Two examples of how geodesics can be tipped.

Lemma 4.7 (Shrinking annular galleries). Let � be a closed geodesic in a 2-dimensional locally
CAT(1) piecewise spherical complex S. If � determines an annular gallery G, then � is shrinkable.

Proof. When G is cut open and developed, � is sent to part of a great circle on the 2-sphere.
The homotopy which pushes this path through diHerent lines of latitude shrinks its length and
corresponds in G to a shorter closed path. Thus � is shrinkable. See the left-hand side of Fig. 9 for
an illustration.

Lemma 4.8 (Shrinking MPobius galleries). Let � be a closed geodesic in a two-dimensional locally
CAT(1) piecewise spherical complex S. If � determines a M;obius gallery and the length of � is at
least �, then � is shrinkable.

Proof. When G is cut open and developed, � is sent to path �′ in a great circle on the 2-sphere of
length at least �. Let u and v be points in �′ that are antipodal. The portion of �′ between u and
v can be homotoped (in a non-length-changing way) to another geodesic length � connecting them
without having the image leave the image of the cut open MPobius gallery. This new path is not
locally geodesic at u or v and can be shortened at either end to produce a strictly shorter path. Thus
� is shrinkable. See the right-hand side of Fig. 9 for an illustration.

Lemma 4.9 (Tipping beads). Let � be a closed geodesic in a two-dimensional locally CAT(1) piece-
wise spherical complex S. If � determines a necklace gallery G such that a single bead contains
a portion of � of length strictly more than �, then � is shrinkable. Moreover, if � determines a
necklace gallery G that contains a single bead containing a portion of � of length exactly �, then
� is equivalent to a path �′ which determines a necklace gallery in which all beads contain strictly
less than � of �′.

Proof. If there is a bead containing more than � of �, then we can pick u and v in the interior of
the bead which are connected by a portion of � of length exactly �. The rest of the proof mimics
the proof of Lemma 4.8. If there is a bead containing a portion of � of length exactly �, then we
pick the vertices at either end through which � passes as our u and v and proceed to tip the portion
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of � between them. Because the link of u may have excess curvature, we do not know that � can be
locally shortened after � has been tipped. On the other hand, we can continue tipping the portion of
� between u and v until the path hits the boundary cycle of the bead. Because this boundary cycle
is a piecewise geodesic path, the portion of its boundary included in the tipped path must include
a new vertex of G. Since � is assumed to be short, there is only one bead of length �, and in this
equivalent path this one long bead has been broken up into at least two shorter ones.

The original program searched for all annular and MPobius galleries that contain short closed
geodesics and all beads which contain geodesics of length less than 2�, which are then strung
together to form necklaces. By the last three lemmas we do not need to search for annular galleries
at all, or for the longer types of beads and MPobius galleries. To appreciate the magnitude of this
simpli9cation see Remark 5.7.

5. Metric and output

We begin this section by de9ning the shapes used to give 5=6∗-triangulated 3-manifolds piecewise
Euclidean structures.

De�nition 5.1 (The metric). Let M be a 5=6∗-triangulated, closed 3-manifold. We make M a metric
5=6∗-triangulated 3-manifold by assigning a length of

√
3 to each edge of degree 6, a length of 2

to each edge of degree 5, and metrics of the unique Euclidean simplices whose edge lengths match
those assigned to their 1-skeletons to the triangles and tetrahedra.

De�nition 5.2 (The tetrahedra). The fact that edges of degree 5 cannot belong to the same 2-cell
means that there are only three equivalence classes of metric tetrahedra in M : those with 0, 1 or
2 edges of degree 5. See Fig. 10. Notice that the 9rst tetrahedron is regular and the third one is a
Coxeter shape with dihedral angles �=2 and �=3 around the edges of degree 5 and 6, respectively.
We refer to these three metric tetrahedra as regular, mixed and Coxeter tetrahedra.

Straightforward computations show:

Lemma 5.3 (Dihedral angles). Let M be a closed 3-manifold with a metric 5=6∗-triangulation and
let e be an edge in a tetrahedra T in M . If e has degree 5, then the dihedral angle in T at e is
more than 2�=5 and at most �=2. If e has degree 6, then the dihedral angle in T at e is at least
�=3, strictly less than �=2, and equal to �=3 only if T is Coxeter. As a consequence, the links of

Fig. 10. The three types of tetrahedra (regular, mixed, and Coxeter) in a 5=6∗-triangulation. The thin edges have length√
3 and the thick edges have length 2.
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Fig. 11. The three types of beads.

edges in M are metric circles of length at least 2� and exactly 2� if and only if e has degree 6
and is surrounded by six Coxeter tetrahedra.

The software cat.g returns a list of 4 trivial beads, 71 non-trivial beads and 144 MPobius galleries,
for these three tetrahedra. Because we are interested in triangulated 3-manifolds, and MPobius strips
cannot be immersed into 2-spheres, the MPobius strips in the output can be safely ignored.

De�nition 5.4 (Bead types). Combinatorially all 75 metric beads of length less than � in the output
look like the one of the three non-metric beads shown in Fig. 11. The diHerences come from the
metrics. Speci9cally there are four diHerent metric edges, 26 metric beads consisting of two triangles,
and 45 metric beads consisting of four triangles. We refer to these underlying combinatorial structures
as beads of type A, type B and type C, respectively. In each case, the geodesic contained in the
bead starts at the leftmost vertex and ends at the rightmost vertex.

Similarly, the type of a necklace, refers to its underlying combinatorial structure, rather than its
metric. A necklace containing at least one non-trivial bead is called a thick necklace while those
consisting solely of trivial beads are called thin necklaces.

The following estimates on the lengths of geodesics in each of the three bead types immediately
implies Corollary 5.6.

Lemma 5.5 (Lower bounds). The length of a geodesic in a bead of type A, B or C is bounded
below by 0:304�, 0:5�, and 0:832�, respectively.

Corollary 5.6 (Necklaces). There are 28 types of necklaces consisting of short beads that might
contain a closed geodesic of length less than 2�. These 28 possibilities are A, A2, A3, A4, A5, A6,
B, AB, A2B, A3B, A4B, B2, AB2, A2B2, ABAB, A3B2, A2BAB, C, AC, A2C, A3C, BC, ABC, A2BC,
ABAC, B2C, C2, and AC2.

Remark 5.7 (Speed). The entire computation took less than one hour to complete on a 850 MHz
PC running GAP under Linux. It tested approximately 110 000 galleries and yielded the 75 beads
described above. As an indication of the bene9ts of the simpli9cation described in Section 4, we note
that an earlier computer search—using the original algorithm—took more than 2 months to complete,
tested approximately 300 million galleries and yielded 	 12 000 beads. Moreover, instead of the three
combinatorial types shown in Fig. 11, there were more than 100 combinatorial types. In other words,
the restriction to unshrinkable geodesics not only improved the length of the computation, it also
greatly simpli9ed the output.
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6. Main result

Throughout this section let M be a metric 5=6∗-triangulation of a 3-manifold, let S be the link of
a 0-cell in M , and let � be a closed geodesic contained in S which determines a necklace gallery G
consisting of short beads.

De�nition 6.1 (Barbells). Let G be a thick necklace gallery. The linear gallery consisting of a (pos-
sibly empty) sequence of trivial beads with a single triangle on either end is called a barbell. See
Fig. 12. Notice that a barbell containing i− 1 trivial beads contains exactly i cut vertices. Also note
that the transition between two non-trivial beads leads to a barbell consisting of two triangles joined
at a vertex.

De�nition 6.2 (Good perturbations). If � is perturbed slightly so that it avoids all of the vertices in S,
then the circular gallery determined by the new path is an annular gallery. In order to maintain control
over the combinatorial properties of the annular gallery which results, we de9ne a good perturbation
of � as follows. If G is a thin necklace, then �′ is the boundary curve of an �-neighborhood of � in
S that passes through the minimum number of triangles. If both boundary curves pass through the
same number of triangles, both boundary curves are good perturbations. If G is a thick necklace,
then de9ne �′ one barbell at a time. In each barbell we consistently push the path �′ to the left of all
the cut vertices or to the right of all the cut vertices, whichever minimizes the number of triangles
through which it passes. See Example 6.3.

Example 6.3. Fig. 13 shows a barbell in which the good perturbation lies above the three cut
vertices. Since we are only interested in the gallery determined by the perturbed path (and not the
path itself), the jagged line connecting the centers of the triangles is a perfectly good representative
of the perturbed path.

Fig. 12. A barbell with three cut vertices.

Fig. 13. A barbell, its neighborhood and a perturbed geodesic.
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We need two technical lemmas about the paths determined by good perturbations; one for thin
necklaces and one for thick necklaces.

Lemma 6.4 (Thin necklaces). Let � be a geodesic of length at most 2� which determines a thin
necklace, let �′ be a good perturbation of � and let P be the closed immersed path that is the
internal dual of the annular gallery determined by �′. If c is the absolute value of the combinatorial
turning angle for P, then |P| + c6 12. Moreover, the turn pattern for P does not contain three
consecutive left turns or three consecutive right turns.

Proof. Since G is thin it has type Ai for some i and by Lemma 5.5, i6 6. Notice that i is also the
number of vertices in �. For each vertex v in �, the two boundary curves of an �-neighborhood of �
pass through 9ve or six corners of triangles. The triangles on either side of the trivial beads of � are
double counted in the sense that the boundary curves traverse two corners of these triangles in a row
before moving on to a new triangle. They cannot traverse three corners in a row since this would
require � to traverse two sides of the triangle consecutively, and this is prohibited by the size of the
dihedral angles (Lemma 5.3) and the fact that � is a local geodesic. Thus the two paths together
determine annular galleries that contain at most 4i triangles combined, and one annular gallery has
at most 2i triangles.

Without loss of generality assume that the good perturbation is the one to the left of � as � is
traversed. Let R be a triangle that contains a portion of �′ and notice that R corresponds to a vertex
in P corresponding to a left turn if and only if @R contains an edge of �. This implies that the turn
pattern for P contains exactly i left turns and that |P|+ c = (nl + nr) + (nl − nr) = 2nl = 2i6 12.

Suppose P contains three consecutive right turns. The three triangles corresponding to these turns,
plus the triangle immediately before and after (as traced out by �′), all contain a common vertex v
in their boundaries. Since v has degree at most 6, the path � would have to make a sharp turn at v
and � would not be a local geodesic. If P contains three consecutive left turns, then there are three
consecutive edges in � (with separating vertices u and v) such that all three triangles to the left of
these edges contain a common apex. In order for � to be a local geodesic at u and v, by Lemma
5.3 both vertices would need to have degree 5, which is forbidden.

Lemma 6.5 (Thick necklaces). Let � be a short unshrinkable geodesic which determines a thick
necklace consisting of short beads, let �′ be a good perturbation of �, and let P be the closed
immersed path that is the internal dual of the annular gallery determined by �′. If c is the absolute
value of the combinatorial turning angle for P, then |P|+ c6 14. Moreover, the turn pattern for
P does not contain three consecutive left turns or three consecutive right turns.

Proof. The proof is similar to Lemma 6.4, but it proceeds one barbell at a time. Consider a barbell
in G with i cut vertices. For each cut vertex v in the barbell, the two possible perturbations of � pass
through 9ve or six corners of triangles. As before the triangles on either side of the trivial beads
are double counted in the sense that the boundary curves traverse two corners of these triangles in
a row before moving on to a new triangle. They cannot traverse three corners in a row since this
would require � to traverse two sides of the triangle consecutively, which is prohibited by the size
of the dihedral angles (Lemma 5.3) and the fact that � is a local geodesic. Since the triangles at
either end already existed, the two possible perturbations pass through at most 6i− 2(i− 1)− 2=4i
new triangles. In particular, one of them passes through at most 2i new triangles.
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Without loss of generality assume that the good perturbation is the one to the left of the portion
of � in this barbell as � is traversed. Let R be a triangle which is traversed by this portion of �′ and
notice that R corresponds to a vertex in P which is a left turn if and only if @R contains an trivial
bead of � or R is one of the original two triangles in the barbell. This implies that this portion of the
turn pattern for P contains exactly i left turns. As above, the number of vertices in this portion of P
plus the absolute value of the combinatorial turning angle for this portion is twice the number of left
turns for this portion, which is 2i. Finally, notice that the only portions of P that are not contained
in some barbell are the portions corresponding to the two interior triangles in a bead of type C.
Since these two triangles become vertices in P which turn in opposite directions, they contribute to
the length of P but not to c. It is now routine to calculate that 14 is an upper bound for |P| + c
for each of the 22 thick cases listed in Corollary 5.6. Finally, the arguments that P has no three
consecutive left [right] turns is identical to the one given above and is omitted.

It is now relatively easy to show that the paths that good perturbations determine are in fact
simple.

Lemma 6.6 (Simple). Let � be either a geodesic of length at most 2� which determines a thin
necklace or a short geodesic which determines a thick necklace consisting of short beads. If P is
the closed immersed path which is the internal dual of the annular gallery determined by a good
perturbation of �, then P is a simple closed path.

Proof. Suppose P is a not embedded and let Q be a closed subpath of P of minimal length. Since
|P|6 14 by Lemmas 6.4 and 6.5, |Q|6 7. Since Q itself is embedded it divides the soccer tiling
into two soccer diagrams D1 and D2, one of which, say D1, has fewer than six pentagons. By Lemma
3.4, D1 consists of a single 2-cell and thus P contains at least four consecutive left [right] turns,
contradicting Lemma 6.4 or Lemma 6.5.

We can now show that our hypothetical short closed unshrinkable geodesic � does not exist.

Lemma 6.7 (Vertex links). If S is the link of a vertex in a metric 5=6∗-triangulated, closed
3-manifold, then it does not contain any short closed unshrinkable geodesics. In addition,
S does not contain any closed geodesics of length 2� in its 1-skeleton.

Proof. If S contains a short closed unshrinkable geodesic, then by Lemma 4.9 it also contains a
short closed unshrinkable geodesic which determines a necklace consisting of short beads. Let � be
either a closed geodesic in S of length at most 2� which determines a thin necklace or a short closed
geodesic in S which determines a thick necklace consisting of short beads. By Lemmas 6.4, 6.5 and
6.6 there is a perturbation of � that determines an annular gallery whose internal dual is a simple
closed path P in the dual soccer tiling. Moreover, if c denotes the absolute value of the combinatorial
turning angle for P, then |P|+ c6 14 and the turn pattern for P does not contain three consecutive
left turns or three consecutive right turns. Since P is embedded it divides the soccer tiling into two
soccer diagrams D1 and D2, one of which, say D1, has fewer than six pentagons. Since P, with the
appropriate orientation is @D1, Theorem 3.10 implies that D1 is one of the two soccer diagrams in
Fig. 2. Since both diagrams have c = 4 and |@D|+ c¿ 14, we have a contradiction.
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Fig. 14. A cage around a degree 6 edge.

The 9nal property that we need to establish is the following.

Lemma 6.8 (No /at planes). If M is a closed 3-manifold with a metric 5=6∗-triangulation, then
the universal cover M̃ does not contain any isometrically embedded 3at planes.

Proof. Let ! :R2 → M̃ be an isometric embedding of a /at plane and let F = !(R2). If F is
transverse to an edge e in M̃ and x is the unique point in e∩F , then the link of x in F is a closed
geodesic loop � of length 2� in the space of directions of x in M̃ . Since the space of directions of x
is an orthogonal join of S0 with the metric circle which is the link of e in M̃ , the space of directions
of x is either a standard 2-sphere (when the link of e has length exactly 2�) or a branched cover
of S2 around antipodal points (when the link of e has length greater than 2�). Notice that in either
case the loop � must avoid the points corresponding to the edge e since F is transverse to e. In the
branched case this is impossible and in the non-branched case, we can assume (Lemma 5.3) that e
has degree 6 and is surrounded by six Coxeter tetrahedra. This shows that F cannot cross any edge
of degree 5. Fig. 14 shows an edge e of degree 6 surrounded by six Coxeter tetrahedra. Regardless
of the location of the point x in e, there does not exist a portion of a /at plane through x which
does not extend through one of the six edges of degree 5. The key observation is that there are three
edges of degree 5 extending down from the top of e, another three edges of degree 5 extending up
from the bottom of e, and these six edges interleave. In other words, the edges of degree 5 form a
cage from which a portion of a /at plane cannot escape.

The remaining possibility is that F is completely contained in the 2-skeleton of M̃ . If v is a vertex
of M̃ contained in F , then the link of v in F corresponds to a closed geodesic loop of length 2� in
the 1-skeleton of the link of v in M̃ . By Lemma 6.7 this is also impossible.

Theorem 1.2 (Main theorem). Every 5=6∗-triangulation of a closed 3-manifold M admits a
piecewise Euclidean metric of non-positive curvature, where the universal cover M̃ contains
no isometrically embedded 3at planes. As a consequence, �1(M) is word hyperbolic.

Proof. Let M be such a piecewise Euclidean 3-manifold. By Theorem 4.1 it is suRcient to show
that the links of the cells in M do not contain short geodesic loops. This is trivially true for the
links of 3- and 2-cells (whose links are empty and discrete), and it is also true for links of 1- and
0-cells by Lemmas 5.3 and 6.7. Thus M is non-positively curved. Since there are no isometrically
embedded /at planes in M̃ by Lemma 6.8, the 9nal assertion follows immediately from Theorem
III.#.3.1 in [3].
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