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ABSTRACT The effect of two physiological cosolutes (urea and trimethylamine-N-oxide) and of KCl on the intermolecular
interactions in concentrated lysozyme solutions were studied by synchrotron radiation small angle x-ray scattering. The evolution
of the structure factors as a function of cosolute and/or salt concentration wasmodeled using pair potentials following an approach
recently described in the literature. It was found that the structure factors for salt and/or cosolute concentration series at a fixed
protein concentration can best be described using a variable depth attractive potential and a constant effective charge rather than
a constant attractive potential and a variable effective charge as done in previous work.

INTRODUCTION

Intermolecular forces play a central role in the properties of

biological macromolecules in solution as well as in vivo. In

vivo, different contributions to these forces (e.g., electro-

static, hydrophobic, hydration, etc.) (1) are modulated among

others by the presence of cosolutes—mainly salts and small

molecules. The physiological importance of cosolutes like

urea and trimethylamine-N-oxide (TMAO), which are pre-

sent in large concentrations in the intracellular fluids of many

species of all kingdoms and in particular in marine animals,

has been extensively documented (see, e.g., Hochachka and

Somero (2)).

In vitro, the interactions between macromolecules result

in nonideality of solution properties and influence osmotic

pressure, solubility, crystallization, and/or precipitation. In

recent years many aspects of the interactions of—mainly

globular—proteins in solution have been successfully stud-

ied by osmotic pressure measurements and light or x-ray

scattering methods. This has given new insights into important

physiological phenomena like the transparency of the eye lens

(for a review, see Bloemendal et al. (3)).

The small angle x-ray scattering pattern of moderately

concentrated monodisperse protein solutions can be repre-

sented as the product of the form factor (FF(s)), which is

determined by the shape of the individual proteins, and a

concentration (c) dependent structure factor (SF(s)), which
reflects the structure of the solution and the intermolecular

interactions and is directly related to the osmotic pressure

(for an introduction, see, e.g., Koch et al. (4)).

Iðc; sÞ=c ¼ FFðsÞ 3 SFðc; sÞ: (1)

Both form and structure factors are functions of the mod-

ulus of the momentum transfer vector (s ¼ 4psin u/l, where

2u is the scattering angle and l the wavelength of the in-

cident radiation) and may also depend on other factors like

temperature, pH, and cosolute concentration.

Extensions of models initially developed for calculating

the structure factors of simple liquids have been successfully

used to model the effect of pH, temperature, salts, or poly-

ethylene glycol on the interactions of proteins in solution

with the aim of laying the foundations for rational crys-

tallization methods (5–7). In contrast the effects of phys-

iological cosolutes on these interactions and their modeling

seem to have hitherto received relatively less attention

(8–10).

Below we report the results of an investigation of the

effects of urea and TMAO on the salt dependence of the

interactions in lysozyme solutions. The choice of this system

is based on the fact that as the interactions of lysozyme in

solution have been investigated in some detail both exper-

imentally and theoretically (6), it provides a natural bench-

mark for further studies.

The results confirm that, as previously observed (6), the

effects of salt on the structure factors of concentrated protein

solutions in deionized water can satisfactorily be explained

using a pair potential with a constant attractive term and a

variable effective charge. This also applies to solutions con-

taining 250 mM urea but not to solutions containing 250 mM

TMAO. In this case a variable attractive potential is indis-

pensable to model the observations. The use of a variable

attractive potential and a fixed effective charge also yields

a better fit to the experimental data for lysozyme solutions in

deionized water or 250 mM urea.

MATERIALS AND METHODS

Sample preparation

Lyophilized lysozyme powder (95% protein, Sigma-Aldrich, Taufkirchen,

Germany) was resuspended in a small amount of deionized water and dial-

yzed at room temperature under continuous stirring in three steps of typically

1, 2, and 10 h, against 200–1000 ml deionized water using dialysis cassettes
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(Slide-A-Lyzer; Extra Strength; 10,000MWCO, Pierce, Rockford, IL). With

typical cassette volumes between 0.5 and 3 ml, dilution factors between 60

and 2000 per step were achieved. Before dialysis the samples were homog-

enized by vortexing. After dialysis undissolved material was removed from

the sample by centrifugation (5415 C, Eppendorf, Hamburg, Germany) for

15 min at maximum speed (14,000 rpm; 12,500 g).

The samples for the salt series were prepared by mixing appropriate

volumes of stock solutions of lysozyme (91 mg/ml), KCl (2 M), and urea

(2 M, purity .99.5%, Carl Roth GmbH, Karlsruhe, Germany) or TMAO

dihydrate (2 M, purity .99%, Sigma-Aldrich) to obtain the required final

concentrations. The KCl target concentrations were 0, 5, 10, 20, 50, 100, and

250 mM, those of urea or TMAO 250mM. The final lysozyme concentration

was 68 mg/ml for all salt series. The pH of the solutions in deionized water

varied between 6.5 and 7 and was ;7 in the presence of urea and;8 in the

presence of TMAO. After mixing, the samples were vortexed for ;10 s.

A series with TMAO concentrations (0, 10, 20, 50, 100, 250, 500, 750,

1000 mM) in deionized water with 45.5 mg/ml lysozyme was prepared as

described above. For the determination of the form factor, samples with a

lower lysozyme concentration (6.8 mg/ml) in deionized water or 250 mM

TMAO were used.

Protein concentrations were determined by absorbance measurements at

280 nm in a Uvikon 922 (Kontron, Munich, Germany) or an Ultrospec 3000

(GE Healthcare, Munich, Germany) spectrophotometer assuming an ab-

sorbance of 2.46 for 1 mg/ml lysozyme in a 1 cm cuvette at 280 nm.

X-ray measurements

X-ray solution scattering patterns were recorded on the X33 beam line (11)

of the European Molecular Biology Laboratory on the storage ring DORIS

of the Deutsches Elektronen Synchrotron (DESY) using a linear position

sensitive gas proportional detector with delay line readout (12). The patterns

covered the range of momentum transfer 0.018 Å�1 # s # 0.3 Å�1, where

s¼ 4psinu/l, 2u is the scattering angle, and l the wavelength of the incident

radiation (0.15 nm).

The patterns were recorded in 10 or 15 1-min frames depending on

protein concentration to monitor possible radiation damage. Buffer patterns

were recorded before and after each protein pattern. The final scattering

patterns were obtained after averaging the frames that were statistically iden-

tical, correction for detector response, normalization to the intensity of the

transmitted beam and the protein concentration, and subtraction of an av-

eraged buffer pattern using the program SAPOKO (13). The patterns were

scaled in the range 0.188 Å�1 # s # 0.215 Å�1 to correct for small dif-

ferences in concentration and contrast.

Data analysis

Ideally, the form factor is determined by extrapolation of a series of scat-

tering patterns at different concentrations to infinite dilution. In the case here,

the patterns of a dilute solution (6.8 mg/ml) in deionized water or in 250 mM

TMAO and a concentrated solution (68 mg/ml) of lysozyme in the same

solvent were spliced in the range 0.160 Å�1 # s # 0.215 Å�1 and used to

determine the form factor with the program GNOM (14). Data points for s,
0.05Å�1 which were clearly affected by intermolecular interactions were

excluded from the fit. This form factor, obtained as the inverse transform of

the distance distribution function p(r), was identical to that obtained from

a similar lysozyme solution in 50 mM sodium acetate, pH 4.5. The structure

factors of the different solutions were obtained by dividing their scattering

pattern by this smooth form factor to avoid the propagation of statistical

fluctuations in the pattern of the dilute solution to the structure factors mea-

sured at high concentrations.

Further analysis was based on an approach which was successfully used

in the description of interactions of proteins in solutions (6). This approach

relies on models of the pair potential allowing the calculation of the pair

distribution function g(r), which for a solution with number density of

particles r is directly related to the structure factor by Eq. 2:

SFðc; sÞ ¼ 11 r

Z N

0

4p r
2ðgðrÞ � 1Þ sinðrsÞ=ðrsÞ dr: (2)

The model of the pair potential derived from the DLVO (Derjaguin,

Landau, Verwey, Overbeek) theory (15) is based on three types of inter-

actions. The first type is represented by a hard sphere potential (diameter s),

reflecting the fact that proteins do not interpenetrate. Long-range elec-

trostatic interactions and various short-range attractive interactions (such as

hydrogen bridges, hydrophobic forces, and van der Waals forces) are re-

presented by two Yukawa potentials, one attractive the other one repulsive.

The effective pair potential thus becomes

uðr~Þ ¼
N if r# s

Ja s=r expð�ðr � sÞ=daÞ
1 Jr s=r expð�ðr � sÞ=drÞ if r . s

:

8><
>:

(3)

Ja; da are the depth (in units of kT) and range of the attractive potential and

Jr; dr those of the repulsive potential. In the DLVO theory Jr; dr are func-

tions of the effective number of charges on the protein (Zp) and the Debye

length (lD), which is itself a function of the ionic strength. For monovalent

salts like NaCl, lD ¼ 3.04/[NaCl]½ Å at 25�C (1), where the decrease of this

range parameter with increasing salt concentration reflects charge screening.

The depth of the repulsive potential Jr ¼ Z2
P=s

� �
3 LB= 11s=2lDð Þ2
� �

;

where LB ¼ e2=4pe0eskT is the Bjerrum length of the solvent, which has

a value of 7.2 Å at 300 K, e is the elementary charge, e0 the permittivity of

vacuum, es the relative permittivity, k the Boltzmann constant, and T the

absolute temperature. As the value of the relative permittivity of urea and

TMAO solutions for concentrations below 1M are only slightly higher (;2%)

than that of pure water (16,17), this value was kept constant in the calculations.

The parameters of the attractive potential (Ja, da) are best determined in

the attractive regime, which is most easily reached by addition of salt.

The hypernetted chain approximation relating the pair distribution func-

tion (g(r)) to the total (h(r) ¼ g(r) � 1) and direct c(r) correlation functions

(Eq. 4) was used to solve the Ornstein-Zernicke relation numerically (6). For

this purpose, a computer program was written to model the structure factors

from the pair potentials, using an iterative algorithm similar to that of Belloni

(18):

gðrÞ ¼ exp½�uðrÞ=kBT1 hðrÞ � cðrÞ�: (4)

RESULTS AND DISCUSSION

The scattering patterns of the 6.8 mg/ml lysozyme solutions

in deionized water and in 250 mM TMAO were identical

above s¼ 0.05 Å�1, as illustrated in Fig. 1. These individual

curves as well as the complete form factor yielded a max-

imum particle dimension Dmax ¼ 46 Å and a radius of

gyration of Rg ¼ 15.4 6 0.2 Å. These values are in good

agreement with previous experimental data for monodisperse

solutions of lysozyme (see, e.g., Svergun et al. (19)) and with

those calculated from the crystallographic model of lyso-

zyme (20) (entry 193L in the Protein Data Bank (21)) with

the program CRYSOL (22)).

The intensity scattered at small angles is dominated by the

contribution of the shape scattering and is thus proportional

to the square of the contrast between protein and solvent (i.e.,

the total excess scattering length density �rr) and to the con-

centration. The electron density of proteins is typically

;0.42 Å�3, whereas that of the solvent depends on the salt
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and cosolute concentration. It increases from 0.334 Å�3 in

pure water to 0.337 Å�3 in a 250 mM KCl solution. The

ensuing drop in contrast of ;3% from 0.086 Å�3 to 0.083

Å�3 results in a reduction in the scattered intensities of;7%.

These differences were corrected together with small differ-

ences in protein concentration due to mixing by normalizing

the scattering curves in the range 0.188 Å�1 # s # 0.215

Å�1. As all curves are superimposable on a logarithmic scale

in this range, it can be assumed that the interactions no longer

influence the scattering pattern. This procedure, which effec-

tively forces the average value of the structure factor in this

interval to 1, was applied to all series discussed in the fol-

lowing section.

The structure factors for the KCl concentration series in

water for a lysozyme concentration of 68 mg/ml are shown in

Fig. 2. The first question arising during the selection of the

fitting parameters concerns the choice of the Debye length.

Total absence of ions would require an infinite Debye length

and correspond to an infinite repulsive potential in the DLVO

theory, but even after extensive dialysis against deionized

water a small amount of ions including H3O
1 and OH�

remains in solution. In the case here, a Debye length of 26.3

Å, corresponding to an effective monovalent ion concentra-

tion of 13 mM, fits the data in deionized water. This inherent

ionic concentration was also taken into account in the cal-

culation of the Debye length for the KCl concentration series

in Table 1.

An effective number of charges of 6.5 yields the best fit to

the experimental data. In the case of deionized water, the

value of the hard sphere diameter s has little influence on the

shape of the curves, and a value of 28.4 Å was chosen based

on the fits to the measurements at higher salt concentrations.

For the Yukawa potential a value of 3.0 Å, representing a

realistic short-range attractive potential (6), was used to fa-

cilitate comparison with previous results. The depth of the

attractive potential, which decreases from �5.3 kT at 0 mM

KCl to �3.5 kT at 250 mM KCl and 20�C was varied to fit

the individual curves, and the final values for the different

KCl concentrations are given in Table 1. The value of the

effective charge is compatible with hydrogen ion titration

(23) on lysozyme solutions of 7–12 mg/ml at pH 7, which

yields a nearly constant value of Zp ¼ 7 in the range of KCl

ionic strength between 0.1 and 0.2 M.

Fig. 3 presents the statistical errors on the structure factors

calculated from the experimental data assuming a 1% rela-

tive error on the form factor based on the fact that the errors

on I(0) and Rg in the GNOM fit were of the order of 0.5%.

The plot illustrates that there are systematic deviations be-

tween model and measurements, especially in the attractive

regime. This is not surprising given the simplifying assump-

tion of the model (e.g., spherical shape of the protein).

In the case here, it is possible to find an attractive potential

with a constant depth (�2.84 kT at 20�C) and range (3.0 Å)

which satisfactorily fits all curves with an effective charge of

FIGURE 1 Scattering pattern of a lysozyme solution (6.8 mg/ml) in

deionized water (bottom) and 250 mM TMAO (top). The form factor was

calculated from the pattern in water spliced with that of a concentrated

solution (68 mg/ml) at s ¼ 0.215 Å�1, as indicated by the vertical dashed

line. Data points for s , 0.05 Å�1 affected by intermolecular interactions

were not included in the GNOM fit.

FIGURE 2 Experimental and calculated (thick lines) structure factors

for lysozyme solutions (68 mg/ml) with different KCl concentrations. For

clarity, only 1 experimental point in 20 is displayed.

TABLE 1 Values of the Debye length (lD), taking into

account the inherent monovalent ion concentration of 13 mM

for different KCl concentrations and depth of the repulsive (Jr)

and attractive (Ja) potentials (in kT at 20�C) yielding the best

fit to the experimental structure factors

KCl

[mM]

lD
(Å) Jr

Ja
(deionized water)

Ja
(urea 250 mM)

Ja
(TMAO 250 mM)

0 26.3 2.5 �5.3 6 0.5 �3.7 6 0.5 �6.9 6 0.5

5 22.4 2.1 �4.1 6 0.5 �3.0 6 0.5 �6.9 6 0.5

10 19.8 1.8 �3.8 6 0.4 �3.9 6 0.4 �6.6 6 0.4

20 16.5 1.4 �3.6 6 0.3 �3.7 6 0.3 �6.3 6 0.3

50 12.0 0.9 �3.6 6 0.2 �3.1 6 0.2 �5.2 6 0.2

100 8.9 0.6 �3.5 6 0.1 �2.9 6 0.1 �4.65 6 0.1

175 6.9 0.4 - - �4.3 6 0.1

250 5.8 0.3 �3.5 6 0.1 �3.12 6 0.1 -
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6 and a value of s of 34.4 Å. In the range 0–50 mM KCl,

the average x2 (x2 ¼ +
k
ðIcalc � IobsÞ2=Iobs) calculated for

13 data points (k ¼ 13) in the range 0.016 , s , 0.2 Å�1

is 0.025 independent of the type of potential—fixed or

variable—used. The values at 100 and 250 mM KCl are,

however, significantly higher (0.07 and 0.20 for the fixed

potential against 0.03 and 0.10 for the variable potential).

Values in the same range (da ¼ 3 Å, Ja ¼ �2.65 kT) but

with a particle diameter of 32.4 Å were found for a similar

NaCl (0–350 mM) concentration series at 100 mg/ml

lysozyme at pH 4.5 (6). In this study, the number of charges

needed to fit the data slowly decreased from 6 at 0 mM NaCl

to 5.1 at 210 mM NaCl and then abruptly dropped to 2.9 at

280 mM NaCl, which is difficult to explain by screening

effects but probably corresponds to the onset of aggregation.

This is also suggested by the results of hydrogen titration of

lysozyme in KCl solutions yielding a charge of 11 at pH 4.5,

which decreases by at most one unit in the range of ionic

strength between 0.1 and 2 M (23). The possibility that a

higher salt concentration may lead to stronger attraction as

predicted by theoretical considerations (24) while simulta-

neously reducing repulsion through screening was pre-

viously considered in the interpretation of the influence of

pH and temperature on the structure factor (6). In our cal-

culations, the depth of the attractive potential decreases with

increasing salt concentration, but this effect is more than

offset by the reduction of the depth of the repulsive potential

resulting from the decreasing Debye length.

Clearly, the calculation of structure factors is not unique

and the main justification for preferring a variable attractive

potential in this study is given by the analysis of the results

for the lysozyme solutions containing TMAO. Whereas the

structure factor in the absence of salt is similar in 250 mM

urea and in water as illustrated in Fig. 4, the curve in 250 mM

TMAO differs significantly. The difference is even more

pronounced in the attractive regime where the TMAO sam-

ple with 250 mMKCl is precipitated. The strong influence of

TMAO on the structure factor is confirmed by the results for

a TMAO concentration series (0–1 M) in absence of salt in

Fig. 5. It is not possible to account for the structure factors

for the KCl concentration series in 250 mM TMAO in Fig. 6

FIGURE 3 Experimental and calculated (thick line) structure factor with
statistical errors for a lysozyme solution (68 mg/ml) in 0 mM and 250 mM

KCl in water. For clarity only 1 experimental point in 20 is displayed. Note

the systematic deviations, especially in the attractive regime (250 mM KCl).

FIGURE 4 Experimental (symbols) and calculated structure factors for

a lysozyme solution (68 mg/ml) in absence of salt in water, 250 mM urea, or

250 mM TMAO (top) and in solutions with 250 mM KCl or 250 mM KCl

and 250 mM urea or 175 mM KCl and 250 mM TMAO (bottom).

FIGURE 5 Experimental (symbols) and calculated structure factors of a

lysozyme (45.5 mg/ml) solution in deionized water at TMAO concentra-

tions between 0 and 1 M. The values of Ja used for the fits are 0 mM,�5.3 kT;

100 mM, �7.5 kT; 500 mM, �7.9 kT; and 1 M, �7.9 kT.
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with a variable repulsive potential. Although, the data in

absence of salt can be described using a stronger attractive

potential than for the solutions in deionized water or urea, if

one assumes that this value remains constant for the entire

salt series the onset of the calculated structure factors in the

attractive regime is much larger than the experimental one.

This onset is very sensitive to variations in the depth of the

attractive potential in the attractive regime, whereas in the

repulsive regime it hardly changes with only minor differ-

ences in the range 0.07 Å�1 , s , 0.20 Å�1. The higher

uncertainty in the Ja values in the repulsive regime (at low

salt concentrations) is also reflected in the errors in Table 1.

The possibility that the difference between the structure

factors in water and 250 mM TMAO would be due to dimer

formation at higher protein concentration can be excluded.

Indeed, analyses of the form factor at low protein concen-

tration in 250 mM TMAO give the same result as in water

and correspond to monomers as shown in Fig. 1. If there had

been extensive dimerization, the average level of the struc-

ture factor would have been significantly above one in the

range s, 0.15 Å�1, which was observed neither in the series

with increasing TMAO concentrations in Fig. 5 nor in the

KCl concentration series in 250 mM TMAO in the repulsive

regime in Fig. 6.

The same repulsive potential can be used to describe the

electrostatic interactions between the lysozyme molecules

with the different cosolutes used here. This is illustrated in

Fig. 7 for the KCl concentration series in 250 mM urea. The

values for the depth of the attractive potential corresponding

to the results in deionized water, 250 mM TMAO, and 250

mM urea are given in Table 1. The differences between the

parameters for the salt series in deionized water and in 250

mM urea reflect a weaker attractive potential in the presence

of urea: Ja between �3.7 and �3.12 compared to �5.3 and

�3.5 kT at 20�C for deionized water.

In contrast, the parameters for the series in 250 mM TMAO

structure reveal a significant increase in the attractive po-

tential compared to the situation in deionized water or 250

mM urea. With the same values for the parameters defining

the repulsive potentials and the range of the attractive po-

tential, a depth between �6.9 and �4.3 kT at 20�C is ob-

tained. This result is in agreement with the observation that

TMAO counteracts the effect of urea (8) mainly by altering

the balance between preferential binding of urea and pre-

ferential exclusion of TMAO, corresponding to increased

hydration (25). Molecular dynamics calculations also sug-

gest that neither urea nor TMAO make direct interactions,

which would significantly affect the effective charge of the

protein at the relatively low concentrations used here and

imply that the cosolutes mainly affect the structure and dy-

namics of water (26), which are likely to be reflected by the

parameters of the attractive potential.

CONCLUSION

The results confirm that the structure factors for a KCl

concentration series (0–250 mM) at a fixed lysozyme con-

centration (68 mg/ml) can be well represented by assuming

a fixed attractive potential and a variable effective charge as

shown by others (6). Attempts to extend this approach to the

modeling of the structure factors of lysozyme solutions in the

presence of 250 mM TMAO and KCl indicate that the ex-

perimental observations can only be explained using a vari-

able attractive potential and a constant effective charge. For

this reason, the data for the KCl concentration series on

lysozyme in distilled water and 250 mM urea were re-

analyzed and a better agreement was also found. This does

not exclude the possibility that in other circumstances (e.g.,

a pH series) the use of a variable effective charge could not

FIGURE 6 Experimental and calculated (thick lines) structure factors for

a KCl concentration series in a lysozyme solution (68 mg/ml) containing

250 mM TMAO. Note that the attractive interactions are significantly higher

than for the corresponding KCl concentration series in Fig. 2.

FIGURE 7 Experimental and calculated (thick lines) structure factors for

a KCl concentration series in a lysozyme solution (68 mg/ml) containing

250 mM urea. The hard sphere radius, effective charge, Debye length, and

range of the attractive potential in the calculations were the same as for

the measurements in deionized water.
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be preferable, but suggests that the two options should be

carefully considered. In some cases the choice may be facil-

itated by independent measurements of the charge of the

protein by hydrogen titration (23) or capillary electrophore-

sis (27), even if this is only indirectly related to the effective

charge.

Finally, it should be noted that Eq. 1 is only strictly valid

in the repulsive regime since in the attractive regime forma-

tion of oligomers results in polydispersity. In a solution of

monodisperse aggregates (e.g., dimers or other 1:1 complexes),

the structure factor contains, however, useful structural in-

formation allowing one to deduce the relative arrangement of

the monomers (see, e.g., Moore and Engelman (28)). How

easily this information can also be extracted from mixtures of

known composition remains a matter for further investiga-

tion. At this stage it should also be considered whether the

balance between preferential binding and/or preferential

exclusion (or preferential hydration) of cosolutes may not be

more effectively investigated by neutron scattering, which

offers more possibilities of varying the contrast than x-ray

scattering.
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Kautt, and L. Belloni. 1999. Proteins in solution: from x-ray scatter-
ing intensities to interaction potentials. J. Cryst. Growth. 196:193–203.

7. Finet, S., D. Vivarés, F. Bonneté, and A. Tardieu. 2003. Control-
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