
Camp. 81 Maths. virh Applr. Vol 7, No 0. pp 48749?. 1981 00)7-4943/81/060(87~2.~/0 

Printed in Great Brihwn 0 1981 Pergsmon Press Ltd. 

A TYPE-INSENSITIVE ODE CODE BASED 
ON SECOND DERIVATIVE FORMULAS 

R. SACKS-DAVIS 

Department of Computer Science, Monash University, Clayton, Victoria 3168, Australia 

and 

L. F. SHAMPINE 

Applied Mathematics Research Department. Sandia National Laboratories, Albuquerque, NM 87185, 
U.S.A. 

(Received February 1981) 

Abstract-Several effective codes for the solution of stiff ordinary differential equations (ODES) are based 
on second derivative formulas. They are inefficient for non-stiff problems. It is shown how to modify such 
codes to make them reasonably efficient. The modifications make them more efficient for stiff problems as 
well. Users do not have the information to determine stiffness reliably. The modified codes recognize the 
type automatically at each step and respond appropriately. It is a great convenience for a user to have one 
code efficient regardless of the type. 

1. INTRODUCTION 

The present generation of codes for solving the initial value problem 

Y’ = f(Y), Y(xo) = Yo 

for a system of ordinary differential equations (ODES) is clearly divided into two categories. 
The codes have been designed to solve either stiff or non-stiff problems, but not both. They are 
very inefficient when applied to the wrong class of problems. Unfortunately, it is difficult to 
recognize stiffness, and users do not have at their disposal the necessary information. Having to 
decide the type of the problem is a serious defect in current ODE codes. It is completely 
impractical to solve stiff problems with classical methods such as Adams and Runge-Kutta, 
however such problems almost always have regions of sharp change (boundary layers, 
transition regions) which are not stiff and so are solved inefficiently by methods intended for 
stiff problems. 

The automatic recognition of the type of a problem was seen long ago to be highly desirable, 
but only recently has much progress been made. The first successful efforts, see, e.g. [1,2], 
allow Adams and Runge-Kutta codes to decide whether stiffness is the reason they are 
performing inefficiently. Though useful, these results fall far short of what is needed. To 
proceed further, one must decide what kind of numerical method will be used by the code for 
each type of problem. In our present state of understanding of the solution of differential 
equations, the solution method for stiff systems is the more critical choice. In[3] the design of 
codes based on implicit A-stable formulas which can automatically recognize stiffness and alter 
their algorithm at every step is discussed. Such codes are insensitive to the type of the problem. 
Unfortunately, even moderately high order implicit A-stable formulas which can be im- 
plemented efficiently are an illusive goal of current research. In this paper we proceed in a 
different way which demands less of the formulas. 

The solution of general stiff ODES seems to require the use of the Jacobian matrix aflay. 
Some methods use it indirectly in the evaluation of implicit formulas, and others use it directly 
in the formulas themselves. For the latter to be practical, it is necessary that the Jacobian be 
convenient to evaluate analytically. This may or may not be the case, but it is easy for a user to 
decide. The ability to evaluate the Jacobian analytically offers interesting possibilities which we 
exploit here. Broadly speaking, there are two approaches to type-insensitive codes. One is 
actually to change methods. A successful approach of this kind is described in[14] for 
Rosenbrock formulas. The other is to employ only one kind of method, but to make it relatively 
efficient for both types of problem. This approach was adopted in[3] and is the one we choose 
here. 

487 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81929554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


488 R. SACKS-DAVIS and L. F. SHAMPINE 

Enright [5] and others have considered the use of second derivative formulas for the solution 
of stiff ODES. Stiffly stable formulas of orders up to 9 exist in the class. Furthermore, the 
formulas are rather accurate, with leading error constants varying from 0.167 (order 2) to 
0.424 x 10e3 (order 9)[6]. These properties are far superior to the stability and accuracy 
properties of popular methods like the backward differentiation formulas. They are even 
comparable in order and accuracy to the formulas popular for non-stiff problems. 

In [6] an efficient variable order implementation, SDSTEP, of Enright’s formulas is 
presented for solving stiff systems of equations. In this paper we show how to recognize 
stiffness automatically at each step in such codes and how to solve non-stiff problems 
efficiently. The modified code is intended for problems with Jacobians which are convenient to 
evaluate analytically. Within this class, the code is efficient whether or not the problem is stiff. 
In the course of our investigation we also note several minor improvements of technique for the 
solution of stiff problems. 

ZMETHODOLOGY 

We begin by briefly recalling some aspects of the code, SDSTEP, which is the im- 
plementation of Enright’s formulas described in[6]. At each step an Adams-Bashforth formula 
of order k is used to calculate a predicted value, P”+~. Then the corrector equation to be solved 
at each step is 

Y~+I = Bok+J(~n+,) + roht,+,Af(~n+,) + cn+, (2.1) 

where 

A = JfLWIPn+,, 

PO and y. are the (constant) leading coefficients of the kth order Enright formula listed in[6], 
hn+, is the current stepsize, and c,,+~ denotes those terms in the corrector equation based on 
previously calculated values. Because the code was designed to solve stiff systems of differen- 
tial equations, the following Newton iteration is used to solve the corrector equation: 

w”+,(y:p - y’,“,) = p+‘) (2.2) 

where 

5 m+l) = -(y’,m, _ floh+,f(~c,m?l) - YO~~,+,A~(Y’,“?~) - cn+,), (2.3) 

W n+l = Z - pOh+lA - YOh2.+IA2* 

Here A is an approximation to the Jacobian calculated possibly at a previous step. 
As we have noted, the basic formulas have good numerical properties. What makes them 

inefficient for non-stiff problems? The Newton iteration is expensive, but necessary to the 
evaluation of the implicit formula for stiff problems. However, one ordinarily uses a cheaper 
iteration for non-stiff problems, namely simple (functional) iteration: 

Y%” = &hn+,f(~~%) + rohz.+,Af(y’n”?l) + G+,. (2.4) 

Then y,,, is a point of attraction if 

dPok+,J + roh;+,AJ> < 1 

where 

J = afW,+, 



A type-insensitive ODE code based on second derivative formulas 489 

and p(M) denotes the spectral radius of the matrix M[7]. However, the code uses a specific 
norm and requires rapid convergence of the iterative scheme, so that the practical requirement 
for convergence is that 

hold in a region containing Y,+~. Then the iteration will contract in the chosen norm at rate at 
least r. We shall use this condition and the approximation of aflaY by A to decide when simple 
iteration is feasible, but we want the test to be as cheap as possible. Even forming A2 is to be 
avoided, still more so forming the whole matrix in the condition. A cheaper sufficient condition 
is to form l/All and test 

/PO/ Ilhn+,All+ 1~01 llh.+~All’~ r (2.5) 

for a rate r chosen as being sufficiently fast. Suppose r = 5/8. All the leading coefficients, PO and 
yo, used by the code SDSTEP satisfy (po( I 1 and (yol 5;. Thus the condition (2.5) is certainly 
satisfied if the simpler condition 

llk+,All 5 i. (2.6) 

holds. This is exactly the kind of condition on the step size and Jacobian that is usually 
interpreted as meaning that the problem is non-stiff for this step. 

The type of a problem should not change often, and we would like to keep the overhead of 
testing the type as low as possible. The strategy we have implemented is to use a ]]A]] computed 
at an earlier step in (2.6) if we can. The important thing is that we have an accurate value of /IA/( 
when I(h,+,AJ( is close to the critical value of f. Thus if /IA/l was computed at an earlier step and 
if (jh,+,A(/ lies in the interval [$, 11, we recalculate (JA(I at the current step for a sharp test. Otherwise, 
there seems to be no real need for a very accurate value of llAl/. In any event a current value of l/All is 
calculated at most 5 steps after the previous calculation. The norm used in the code is the weighted 
maximum norm. 

The amount of work needed for each Newton iteration is substantially greater than that for 
simple iteration. The calculation of the iteration matrix, W =+i, requires a matrix squaring and 
subsequent LU decomposition. In the previous version of the code, IV,,+, is recalculated each 
time the stepsize or order is changed or when the corrector iterations are converging too slowly. 
It is to be expected that the use of simple iteration over a number of steps will save.a number of 
these expensive computations. Furthermore, each Newton iteration requires a forward and back 
substitution to solve the system of linear equations (2.2). Note that simple iteration corresponds 
to taking IV,,+, = I in (2.2), so that incorporation of simple iteration into the code is easily 
achieved by skipping the blocks in the code where Wn+i is calculated and where the linear 
equations are solved. 

A matter of practical importance is the convergence criteria used in the corrector iteration. 
In order to maintain numerical stability when solvmg stiff systems, it is necessary to iterate 
until convergence when solving the corrector equation. In the code SDSTEP iteration continues 
until 

where u is the unit relative round-off error bound, or until 

IIY !,‘Z”- y’,“+ill~ 0 and Ilf(y’,“c?)) - f(y’,7i)JJ I C,C 

where C, and C2 are small scalars and l is the local error tolerance. On the other hand, the 
stability difficulties associated with stiff systems do not arise when solving non-stiff equations. 
Consequently, many codes designed for non-stiff ODE’s take a fixed number of iterations when 
solving the corrector equation. Examples of such explicit methods are the well known Adams 
PECE codes. Although smaller stepsizes may be required to achieve a given accuracy if a fixed 



490 R. SACKS-DAVIS and L. F. SHAMPINE 

number of corrector iterations is used, each step of the integration is very cheap. The numerical 
results we have obtained when solving non-stiff equations have indicated that it is cost-effective 
to adopt this approach and fix the number of corrector iterations to one. 

There is another situation when only one iteration is required. When using Newton iteration 
to solve the corrector equation, the strategy adopted in SDSTEP is to recalculate the iteration 
matrix, Wn+,, if the stepsize or order has changed since the last time Newton iteration was 
used. Thus for linear systems of ODES, W,,, is equal to the exact Newton iteration matrix and 
convergence is achieved in one iteration. 

Simple iteration is a traditional way of evaluating the corrector equation when solving 
non-stiff problems. A new way is suggested by noting that Newton’s iteration has 

W ,,+I = I- (Bok+,A + YO%,A*) = I + O(l(h,+,A(I). 

This says that simple iteration can be regarded as an approximation to Wn+, valid for small 
((h,,,A(I. In this point of view it is natural to write 

W ,,+I = I- Pohd + O@L+,AI(~) 

so that 

w,:, = I + Poh.,,A + O(IIII,,,A(~~). 

This suggests that one use the iteration 

yjlm+:‘) - y’,“?l = [I + /30hn+,A]J(m+‘) (2.7) 

where l(“‘+,, is defined by (2.3). The same analysis as for simple iteration leads to the condition 

ho + Bo21 IlLAll + ISor llk+,Al13 5 r. 

Since I*/ol is rather smaller than laol for the formulas considered, the rate of simple iteration is 
roughly ISol Ilh,+,A(I and that of this new iteration, ~02~~h.+,A~~2. That is, the new iteration is 
equivalent to about two iterations of simple iteration. The new iteration has an extra matrix- 
vector multiplication so one iteration with it requires 1 function evaluation and 2 matrix-vector 
multiplications. Two iterations with simple iteration require 2 function evaluations and two 
matrix-vector multiplications. 

The choice of iterative scheme for solving the corrector equation also affects the error 
estimates used in the code. In the previous version of the code, the estimate, E,, of the local 
error was given by 

4 = K:IIhl+l&+l(Y~+l- PL+,) - (Yn+, - Pn+,)l. 

Here, pm+, and pL+, are the predicted values of the solution and its derivative at x,+,, g,,,, is a 
scalar and y:,, =f(y”+,). E, may be interpreted as the difference between yncl and a higher 
order approximation, yz,,, to the solution at xn+,. The value yi,, is obtained by solving a 
corrector equation of one higher order than the current order using one step of a modified 
Newton iteration. When we replace Newton iteration by simple iteration or by the iteration 
(2.7), we replace E, by 

E2 = hn+,gn+,W+, -PA+,) - (in+, -in+,) 

and 

E, = (I+ h,+,SoA){h.+,gn+,(y:+, - PA+,) - (~nc, - ~a+,)1 

respectively. Thus, we solve the corrector equation of higher order using the same iterative 



A type-insensitive ODE code based on second derivative formulas 491 

scheme as is used when solving for Y,+~. E2 is the estimate cheapest to evaluate. E, requires an 
extra forward and back substitution and E3 requires an extra matrix-vector multiplication, 
making E, and E3 comparable in cost. 

It is not clear from the arguments presented which of the two iteration should be preferred 
for steps treated as non-stiff. If one expected to do several iterations at each step, it would 
probably be cheaper to use simple iteration in terms of overhead and more expensive in terms of 
function evaluations. We have already remarked that it appears to be cost-effective to do only 
one corrector iteration when the problem is non-stiff. This leads one to favor simple iteration. 
Some experiments we report in the next section support this choice. 

The selection of the initial step size is crucial to the reliable solution of an ODE because it 
specifies the scale of the problem to the code. Modern codes assist the user in this matter. In 
the code SDSTEP, the first step is taken with a second order formula. For a given initial 
stepsize, ho, the code estimates that the local error will be J]ho3Y”‘(x0)/6/). The term I”‘&) is 
approximated by divided differences at the cost of one extra function evaluation. It is useful to 
modify this initial stepsize selection so that the first step is treated as non-stiff. This ensures that the 
code will keep track of how fast the solution can change at the initial point. In view of the previous 
discussion, all that is required is to add another bound on the stepsize selection so as to ensure that 
J(h,Aj( I 5. This kind of protection is invaluable when the code might be presented a stiff problem. 
Such problems ordinarily have a short initial interval of very rapid change (a boundary layer, 
transition region). An initial stepsize which is out of scale might lead the code to miss this important 
behaviour entirely and cause the code to track the wrong integral curve after the transient. 

The following problem 

3. NUMERICAL ‘RESULTS 

p!y~, X- 

f 
Y I y+KU-Y) ’ 

(3.11 

arises in the study of percolation processes[8]. The chemical engineers who posed it were 
interested in a range of values for the parameters 6, N, and K. Because the problem is stiff for some 
parameter values and is non-stiff for others, it illustrates the convenience of a code which does not 
ask the user to decide the type (see also [41). We present results for the following three problems on 
the interval 0 5 8 5 2 

PROBLEM 1 
K=5, [=O.l, N, =O.l, 

PROBLEM 2 

K = 5, 5=5, N, =5, 

PROBLEM 3 

K = 5, (=SOO, N, = 50. 

Problem 1 is non-stiff whereas Problems 2 and 3 are stiff on portions of the interval. The 
stiffness ratios (for y = 0) for the three problems are approx. 6,200 and 13,000 respectively. The 
results obtained after solving the problems by the code SDSTEP of [6] are presented in Table 
1. The table headings denote the following. 

TOL: local error tolerance. An absolute error criterion was used. 
STEPS: number of steps. 

FN. EVALS: number of function evaluations. 
JAC. EVALS: number of Jacobian evaluations. 

LU DEC: number of LU decompositions. 

CAMU’A \lol 7. No. bD 



492 

MATRIX MULTS: 
MATRIX/VECTOR MULTS: 

MATRIX NORMS: 
ACC. DIGITS: 

R. SACKS-DAVIS and L. F. SHAMPINE 

number of matrix multiplications. 

number of “equivalent” matrix-vector multiplications. This is 

equal to the number of matrix-vector multiplications plus the 

number of forward/back substitutions plus the number of times 

a constant multiple of one matrix is added to a second matrix 
(which is required each time a new iteration matrix is formed). 
number of matrix norms. 
negative logarithm to the base 10 of the absolute global error at 
the end-point. 

Table 1. Performance of code SDSTEP on the chemical engineering problems (3.1) 

PROBLEM TOL STZPS PN JAC LU MATFEX MATRM/ MATRIX ACC. 
EVALS TVALS DEC MULTS VECTOR Iiom DIGITS 

MJLTS 

1o-2 9 26 10 9 9 40 0 3.7 

10 -4 13 48 l6U U 08 0 5.3 
1 

10 -6 22 a2 26 14 14 149 0 7.5 

10 -8 33 99 35 17 17 191 0 a.9 

1o’2 14 54 I.6 15 15 103 0 2.0 

10 -4 27 104 29 19 19 195 0 4.8 
2 

10 -6 47 170 50 26 26 313 0 7.2 

10 -0 a6 252 09 37 37 495 0 9.1 

10-2 31 146 39 37 37 282 0 3.0 

10 -4 36 153 3s 32 32 297 0 5.1 

3 U+ 64 254 n 53 53 507 0 a.7 

Lo” 98 352 103 50 50 708 0 0.6 

The code SDSTEP was modified to solve the corrector equation using both simple iteration 
and Newton iteration as described in Section 2. When using simple iteration, the number of 
corrector iterations was fixed at one. We shall refer to this version of the code as MODIFIED 
SDSTEP. The results appear in Table 2. 

Observe that as the problems become more stiff, more steps are taken for which Newton 
iteration is used to solve the corrector equation. This is indicated by the increasing number of 
LU decompositions and matrix multiplications as one goes from Problem 1 to Problem 3. A 
comparison with Table 1 shows the large savings made when simple iteration is used on the 
non-stiff steps. As well as decreasing the number of LU decompositions and matrix multi- 
plications, the use of simple iteration saves a number of forward/back substitutions (as 
indicated in the column matrix/vector multiplications). 

The improvement in performance gained by using simple iteration on the non-stiff steps 
that was observed in Problems 2 and 3 is fairly representative of the results we obtained after 
testing the codes on other stiff problems. To gain an idea of the performance of the code on 
non-stiff problems, we consider the following orbit problem: 

YI = Y39 y,(O) = 1 - E 

Y6 = Y4, Y2(0) = 0, 

Y; = -Yll(Y,2 + Y22)3’2, Y,(O) = 07 

Y: = -Y21(Yt2 + Y22)3’2, Y4uN = J(E), 

E = 0.3, 05x520. (3.2) 



A type-insensitive ODE code based on second derivative formulas 

Table 2. Performance of MODIFIED SDSTEP on the chemical engineering problems (3.1) 

493 

PM- TOL STEPS lw JAC LU MATRIX K~TFILK/ MATRD( ACC. 
EvAIs ,sIALs DEC! MULTS VECTOR NON!3 DIGITS 

MJLTS 

10-2 a 21 9 2 2 22 3 3.1 

1f4 14 34 16 2 2 27 ll 4.3 

1 loa 24 58 29 0 0 28 7 6.5 

1o-a 37 a6 43 0 0 42 9 a.2 

1o'2 14 54 16 14 14 

1O-4 3l 101 33 I.2 I.2 

2 1o-6 59 166 61 14 14 

10 -a 97 265 102 13 13 

ll!, 4 2.7 

160 15 5.0 

226 28 6.3 

331 54 9.1 

1o-2 3.l 146 39 37 37 

10 -4 41 174 45 31 P 

3 
10 
-6 

67 246 71 38 38 

10 -a uo 360 116 37 37 

Y9 

344 

474 

591 

a 

16 

28 

53 

3.0 

4.3 

6.8 

a.5 

For a comparison, we also solved the problem with the Adams code STEP[9], a code 
designed specifically for non-stiff ODES. The results appear in Tables 3 and 4. 

It is observed that MODIFIED SDSTEP solves the non-&II problem quite efficiently. Its 
performance is comparable to that of the routine STEP on those problems for which all the 
steps taken by MODIFIED SDSTEP use simple iteration (rather than Newton iteration) to 
solve the corrector equation (tolerances IO-* and 1O-‘o in our example). On these problems ithe 
only extra costs in MODIFIED SDSTEP are those inherent in Enright’s formulas (the Jacobian 
evaluations and matrix/vector multiplications that are required to calculate the second deriva- 
tive) and the matrix norms required to decide which iteration should be used to solve the 
corrector equation. As the proportion of steps taken with simple iteration decreases, the 
performance of MODIFIED SDSTEP relative to STEP deteriorates. 

In order to test the codes on a larger set of non-stiff problems we considered the one 
parameter family of two body problems (3.1) for which E = 0.0, 0.1, 0.3, 0.5, 0.7 and 0.9. For 
l = 0.0 the orbit defined by (3.1) is circular, whilst for c: > 0 the initial conditions cause the orbit 
to be an ellipse with eccentricity e. Each of these problems was solved at 5 tolerances, giving 30 
problems in all. 

The performance of MODIFIED SDSTEP can be seen in Table 5. As the local error 
tolerance becomes more stringent, relatively more steps are taken using simple iteration so that 

Table 3. Performance of MODIFIED SDSTEP on the orbital problem (3.2) 

TQL STEPS PA JAC LW MATRIX MATRIX/ MATRIX 
EvAI EVATS Da! MULTS %'DZJR ROBE! Dii%S 

MULTS 

1o-2 61 241 75 21 21 400 35 0.2 

10 -4 113 358 129 22 22 494 a7 2.5 

10 -6 191 495 208 13 13 485 129 3.9 

10 =a 284 608 301, o 0 303 1P 6.5 

10'10 425 8gO 445 0 0 444 94 7.3 



R. SACKS-DAVIS and L. F. SHAMPINE 

Table 4. Performance of the Adams code STEP on the orbital problem (3.2) 

TOL STEPS FN JAC LU MATRM MATRM/ MATFXX ACC . 

EVAIS WAX.5 DEC MVLTS VECTOR Nom DIGITS 
MULTS 

10-2 65 134 0 0 0 0 0 -_- 

10 -4 119 242 0 0 0 0 0 2.5 

10 -6 209 423 0 0 0 0 0 4.8 

1O-8 318 641 0 0 0 0 0 5.6 

10’10 433 870 0 0 0 0 0 7.9 

Table 5. Percentage of steps taken by MODIFIED SDSTEP using simple iteration as functions of TOL 
and c 

I 
TOL STEPS 

ITEFG 

E MAX STZPS $ STEPS 
0ESi-D SIMXE 
NOR4 ITER 

lo-2 443 33 

10 
-4 

923 51 

lo6 1470 69 

10 -8 2107 80 

10-10 3268 87 

0.0 2.6 549 77 

0.1 3.8 77-r 07 

0.3 7.3 1074 a9 

0.5 19.8 1390 a7 

0.7 90.6 1824 76 

0.9 2428.3 2687 58 

MODIFIED SDSTEP is most competitive with STEP at these tolerances. Also, as the 
parameter E increases, the orbits become more eccentric and large norms are observed in 
solving the problems. As the values of the maximum observed norm increase, relatively fewer 
steps are taken with simple iteration and MODIFIED SDSTEP becomes less efficient relative to 
STEP on these problems. It is interesting to note that the large norms here are due to instability 
rather than stiffness. When one body approaches closely the other, its location strongly affects 
the rest of its orbit. It is not clear what kind of method is best for an unstable problem, but high 
orders seem attractive and this is a strength of SDSTEP. For more details see [2]. 

An alternative to simple iteration for the non-stiff steps was discussed in Section 2. To study 
the performance of this approach, the iteration (2.7) was incorporated into the code SDSTEP. 
The results obtained after testing the resulting code on the orbital problem (3.2) appear in Table 
6. The iteration (2.7) has a faster rate of convergence than simple iteration. A comparison with 
Table 3 indicates that a number of steps (consequently function evaluations and Jacobian 

Table 6. Performance of the code which uses the iteration (2.7) on the non-stiff steps in solving (3.2) 

IDL STEPS FIi JAC LU MATRM MATRIxI MATFlM ACC. 
WALS EVAIS DEC MJLTS vF?mx IOOMS DIGIT?3 

MULTS 

lo-2 56 228 68 21 21 420 35 --- 

10 
-4 

109 336 I.22 19 19 647 100 2.2 

10” 168 466 190 18 18 883 144 4.3 

10 -0 257 568 284 0 0 w 142 6.4 

lo-l0 338 a30 415 0 0 I.242 95 8.1 



A type-insensitive ODE code based on second derivative formulas 495 

evaluations) may be saved with the new method. However, because the iteration (2.7) is more 
expensive than simple iteration there is a significant increase in matrix/vector multiplications. 
Similar tradeoffs were observed during more estensive testing, but overall there was no 
improvement in the results over MODIFIED SDSTEP. 

In conclusion, the results obtained with MODIFIED SDSTEP indicate that the new code is 
more efficient than the previous version when solving stiff ODES because it takes advantage of 
portions of the interval that are non-stiff. In addition it solves non-stiff problems rather 
efficiently, especially at stringent tolerances. 

REFERENCES 
1. L. F. Shampine, Stiffness and non-stiff differential equation solvers-II: detecting stiffness with Runge-Kutta methods. 

ACM Trans. Math. Software 3,44-53 (1977). 
2. L. F. Shampine, Lipschitz constants and robust ODE codes, In Computational Methods in Nonlinear Mechanics 

(Edited by J. T. Oden). North-Holland, Amsterdam (1980). 
3. L. F. Shampine, Type-Insensitive ODE codes based on implicit A-stable methods. Math. Camp., to appear. 
4. L. F. Shampine, Implementation of Rosenbrock methods. SANDSO-2367J, Sandia National Laboratories, Albuquerque, 

New Mexico (1980). 
5. W. H. Enright, Second derivative multistep methods for stiff ordinary differential equations. SIAMI. Numer. Anal. 11, 

321-331 (1974). 
6. R. Sacks-Davis, Fixed leading coefficient implementation of SD-formulas for stiff ODES. ACM Trans. Math. Software 

6, W-562 (1980). 
7. J. hf. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 

New York (1970). 
8. A. Rodrigues and E. C. Beira, Staged approach of percolation processes. AZChEJ. 25,41&423 (1979). 
9. L. F. Shampine and hf. K. Gordon, Computer Solution of Ordinary Differential Equations. Freeman, San Francisco, 

California (1975). 


