ErgodicTheory and Maximal Abelian Subalgebras of the Hyperfinite Factor

Sergey Neshveyev ${ }^{1,2}$ and Erling Størmer ${ }^{2,3}$
Department of Mathematics, University of Oslo, Blindern, P.O. Box 1053, 0316 Oslo, Norway
E-mail: neshveyev@hotmail.com, erlings@math.uio.no

Communicated by A. Connes
Received December 19, 2001; accepted January 10, 2002

Let T be a free ergodic measure-preserving action of an abelian group G on (X, μ). The crossed product algebra $R_{T}=L^{\infty}(X, \mu) \rtimes G$ has two distinguished masas, the image C_{T} of $L^{\infty}(X, \mu)$ and the algebra S_{T} generated by the image of G. We conjecture that conjugacy of the singular masas $S_{T^{(1)}}$ and $S_{T^{(2)}}$ for weakly mixing actions $T^{(1)}$ and $T^{(2)}$ of different groups implies that the groups are isomorphic and the actions are conjugate with respect to this isomorphism. Our main result supporting this conjecture is that the conclusion is true under the additional assumption that the isomorphism $\gamma: R_{T^{(1)}} \rightarrow R_{T^{(2)}}$ such that $\gamma\left(S_{T^{(1)}}\right)=S_{T^{(2)}}$ has the property that the Cartan subalgebras $\gamma\left(C_{T^{(1)}}\right)$ and $C_{T^{(2)}}$ of $R_{T^{(2)}}$ are inner conjugate. We discuss a stronger conjecture about the structure of the automorphism group $\operatorname{Aut}\left(R_{T}, S_{T}\right)$, and a weaker one about entropy as a conjugacy invariant. We study also the Pukanszky and some related invariants of S_{T}, and show that they have a simple interpretation in terms of the spectral theory of the action T. It follows that essentially all values of the Pukanszky invariant are realized by the masas S_{T}, and there exist non-conjugate singular masas with the same Pukanszky invariant. © 2002 Elsevier Science (USA)

1. INTRODUCTION

It is well known that if one has a Lebesgue space (X, μ) with a free ergodic measure-preserving action T of an abelian group G, then the crossed product algebra $R_{T}=L^{\infty}(X, \mu) \rtimes \triangleleft G$ is the hyperfinite factor with two distinguished maximal abelian subalgebras (masas), the image C_{T} of $L^{\infty}(X, \mu)$ and the masa S_{T} generated by the canonical unitaries in R_{T} implementing the action. It is the purpose of the present work to investigate

[^0]how much information about the system (X, μ, T) can be extracted from properties of the masas C_{T} and S_{T}.

In Section 2, we formulate our main conjecture that for weakly mixing actions the masas S_{T} determine the actions up to an isomorphism of the groups. Here, we also give a short proof of the singularity of S_{T}, a result due to Nielsen [Ni], and more generally describe the normalizer of S_{T} for arbitrary actions, which is a result of Packer [P1].

Apparently, the only conjugacy invariant of singular masas which has been effectively used over the years is the invariant of Pukanszky [P]. It arises as a spectral invariant of two commuting representations of a masa $A \subset M$ on $B\left(L^{2}(M)\right)$ coming from the left and right actions of A on M. It is not surprising that for the masas S_{T} this invariant is closely related to spectral properties of the action T. This fact has two consequences. On the one hand, we have a lot of actions with different Pukanszky invariants. On the other hand, for most interesting systems such as Bernoullian systems, the invariant gives us nothing. This is described in Section 3.

In Section 4, we prove the main result supporting our conjecture. Namely, for weakly mixing actions the pair consisting of the masa S_{T} and the inner conjugacy class of C_{T} is an invariant of the action. In fact, if $\operatorname{Aut}\left(R_{T}, S_{T}\right)$ denotes the subgroup of $\gamma \in \operatorname{Aut}\left(R_{T}\right)$ such that $\gamma\left(S_{T}\right)=S_{T}$, we prove a stronger result describing the subgroup of $\operatorname{Aut}\left(R_{T}, S_{T}\right)$ consisting of automorphisms γ such that $\gamma\left(C_{T}\right)$ and C_{T} are inner conjugate. We conjecture that this subgroup is actually the whole group $\operatorname{Aut}\left(R_{T}, S_{T}\right)$. One test for our conjecture is to prove that this subgroup is closed, and we are able to do this under slightly stronger assumptions than weak mixing.

The group of inner automorphisms defined by unitaries in S_{T} is not always closed, and this gives us the possibility of constructing non-conjugate singular masas with the same Pukanszky invariant.

Finally in Section 5, which is independent of the others, we consider a weaker conjecture stating that the entropy of the action is a conjugacy invariant for S_{T}. We prove that if $S_{T^{(1)}}$ and $S_{T^{(2)}}$ are conjugate and under this conjugacy the canonical generators of these algebras coincide on a small projection, then the entropies of the actions coincide. The proof is an application of the theory of non-commutative entropy.

2. PRELIMINARIES ON CROSSED PRODUCTS

Let G be a countable abelian group, $g \mapsto T_{g} \in \operatorname{Aut}(X, \mu)$ a free ergodic measure-preserving action of G on a Lebesgue space (X, μ). Consider the corresponding action $g \mapsto \alpha_{g}$ on $L^{\infty}(X, \mu), \alpha_{g}(f)=f \circ T_{-g}$, and the crossed product algebra $L^{\infty}(X, \mu)>\triangleleft_{\alpha} G$, which will be denoted by R_{T} throughout the paper. Let $g \mapsto v_{g}$ be the canonical homomorphism of G into the unitary
group of R_{T}. We denote by S_{T} the abelian subalgebra of R_{T} generated by $v_{g}, g \in G$. The algebra $L^{\infty}(X, \mu)$ considered as a subalgebra of R_{T} will be denoted by C_{T}.

To fix notations, the unitary on $L^{2}(Y, v)$ associated with an invertible non-singular transformation S of a measure space (Y, v) will be denoted by $u_{S}, u_{S} f=\left(d S_{*} v / d v\right)^{l / 2} f \circ S^{-1}$, and the corresponding automorphism of $L^{\infty}(Y, v)$ will be denoted by $\alpha_{S}, \alpha_{S}(f)=f \circ S^{-1}$. For a given action T, we shall usually suppress T in such notations, so we write u_{g} and α_{g} instead of $u_{T_{g}}$ and $\alpha_{T_{g}}$.

We shall usually consider R_{T} in its standard representation on $L^{2}(X, \mu) \otimes$ $L^{2}(\hat{G}, \lambda)$, where \hat{G} is the dual group and λ is its Haar measure. The elements of the group G considered as functions on \hat{G} define two types of operators on $L^{2}(\hat{G})$, the operator m_{g} of multiplication by $g,\left(m_{g} f\right)(\chi)=\langle\chi, g\rangle f(\chi)$, and the projection e_{g} onto the one-dimensional space $\mathbb{C} g$. Then the representation π of R_{T} on $L^{2}(X) \otimes L^{2}(\hat{G})$ is given by

$$
\pi\left(v_{g}\right)=1 \otimes m_{g}, \quad \pi(f)=\sum_{g} \alpha_{g}(f) \otimes e_{-g} \quad \text { for } f \in L^{\infty}(X)
$$

Then R_{T} is in its standard form with the tracial vector $\xi \equiv 1$. The modular involution J is given by

$$
\begin{equation*}
J=\tilde{J} \sum_{g} u_{g} \otimes e_{g}=\left(\sum_{g} u_{g} \otimes e_{-g}\right) \tilde{J} \tag{2.1}
\end{equation*}
$$

where \tilde{J} is the usual complex conjugation on $L^{2}(X \times \hat{G})$. Indeed, since $\left(1 \otimes e_{g}\right) \xi=0$ for $g \neq 0$,

$$
\begin{aligned}
J \pi\left(v_{g} f\right) \xi & =J \pi\left(v_{g}\right)\left(f \otimes e_{0}\right) \xi=J\left(f \otimes m_{g} e_{0}\right) \xi=J\left(f \otimes e_{g} m_{g}\right) \xi=\tilde{J}\left(u_{g} f \otimes e_{g} m_{g}\right) \xi \\
& =\tilde{J}\left(\alpha_{g}(f) \otimes e_{g} m_{g}\right) \xi=\left(\alpha_{g}(\bar{f}) \otimes e_{-g} m_{-g}\right) \xi=\pi\left(\bar{f} v_{g}^{*}\right) \xi .
\end{aligned}
$$

In particular,

$$
\begin{equation*}
J \pi(f) J=\bar{f} \otimes 1, \quad J \pi\left(v_{g}\right) J=u_{g} \otimes m_{g}^{*} \tag{2.2}
\end{equation*}
$$

Hence R_{T} is the fixed point subalgebra of $L^{\infty}(X) \otimes B\left(L^{2}(\hat{G})\right)$ for the action $g \mapsto \alpha_{g} \otimes \operatorname{Ad} m_{g}^{*}$ of G (see [S, Corollary 19.13]).

Recall [D] that a maximal abelian subalgebra A, or masa, of a von Neumann algebra M is called regular if its normalizer $N(A)$ consisting of unitaries $u \in M$ such that $u A u^{*}=A$ generates M as a von Neumann algebra, and singular if the normalizer consists only of unitaries in A. If A is regular and there exists a faithful normal conditional expectation of M onto A then A is called Cartan [FM].

Since the action T is free and ergodic, the algebras C_{T} and S_{T} are maximal abelian in R_{T}. The algebra C_{T} is Cartan. Nielsen [Ni] was the first who noticed that if the action is weakly mixing (i.e. the only eigenfunctions are constants), then S_{T} is singular (see [P2, SS] for different proofs). More generally, the normalizer $N\left(S_{T}\right)$ always depends only on the discrete part of the spectrum [P1] (see also [H]). We shall first give a short proof of this result.

Theorem 2.1. Let $L_{0}^{\infty}(X)$ be the subalgebra of $L^{\infty}(X)$ generated by the eigenfunctions of the action α. Then the von Neumann algebra $\mathcal{N}\left(S_{T}\right)$ generated by $N\left(S_{T}\right)$ is $L_{0}^{\infty}(X)>\triangleleft_{\alpha} G$.

Proof. If $u \in C_{T}$ is an eigenfunction, $\alpha_{g}(u)=\langle\chi, g\rangle u$ for some $\chi \in \hat{G}$, then since the action is ergodic, u is a unitary. It is in the normalizer of $S_{T}, u v_{g} u^{*}=\langle\chi,-g\rangle v_{g}$. Thus $L_{0}^{\infty}(X) \rtimes_{\alpha} G \subset \mathscr{N}\left(S_{T}\right)$.

Conversely, let $u \in N\left(S_{T}\right)$. Then $\operatorname{Ad} u$ defines an automorphism of S_{T} which corresponds to a measurable transformation σ of \hat{G}. Consider R_{T} in the Hilbert space $L^{2}(X) \otimes L^{2}(\hat{G})$ as above. Then the operator $v=u\left(1 \otimes u_{\sigma}^{*}\right)$ commutes with $1 \otimes L^{\infty}(\hat{G})$, hence it belongs to

$$
\left(L^{\infty}(X) \otimes B\left(L^{2}(\hat{G})\right)\right) \cap\left(1 \otimes L^{\infty}(\hat{G})\right)^{\prime}=L^{\infty}(X) \otimes L^{\infty}(\hat{G})
$$

Thus v is given by a measurable family $\left\{v_{\ell}\right\}_{\ell \in \hat{G}}$ of unitaries in $L^{\infty}(X)$. Since $u \in R_{T}$ and v commutes with $1 \otimes m_{g}$, we have

$$
\begin{aligned}
u=\left(\alpha_{g} \otimes \operatorname{Ad} m_{g}^{*}\right)(u) & =\left(\alpha_{g} \otimes \operatorname{Ad} m_{g}^{*}\right)(v)\left(\alpha_{g} \otimes \operatorname{Ad} m_{g}^{*}\right)\left(1 \otimes u_{\sigma}\right) \\
& =\left(\alpha_{g} \otimes 1\right)(v)\left(1 \otimes m_{g}^{*} u_{\sigma} m_{g}\right)
\end{aligned}
$$

Hence $v=\left(\alpha_{g} \otimes 1\right)(v)\left(1 \otimes m_{g}^{*} u_{\sigma} m_{g} u_{\sigma}^{*}\right)$. The operator $u_{\sigma} m_{g} u_{\sigma}^{*}$ is the operator of multiplication by the function $g \circ \sigma^{-1}$. Thus for almost all $\ell \in \hat{G}$

$$
v_{\ell}=\left\langle\bar{\ell} \sigma^{-1}(\ell), g\right\rangle \alpha_{g}\left(v_{\ell}\right) .
$$

We see that for almost all ℓ the unitary v_{ℓ} lies in $L_{0}^{\infty}(X)$, which means that $v \in L_{0}^{\infty}(X) \otimes L^{\infty}(\hat{G})$. Thus,

$$
\begin{aligned}
u & =v\left(1 \otimes u_{\sigma}\right) \in\left(L_{0}^{\infty}(X) \otimes B\left(L^{2}(\hat{G})\right)\right) \cap R_{T}=\left(L_{0}^{\infty}(X) \otimes B\left(L^{2}(\hat{G})\right)\right)^{\alpha \otimes \operatorname{Ad} m^{*}} \\
& =L_{0}^{\infty}(X) \rtimes_{\alpha} G .
\end{aligned}
$$

Remark. The proof works without any modifications in the case when a locally compact separable abelian group acts ergodically on a von Neumann algebra with separable predual.

All the Cartan algebras C_{T} are conjugate by a well-known result of Dye [Dy], so the position of C_{T} inside R_{T} does not contain any information about the original action. On the other hand, the relative position of C_{T} and S_{T} defines the action. More precisely, we have

Proposition 2.2. Let $g \mapsto T_{g}^{(i)} \in \operatorname{Aut}\left(X_{i}, \mu_{i}\right)$ be a free measure-preserving action of a countable abelian group $G_{i}, i=1,2$. Suppose there exists an isomorphism $\gamma: R_{T^{(1)}} \rightarrow R_{T^{(2)}}$ such that $\gamma\left(S_{T^{(1)}}\right)=S_{T^{(2)}}$ and $\gamma\left(C_{T^{(1)}}\right)=C_{T^{(2)}}$. Then there exist an isomorphism $S:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ of measure spaces and a group isomorphism $\beta: G_{2} \rightarrow G_{1}$ such that $T_{g}^{(2)}=S T_{\beta(g)}^{(1)} S^{-1}$ for $g \in G_{2}$.

Proof. The result follows easily from the fact that the only unitaries in S_{T} which normalize C_{T} are the scalar multiples of $v_{g}, g \in G$. Indeed, if $v \in S_{T}$ normalizes C_{T} and $v=\sum_{g} a_{g} v_{g}, a_{g} \in \mathbb{C}$, is its Fourier series then for arbitrary $x \in C_{T}$ the equality $v x=\alpha(x) v$ for $x \in C_{T}$, where $\alpha=$ Ad v, implies $a_{g} \alpha_{g}(x)=a_{g} \alpha(x)$ for all $g \in G$. Thus $\alpha_{g}=\alpha$ if $a_{g} \neq 0$. Since the action is free, this means that $a_{g} \neq 0$ for a unique g, and $v=a_{g} v_{g}$. Hence, if we have an isomorphism γ as in the formulation of the proposition, then there exist an isomorphism β of G_{2} onto G_{1} and a character $\chi \in \hat{G}_{2}$ such that $\gamma\left(v_{\beta(g)}\right)=$ $\langle\chi, g\rangle v_{g}$ for $g \in G_{2}$. Then for $x \in C_{T^{(1)}}$ and $g \in G_{2}$ we have $\gamma\left(\alpha_{\beta(g)}(x)\right)=$ $\gamma\left(v_{\beta(g)} x v_{\beta(g)}^{*}\right)=v_{g} \gamma(x) v_{g}^{*}=\alpha_{g}(\gamma(x))$. So for S we can take the transformation implementing the isomorphism γ of $C_{T^{(1)}}$ onto $C_{T^{(2)}}$.

This observation leads to the following question. How much information about the system is contained in the algebra S_{T} ? If the spectrum is purely discrete, then S_{T} is a Cartan subalgebra, so in this case we get no information.

Conjecture. For weakly mixing systems the algebra S_{T} determines the system completely. In other words, the assumption $\gamma\left(C_{T^{(1)}}\right)=C_{T^{(2)}}$ in Proposition 2.2 is redundant.

3. SPECTRAL INVARIANTS

One approach to the problem of conjugacy of masas in a II_{1}-factor, initiated in the work of Pukanszky [P] is to consider together with a masa $A \subset M$ its conjugate $J A J$, where J is the modular involution associated with a tracial vector ξ, and then to consider the conjugacy problem for such pairs in $B\left(L^{2}(M)\right)$. We thus identify A with an algebra $L^{\infty}(Y, v)$ and consider a direct integral decomposition of the representation $a \otimes b \mapsto a J b^{*} J$ of the C^{*}-tensor product algebra $A \otimes A$. Thus, we obtain a measure class $[\eta]$ on
$Y \times Y$ and a measurable field of Hilbert spaces $\left\{H_{x, y}\right\}_{(x, y) \in Y \times Y}$ such that $[\eta]$ is invariant with respect to the flip $(x, y) \mapsto(y, x)$, its left (and right) projection onto Y is $[v]$, and

$$
L^{2}(M)=\int_{Y \times Y}^{\oplus} H_{x, y} d \eta(x, y)
$$

see [FM] for details. Let $m(x, y)=\operatorname{dim} H_{x, y}$ be the multiplicity function. Note that $m(x, x)=1$ and the subspace $\int_{Y \times Y}^{\oplus} H_{x, x} d \eta(x, x)$ is identified with $\overline{A \xi}$. Indeed, $\zeta \in L^{2}(M)$ lives on the diagonal $\Delta(Y) \subset Y \times Y$ if and only if $a \zeta=J a^{*} J \zeta$ for all $a \in A$. Since A is maximal abelian, this is equivalent to $\zeta \in \overline{A \xi}$. In particular, the projection $e_{A}=[A \xi]$ corresponds to the characteristic function of $\Delta(Y)$, so it belongs to $A \vee J A J$ (see [Pol]).

The triple $(Y,[\eta], m)$ is a conjugacy invariant for the pair (A, J) in the following sense. If $A \subset M$ and $B \subset N$ are masas, then a unitary $U: L^{2}(M) \rightarrow L^{2}(N)$ such that $U A U^{*}=B$ and $U J_{M} U^{*}=J_{N}$ exists if and only if there exists an isomorphism $F:\left(Y_{A},\left[v_{A}\right]\right) \rightarrow\left(Y_{B},\left[v_{B}\right]\right)$ such that $(F \times$ $F)_{*}\left(\left[\eta_{A}\right]\right)=\left[\eta_{B}\right]$ and $m_{B} \circ(F \times F)=m_{A}$. Indeed, the fact that U defines F follows by definition. Conversely, for given F we can suppose without loss of generality that η_{A} is invariant with respect to the flip and $(F \times F)_{*}\left(\eta_{A}\right)=$ η_{B}. Then there exists a measurable field of unitaries $\tilde{U}_{x, y}: H_{x, y}^{A} \rightarrow H_{F(x), F(y)}^{B}$, and we can define the unitary $\tilde{U}=\int_{Y_{A} \times Y_{A}}^{\oplus} \tilde{U}_{x, y} d \eta_{A}(x, y)$. It has the property $\tilde{U} A \tilde{U}^{*}=B$. We want to modify \tilde{U} in a way such that the condition $U J_{M} U^{*}=J_{N}$ is also satisfied. Note that J_{M} is given by a measurable field of anti-unitaries $J_{x, y}^{A}: H_{x, y}^{A} \rightarrow H_{y, x}^{A}$ such that $J_{y, x}^{A} J_{x, y}^{A}=1$, and analogoulsy J_{N} defines a measurable field $\left\{J_{x, y}^{B}\right\}_{x, y}$. We can easily arrange $\tilde{U}_{x, x} J_{x, x}^{A}=$ $J_{F(x), F(x)}^{B} \tilde{U}_{x, x}$. Outside of the diagonal, we choose a measurable subset $Z \subset Y_{A} \times Y_{A}$ which meets every two-point set $\{(x, y),(y, x)\}$ only once. Then we define

$$
U_{x, y}= \begin{cases}\tilde{U}_{x, y} & \text { if }(x, y) \in \Delta\left(Y_{A}\right) \cup Z \\ J_{F(y), F(x)}^{B} \tilde{U}_{y, x} J_{x, y}^{A} & \text { otherwise }\end{cases}
$$

Then $U_{y, x} J_{x, y}^{A}=J_{F(x), F(y)}^{B} U_{x, y}$, so for $U=\int_{Y_{A} \times Y_{A}}^{\oplus} U_{x, y} d \eta_{A}(x, y)$ we have U $J_{M}=J_{N} U$.

A rougher invariant is the set $P(A) \subset \mathbb{N} \cup\{\infty\}$ of essential values of the multiplicity function m on $(Y \times Y) \backslash \Delta(Y)$, which was introduced by Pukanszky [P] (we rather use the definition of Popa [Po1]). In other words, $P(A)$ is the set of n such that the type I algebra $(A \vee J A J)^{\prime}\left(1-e_{A}\right)$ has a non-zero component of type I_{n}. This invariant solves a weaker conjugacy problem: $P(A)=P(B)$ if and only if there exists a unitary U such that $U\left(A \vee J_{M} A J_{M}\right) U^{*}=B \vee J_{N} B J_{N}$ and $U e_{A} U^{*}=e_{B}$.

Return to our masas S_{T} in R_{T}. As above, consider R_{T} acting on $L^{2}(X \times \hat{G})$ with the modular involution given by (2.1) and (2.2). For the
construction of the triple ($Y_{T},\left[\eta_{T}\right], m_{T}$) for the masa S_{T} it is natural to take $Y_{T}=\hat{G}$. Let μ_{T} and n_{T} be the spectral measure and the multiplicity function of the representation $g \mapsto u_{g}$, so that

$$
L^{2}(X)=\int_{\hat{G}}^{\oplus} H_{\ell} d \mu_{T}(\ell)
$$

Following [H], we have a direct integral decomposition

$$
L^{2}(X \times \hat{G})=\int_{\hat{G} \times \hat{G}}^{\oplus} H_{\ell_{2}} d \lambda\left(\ell_{1}\right) d \mu_{T}\left(\ell_{2}\right)
$$

with respect to which $v_{g}=1 \otimes m_{g}$ corresponds to the function $\left(\ell_{1}, \ell_{2}\right) \mapsto$ $g\left(\ell_{1}\right)$, while $J v_{g}^{*} J=u_{-g} \otimes m_{g}$ corresponds to $\left(\ell_{1}, \ell_{2}\right) \mapsto g\left(\ell_{1} \overline{\ell_{2}}\right)$. Hence if we define η_{T} as the image of the measure $\lambda \times \mu_{T}$ under the map $\hat{G} \times \hat{G} \mapsto \hat{G} \times \hat{G},\left(\ell_{1}, \ell_{2}\right) \mapsto\left(\ell_{1}, \ell_{1} \overline{\ell_{2}}\right)$, then with respect to the decomposition

$$
L^{2}(X \times \hat{G})=\int_{\hat{G} \times \hat{G}}^{\oplus} H_{\ell_{1} \overline{\varepsilon_{2}}} d \eta_{T}\left(\ell_{1}, \ell_{2}\right)
$$

the operator v_{g} corresponds to the function $\left(\ell_{1}, \ell_{2}\right) \mapsto g\left(\ell_{1}\right)$, while $J v_{g}^{*} J$ corresponds to $\left(\ell_{l}, \ell_{2}\right) \mapsto g\left(\ell_{2}\right)$. This is the decomposition we are looking for. Thus we have proved the following (see also [H]).

Proposition 3.1. The triple $\left(Y_{T},\left[\eta_{T}\right], m_{T}\right)$ associated with the masa S_{T} in R_{T} is given by $Y_{T}=G$, $\int f d \eta_{T}=\int f\left(\ell_{1}, \ell_{1} \overline{\ell_{2}}\right) d \lambda\left(\ell_{1}\right) d \mu_{T}\left(\ell_{2}\right), m_{T}\left(\ell_{1}, \ell_{2}\right)$ $=n_{T}\left(\ell_{1} \overline{\ell_{2}}\right)$, where μ_{T} and n_{T} are the spectral measure and the multiplicity function for the representation $g \mapsto u_{g}$ of G.

Corollary 3.2. The Pukanszky invariant $P\left(S_{T}\right)$ is the set of essential values of the multiplicity function n_{T} on $\hat{G} \backslash\{e\}$.

This corollary is also obvious from

$$
S_{T} \vee J S_{T} J=\left\{u_{g} \mid g \in G\right\}^{\prime \prime} \otimes L^{\infty}(\hat{G}), \quad e_{S_{T}}=p_{1} \otimes 1
$$

where $p_{1} \in B\left(L^{2}(X)\right)$ is the projection onto the constants.
Pukanszky introduced his invariant to construct a countable family of non-conjugate singular masas in the hyperfinite II_{1}-factor. For each $n \in \mathbb{N}$ he constructed a singular masa A with $P(A)=\{n\}$. Thanks to advances in the spectral theory of dynamical systems [KL] we now know much more.

Corollary 3.3. For any subset E of \mathbb{N} containing 1 there exists a weakly mixing automorphism T such that $P\left(S_{T}\right)=E$.

If the spectrum of the representation $g \mapsto u_{g}$ is Lebesgue, i.e. the spectral measure μ_{T} is equivalent to the Haar measure λ on $\hat{G} \backslash\{e\}$, then $\left[\eta_{T}\right]=[\lambda \times \lambda]$ on $(\hat{G} \times \hat{G}) \backslash \Delta(\hat{G})$. Hence, if we have two such systems then any measurable isomorphism $F:\left(\hat{G}_{1},\left[\lambda_{1}\right]\right) \rightarrow\left(\hat{G}_{2},\left[\lambda_{2}\right]\right)$ has the property $(F \times F)_{*}\left(\left[\eta_{T^{(1)}}\right]\right)=\left[\eta_{T^{(2)}}\right]$. Thus we have

Corollary 3.4. Let $g \mapsto T_{g}^{(i)} \in \operatorname{Aut}\left(X_{i}, \mu_{i}\right)$ be a free ergodic measurepreserving action of a countable abelian group $G_{i}, i=1,2$. Suppose these actions have homogeneous Lebesgue spectra of the same multiplicity. Then for any *-isomorphism $\gamma: S_{T^{(1)}} \rightarrow S_{T^{(2)}}$ there exists a unitary $U: L^{2}\left(R_{T^{(1)}}\right) \rightarrow$ $L^{2}\left(R_{T^{(2)}}\right)$ such that $U a U^{*}=\gamma(a)$ for $a \in S_{T^{(1)}}$ and $U J_{T^{(1)}} U^{*}=J_{T^{(2)}}$.

It is clear, however, that in order to be extended to an isomorphism of $R_{T^{(1)}}$ on $R_{T^{(2)}}, \gamma$ has to be at least trace-preserving. But even this is not always enough, see Section 5. Thus for such system as Bernoulli shifts, which have countably multiple Lebesgue spectra, the invariant ($Y_{T},\left[\eta_{T}\right]$, m_{T}) does not contain any useful information.

4. THE ISOMORPHISM PROBLEM

As a partial result towards a proof of our conjecture we have
Theorem 4.1. Let $g \mapsto T_{g}^{(i)} \in \operatorname{Aut}\left(X_{i}, \mu_{i}\right)$ be a weakly mixing free measure-preserving action of a countable abelian group $G_{i}, i=1,2$. Suppose there exists an isomorphism $\gamma: R_{T^{(1)}} \rightarrow R_{T^{(2)}}$ such that $\gamma\left(S_{T^{(1)}}\right)=S_{T^{(2)}}$ and such that the Cartan algebras $\gamma\left(C_{T^{(1)}}\right)$ and $C_{T^{(2)}}$ are inner conjugate in $R_{T^{(2)}}$. Then there exist an isomorphism $S:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ of measure spaces and a group isomorphism $\beta: G_{2} \rightarrow G_{1}$ such that $T_{g}^{(2)}=S T_{\beta(g)}^{(1)} S^{-1}$ for $g \in G_{2}$.

We shall also describe explicitly all possible isomorphisms γ as in the theorem. In other words, for a weakly mixing free measurepreserving action T of a countable abelian group G on (X, μ) we shall compute the group $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ consisting of all automorphisms γ of R_{T} with the properties $\gamma\left(S_{T}\right)=S_{T}$, and the masas $\gamma\left(C_{T}\right)$ and C_{T} are inner conjugate.

Recall (see [FM]) that any automorphism S of the orbit equivalence relation defined by the action of G extends canonically to an automorphism α_{S} of R_{T}. Such an automorphism leaves S_{T} invariant if and only if there exists an automorphism β of G such that $T_{g} S=S T_{\beta(g)}$. Denote by $I(T)$ the group of all such transformations S. For $S \in I(T), \alpha_{S}$ is defined by the equalities $\alpha_{S}(f)=f \circ S^{-1}$ for $f \in C_{T}=L^{\infty}(X, \mu), \alpha_{S}\left(v_{g}\right)=v_{\beta^{-1}(g)}$ for $g \in G$. Consider also the dual action σ of \hat{G} on $R_{T}, \sigma_{\chi}(f)=f$ for $f \in C_{T}, \sigma_{\chi}\left(v_{g}\right)=$
$\langle\chi,-g\rangle v_{g}$. The group of automorphisms of the form $\sigma_{\chi} \circ \alpha_{S}(\chi \in \hat{G}$ and $S \in I(T))$ is the intersection of the groups $\operatorname{Aut}\left(R_{T}, C_{T}\right)$ and $\operatorname{Aut}\left(R_{T}, S_{T}\right)$. It turns out that up to inner automorphisms defined by unitaries in S_{T} such automorphisms exhaust the whole group $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$.

Theorem 4.2. The group $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ of automorphisms γ of R_{T} for which $\gamma\left(S_{T}\right)=S_{T}$, and $\gamma\left(C_{T}\right)$ and C_{T} are inner conjugate, consists of elements of the form $\operatorname{Ad} w \circ \sigma_{\chi} \circ \alpha_{S}$, where $w \in S_{T}, \chi \in \hat{G}, S \in I(T)$.

We conjecture that in fact this theorem gives the description of the group $\operatorname{Aut}\left(R_{T}, S_{T}\right)$.

It is well known that all Cartan subalgebras of the hyperfinite II_{1}-factor are conjugate [CFW], so they are approximately inner conjugate in an appropriate sense. It is known also that if the L^{2}-distance between the unit balls of two Cartan subalgebras is less than one, then they are inner conjugate [Po2, Po3]. However, there exists an uncountable family of Cartan subalgebras, no two of which are inner conjugate [P1].

We shall first prove that Theorem 4.1 follows from Theorem 4.2. Consider the group $G=G_{1} \times G_{2}$ and its action T on $(X, \mu)=\left(X_{1} \times X_{2}, \mu_{1} \times \mu_{2}\right)$, $T_{\left(g_{1}, g_{2}\right)}=T_{g_{1}}^{(1)} \times T_{g_{2}}^{(2)}$. Then R_{T} can be identified with $R_{T^{(1)}} \otimes R_{T^{(2)}}$ in such a way that $C_{T}=C_{T^{(1)}} \otimes C_{T^{(2)}}, v_{\left(g_{1}, g_{2}\right)}=v_{g_{1}} \otimes v_{g_{2}}$. Consider the automorphism $\tilde{\gamma}$ of R_{T},

$$
\tilde{\gamma}(a \otimes b)=\gamma^{-1}(b) \otimes \gamma(a) .
$$

By Theorem 4.2, $\tilde{\gamma}$ must be of the form $\operatorname{Ad} w \circ \sigma_{\chi} \circ \alpha_{\tilde{S}}$ with $w \in S_{T}$, $\chi=\left(\chi_{1}, \chi_{2}\right) \in \hat{G}_{1} \times \hat{G}_{2}$ and $\tilde{S} \in I(T)$. Let $\tilde{\beta} \in \operatorname{Aut}(G)$ be such that $T_{g} \tilde{S}=$ $\tilde{S} T_{\tilde{\beta}(g)}$. Since $\tilde{\gamma}^{2}=\mathrm{id}$, we have $\tilde{\beta}^{2}=\mathrm{id}$. Define the homomorphism $\beta: G_{2} \rightarrow G_{1}$ as the composition of the map $g_{2} \mapsto \tilde{\beta}\left(0, g_{2}\right)$ with the projection $G_{1} \times G_{2} \rightarrow G_{1}$, and $\beta^{\prime}: G_{1} \rightarrow G_{2}$ as the composition of the map $g_{1} \mapsto \tilde{\beta}\left(g_{1}, 0\right)$ with the projection $G_{1} \times G_{2} \rightarrow G_{2}$. Fix $g_{2} \in G_{2}$. Then $\tilde{\beta}\left(0, g_{2}\right)=\left(\beta\left(g_{2}\right), h\right)$ for some $h \in G_{2}$. We have

$$
\gamma^{-1}\left(v_{g_{2}}\right) \otimes 1=\tilde{\gamma}\left(1 \otimes v_{g_{2}}\right)=\left\langle\chi_{1},-\beta\left(g_{2}\right)\right\rangle\left\langle\chi_{2},-h\right\rangle v_{\beta\left(g_{2}\right)} \otimes v_{h} .
$$

It follows that $h=0$, that is $\tilde{\beta}\left(0, g_{2}\right)=\left(\beta\left(g_{2}\right), 0\right)$. Analogously $\tilde{\beta}\left(g_{1}, 0\right)=\left(0, \beta^{\prime}\left(g_{1}\right)\right)$. Thus $\tilde{\beta}\left(g_{1}, g_{2}\right)=\left(\beta\left(g_{2}\right), \beta^{\prime}\left(g_{1}\right)\right)$. Since $\tilde{\beta}^{2}=\mathrm{id}$, we conclude that $\beta^{\prime}=\beta^{-1}$. Then the identity $T_{g} \tilde{S}=\tilde{S} T_{\tilde{\beta}(g)}$ is rewritten in terms of the actions on $L^{\infty}\left(X_{1} \times X_{2}\right)$ as

$$
\left(\alpha_{g_{1}} \otimes \alpha_{g_{2}}\right) \circ \alpha_{\tilde{S}}=\alpha_{\tilde{S}^{\circ}}\left(\alpha_{\beta\left(g_{2}\right)} \otimes \alpha_{\beta^{-1}\left(g_{1}\right)}\right)
$$

Letting $g_{2}=0$ we see that for $f \in L^{\infty}\left(X_{1}\right)$

$$
\left(\left(\alpha_{g_{1}} \otimes 1\right) \circ \alpha_{\tilde{S}}\right)(f \otimes 1)=\left(\alpha_{\tilde{S}} \circ\left(1 \otimes \alpha_{\beta^{-1}\left(g_{1}\right)}\right)\right)(f \otimes 1)=\alpha_{\tilde{S}}(f \otimes 1)
$$

so that $\alpha_{\tilde{S}}\left(L^{\infty}\left(X_{1}\right) \otimes 1\right) \subset L^{\infty}\left(X_{1} \times X_{2}\right)^{\alpha_{G_{1}} \otimes 1}=1 \otimes L^{\infty}\left(X_{2}\right)$. Analogously $\alpha_{\tilde{S}}\left(1 \otimes L^{\infty}\left(X_{2}\right)\right) \subset L^{\infty}\left(X_{1}\right) \otimes 1$. It follows that
$\alpha_{\tilde{S}}\left(L^{\infty}\left(X_{1}\right) \otimes 1\right)=1 \otimes L^{\infty}\left(X_{2}\right) \quad$ and $\quad \alpha_{\tilde{S}}\left(1 \otimes L^{\infty}\left(X_{2}\right)\right)=L^{\infty}\left(X_{1}\right) \otimes 1$.
Hence there exist isomorphisms $S:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ and $S^{\prime}:\left(X_{2}, \mu_{2}\right) \rightarrow$ $\left(X_{1}, \mu_{1}\right)$ such that for almost all $\left(x_{1}, x_{2}\right)$ we have $\tilde{S}\left(x_{1}, x_{2}\right)=\left(S^{\prime} x_{2}, S x_{1}\right)$. The identity $\left(T_{g_{1}}^{(1)} \times T_{g_{2}}^{(2)}\right) \tilde{S}=\tilde{S}\left(T_{\beta\left(g_{2}\right)}^{(1)} \times T_{\beta^{-1}\left(g_{1}\right)}^{(2)}\right)$ implies that $T_{g_{2}}^{(2)} S=S T_{\beta\left(g_{2}\right)}^{(1)}$.

Now we turn to the proof of Theorem 4.2. The proof will be given in a series of lemmas. Let $\gamma \in \operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$.

Lemma 4.3. The automorphism γ can be implemented by a unitary U on $L^{2}\left(R_{T}\right)$ such that $U J C_{T} J U^{*}=J C_{T} J$, where J is the modular involution.

Proof. Let \tilde{U} be the canonical implementation of γ commuting with J. From the assumption that C_{T} and $\gamma\left(C_{T}\right)$ are inner conjugate we can choose $u \in R_{T}$ such that $u C_{T} u^{*}=\gamma\left(C_{T}\right)$. Then we can take $U=J u^{*} J \tilde{U}$.

Representing R_{T} on $L^{2}(X) \otimes L^{2}(\hat{G})$ as usual, so that $J C_{T} J=L^{\infty}(X) \otimes 1$ and $S_{T}=1 \otimes L^{\infty}(\hat{G})$ (see (2.2)), we conclude that Ad U defines measurepreserving transformations S_{1} of X and σ of \hat{G}. Then $W=U\left(u_{S_{1}}^{*} \otimes u_{\sigma}^{*}\right)$ commutes with $L^{\infty}(X) \otimes 1$ and $1 \otimes L^{\infty}(\hat{G})$, hence it is a unitary in $L^{\infty}(X \times \hat{G})$. For $\ell \in \hat{G}$ denote by w_{ℓ} the function in $L^{\infty}(X)$ defined by $w_{\ell}(x)=W(x, \ell)$.

Since U defines an automorphism of R_{T}, for $f \in L^{\infty}(X)$ the element $U \pi(f) U^{*}$ must by (2.2) commute with $u_{h} \otimes m_{h}^{*}$.

LEMmA 4.4. With the above notations, for $\zeta \in L^{2}\left(\hat{G}, L^{2}(X)\right) \cong L^{2}(X) \otimes$ $L^{2}(\hat{G})$ we have

$$
\left(U \pi(f) U^{* \zeta}\right)(\ell)=\sum_{g \in G}\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle w_{\ell} w_{\ell_{1}}^{*} \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right)
$$

$$
\begin{aligned}
& \left(\left(u_{h} \otimes m_{h}^{*}\right) U \pi(f) U^{*}\left(u_{h}^{*} \otimes m_{h}\right) \zeta\right)(\ell) \\
& \quad=\sum_{g \in G}\left(\alpha_{h} \circ \alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\bar{\ell} \ell_{1}, h\right\rangle\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle \alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right) \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right)
\end{aligned}
$$

The above series are meaningless for fixed ℓ and should be considered as series of functions in $L^{2}(X \times \hat{G})$.

Proof. Note that $(W \zeta)(\ell)=w_{\ell} \zeta(\ell),\left(\left(1 \otimes m_{g}\right) \zeta\right)(\ell)=\langle\ell, g\rangle \zeta(\ell)$. The operator $u_{\sigma} e_{g} u_{\sigma}^{*}$ is the projection onto the one-dimensional space spanned by the function $u_{\sigma} g \in L^{2}(\hat{G})$, so for $f \in L^{2}(\hat{G})$,

$$
\left(u_{\sigma} e_{g} u_{\sigma}^{*} f\right)(\ell)=\left(u_{\sigma} g\right)(\ell) \cdot\left(f, u_{\sigma} g\right)=\int_{\hat{G}}\left\langle\sigma^{-1}(\ell) \overline{\sigma^{-1}\left(\ell_{1}\right)}, g\right\rangle f\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right) .
$$

Hence $\left(\left(1 \otimes u_{\sigma} e_{g} u_{\sigma}^{*}\right) \zeta\right)(\ell)=\int_{\hat{G}}\left\langle\sigma^{-1}(\ell) \overline{\sigma^{-1}\left(\ell_{1}\right)}, g\right\rangle \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right)$. Now we compute:

$$
\begin{aligned}
\left(U \pi(f) U^{* \zeta}\right)(\ell) & =\left(W\left(u_{S_{1}} \otimes u_{\sigma}\right)\left(\sum_{g} \alpha_{g}(f) \otimes e_{-g}\right)\left(u_{S_{1}}^{*} \otimes u_{\sigma}^{*}\right) W^{* \zeta}\right)(\ell) \\
& =\sum_{g}\left(W\left(\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \otimes u_{\sigma} e_{-g} u_{\sigma}^{*}\right) W^{* \zeta}\right)(\ell) \\
& =\sum_{g} w_{\ell}\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\sigma^{-1}(\ell) \overline{\sigma^{-1}\left(\ell_{1}\right)},-g\right\rangle\left(W^{* \zeta}\right)\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right) \\
& =\sum_{g}\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle w_{\ell} w_{\ell_{1}}^{*} \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\left(\left(u_{h} \otimes m_{h}^{*}\right) U \pi(f) U^{*}\left(u_{h}^{*} \otimes m_{h}\right) \zeta\right)(\ell) \\
=\langle\bar{\ell}, h\rangle u_{h}\left(U \pi(f) U^{*}\left(u_{h}^{*} \otimes m_{h}\right) \zeta\right)(\ell) \\
=\langle\bar{\ell}, h\rangle u_{h} \sum_{g}\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle w_{\ell} w_{\ell_{1}}^{*}\left(\left(u_{h}^{*} \otimes m_{h}\right) \zeta\right)\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right) \\
=\langle\bar{\ell}, h\rangle u_{h} \sum_{g}\left(\alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle w_{\ell} w_{\ell_{1}}^{*} u_{h}^{*}\left\langle\ell_{1}, h\right\rangle \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right) \\
=\sum_{g}\left(\alpha_{h} \circ \alpha_{S_{1}} \circ \alpha_{g}\right)(f) \int_{\hat{G}}\left\langle\bar{\ell} \ell_{1}, h\right\rangle\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle \alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right) \zeta\left(\ell_{1}\right) d \lambda\left(\ell_{1}\right) .
\end{gathered}
$$

Lemma 4.5. Let $g \mapsto P_{g} \in \operatorname{Aut}(X, \mu)$ be a free measure-preserving action of $G, Q \in \operatorname{Aut}(X, \mu), H$ a Hilbert space, a_{g} and b_{g} maps from X to H such that
(i) the vectors $a_{g}(x), g \in G$, are mutually orthogonal for almost all $x \in X$;
(ii) $\sum_{g}\left\|a_{g}(x)\right\|^{2}$ is finite and non-zero for almost all x; and the same conditions hold for $\left\{b_{g}\right\}_{g}$. Suppose for all $f \in L^{\infty}(X)$ and almost all $x \in X$

$$
\sum_{g}\left(\alpha_{Q} \circ \alpha_{P_{g}}\right)(f)(x) a_{g}(x)=\sum_{g} \alpha_{P_{g}}(f)(x) b_{g}(x)
$$

Then Q is in the full group generated by $P_{g}, g \in G$, and if $g(x) \in G$ is such that $Q^{-1} x=P_{-g(x)} x$ then, $a_{g}(x)=b_{g+g(x)}(x)$ for all $g \in G$ and almost all $x \in X$.

Proof. Let $X_{0}=\left\{x \in X \mid Q^{-1} x \notin P_{G} x, P_{g} x \neq x\right.$ for $\left.g \neq 0\right\}$. There exists a countable family $\left\{X_{i}\right\}_{i \in I}$ of measurable subsets of X such that for arbitrary finite subset F of G and almost all $x \in X_{0}$ there exists $i \in I$ such that $x \in X_{i}$, the sets $P_{g} X_{i}, g \in F$, are mutually disjoint and $Q^{-1} x \notin \bigcup_{g \in F} P_{g} X_{i}$. Indeed, first note that choosing an arbitrary Q - and P_{g}-invariant norm-separable weakly dense C^{*}-subalgebra A of $L^{\infty}(X)$, we can identify the measure space (X, μ) with the spectrum of A. Thus without loss of generality, we can suppose that X is a compact metric space and Q and P_{g} are homeomorphisms. Moreover, by regularity of the measure it is enough to prove the assertion for arbitrary compact subset K of X_{0}. But then for fixed F we can consider for each $x \in K$ a neighborhood U_{x} such that $P_{g} U_{x}, g \in F$, are disjoint, $Q^{-1} U_{x} \cap P_{g} U_{x}=\emptyset$ for $g \in F$, and then choose a finite subcovering from $\left\{U_{x}\right\}_{x \in K}$.

Consider the countable set $\mathscr{F} \subset L^{\infty}(X)$ consisting of characteristic functions of the sets $X_{i}, i \in I$, and all their translations under the action of G. For almost all $x \in X_{0}$ and all $f \in \mathscr{F}$ the assumptions of the lemma are satisfied. Let $x \in X_{0}$ be such a point. Fix $h \in G$. For arbitrary finite subset F of $G, h \in F$, there exists $f \in \mathscr{F}$ such that $\alpha_{P_{h}}(f)(x)=1, \alpha_{P_{g}}(f)(x)=0$ for $g \in F \backslash\{h\}$ and $\left(\alpha_{Q} \circ \alpha_{P_{g}}\right)(f)(x)=0$, for $g \in F$. Then,

$$
\begin{aligned}
\left\|b_{h}(x)\right\| & =\left\|\sum_{g \notin F}\left(\alpha_{Q} \circ \alpha_{P_{g}}\right)(f)(x) a_{g}(x)-\sum_{g \notin F} \alpha_{P_{g}}(f)(x) b_{g}(x)\right\| \\
& \leqslant\left(\sum_{g \notin F}\left\|a_{g}(x)\right\|^{2}\right)^{1 / 2}+\left(\sum_{g \notin F}\left\|b_{g}(x)\right\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

It follows that $b_{h}(x)=0$. But this contradicts the assumption $\sum_{h}\left\|b_{h}(x)\right\|^{2}>$ 0 . Hence the set X_{0} has zero measure. Thus Q is indeed in the full group generated by P_{g}.

Let $Q^{-1} x=P_{-g(x)} x$. In the same way as above (or by referring to the Rokhlin lemma), we can find a countable collection \mathscr{F} of characteristic functions such that for almost all $x \in X$ and arbitrary finite $F \subset G, 0 \in F$,
there exists $f \in \mathscr{F}$ such that $f(x)=1, \alpha_{P_{g}}(f)(x)=0$ for $g \in F \backslash\{0\}$. Then

$$
a_{-g(x)}(x)-b_{0}(x)=\sum_{g \notin F} \alpha_{P_{g}}(f)(x) b_{g}(x)-\sum_{g \notin F-g(x)}\left(\alpha_{Q} \circ \alpha_{P_{g}}\right)(f)(x) a_{g}(x),
$$

and we conclude that $a_{-g(x)}(x)=b_{0}(x)$. Replacing f by $\alpha_{P_{h}}(f)$ in the formulation of the lemma we see that its assumptions are also satisfied for the collections $\left\{a_{g-h}\right\}_{g}$ and $\left\{b_{g-h}\right\}_{g}$, so that $a_{-g(x)-h}(x)=b_{-h}(x)$.

Fix $h \in G$ and apply Lemma 4.5 to $P_{g}=S_{1} T_{g} S_{1}^{-1}, Q=T_{h}, H=L^{2}(\hat{G})$,

$$
\begin{aligned}
& a_{g}(x)(\ell)=\int_{\hat{G}}\left\langle\bar{\ell} \ell_{1}, h\right\rangle\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle \alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x) d \lambda\left(\ell_{1}\right) \\
& b_{g}(x)(\ell)=\int_{\hat{G}}\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g\right\rangle\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x) d \lambda\left(\ell_{1}\right)
\end{aligned}
$$

To see that the assumptions of the lemma are satisfied, note that up to the factor $\ell \mapsto\langle\bar{\ell}, h\rangle \alpha_{h}\left(w_{\ell}\right)(x)$ the series $\sum_{g} a_{g}(x)$ is the Fourier series of the function $\ell \mapsto\langle\ell, h\rangle \alpha_{h}\left(w_{\ell}^{*}\right)(x)$ with respect to the orthonormal basis $\left\{\overline{u_{\sigma} g}\right\}_{g \in G}$.

Thus by Lemmas 4.4 and 4.5, we conclude that there exists $g(h, x)$ such that $T_{-h} x=S_{1} T_{-g(h, x)} S_{1}^{-1} x$ and $a_{g}(x)=b_{g+g(h, x)}(x)$, that is

$$
\int_{\hat{G}}\left\langle\sigma^{-1}\left(\ell_{1}\right), g\right\rangle\left(\left\langle\bar{\ell} \ell_{1}, h\right\rangle \alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x)-\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g(h, x)\right\rangle\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x)\right) d \lambda\left(\ell_{1}\right)=0 .
$$

Since the functions $u_{\sigma} g=\left(\ell_{1} \mapsto\left\langle\sigma^{-1}\left(\ell_{1}\right), g\right\rangle\right), g \in G$, form an orthonormal basis of $L^{2}(\hat{G})$, we conclude that for almost all $\left(x, \ell, \ell_{1}\right)$

$$
\begin{equation*}
\alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x)=\langle\ell \bar{\ell}, h\rangle\left\langle\overline{\sigma^{-1}(\ell)} \sigma^{-1}\left(\ell_{1}\right), g(h, x)\right\rangle\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x) \tag{4.1}
\end{equation*}
$$

Lemma 4.6. There exists a continuous automorphism σ_{0} of \hat{G} and $\chi \in \hat{G}$ such that $\sigma(\ell)=\chi \sigma_{0}(\ell)$ for almost all ℓ.

Proof. Replace ℓ by $\sigma(\ell)$ and ℓ_{1} by $\sigma\left(\ell_{1}\right)$ in (4.1). Then we get

$$
\begin{equation*}
\alpha_{h}\left(w_{\sigma(\ell)} w_{\sigma\left(\ell_{1}\right)}^{*}\right)(x)=\left\langle\sigma(\ell) \overline{\sigma\left(\ell_{1}\right)}, h\right\rangle\left\langle\bar{\ell} \ell_{1}, g(h, x)\right\rangle\left(w_{\sigma(\ell)} w_{\sigma\left(\ell_{1}\right)}^{*}\right)(x) . \tag{4.2}
\end{equation*}
$$

Now substitute $\ell \ell_{2}$ for ℓ and $\ell_{1} \ell_{2}$ for ℓ_{1}. We get

$$
\begin{equation*}
\alpha_{h}\left(w_{\sigma\left(\ell \ell_{2}\right)} w_{\sigma\left(\ell_{1} \ell_{2}\right)}^{*}\right)(x)=\left\langle\sigma\left(\ell \ell_{2}\right) \overline{\sigma\left(\ell_{1} \ell_{2}\right)}, h\right\rangle\left\langle\bar{\ell} \ell_{1}, g(h, x)\right\rangle\left(w_{\sigma\left(\ell \ell_{2}\right)} w_{\sigma\left(\ell_{1} \ell_{2}\right)}^{*}\right)(x) \tag{4.3}
\end{equation*}
$$

Multiplying (4.2) by the equation conjugate to (4.3) we see that for almost all $\left(\ell, \ell_{1}, \ell_{2}\right)$, the element $w_{\sigma(\ell)} w_{\sigma\left(\ell_{1}\right)}^{*} w_{\sigma\left(\ell_{1} \ell_{2}\right)} w_{\sigma\left(\ell \ell_{2}\right)}^{*}$ is an eigenfunction with eigenvalue $\sigma(\ell) \overline{\sigma\left(\ell_{1}\right)} \sigma\left(\ell_{1} \ell_{2}\right) \overline{\sigma\left(\ell \ell_{2}\right)}$. Since the action is weakly mixing, we
conclude that

$$
\sigma\left(\ell \ell_{2}\right) \overline{\sigma(\ell)}=\sigma\left(\ell_{1} \ell_{2}\right) \overline{\sigma\left(\ell_{1}\right)}
$$

(this is the only place where we use weak mixing instead of ergodicity). Hence, there exists a measurable map $\tilde{\sigma}_{0}$ of \hat{G} onto itself such that $\tilde{\sigma}_{0}\left(\ell_{2}\right)=\sigma\left(\ell \ell_{2}\right) \overline{\sigma(\ell)}$ for almost all $\left(\ell_{1}, \ell_{2}\right)$. Then for almost all $\left(\ell_{1}, \ell_{2}\right)$

$$
\tilde{\sigma}_{0}\left(\ell_{1} \ell_{2}\right)=\sigma\left(\ell \ell_{1} \ell_{2}\right) \overline{\sigma(\ell)}=\sigma\left(\ell \ell_{1} \ell_{2}\right) \overline{\sigma\left(\ell \ell_{2}\right)} \sigma\left(\ell \ell_{2}\right) \overline{\sigma(\ell)}=\tilde{\sigma}_{0}\left(\ell_{1}\right) \tilde{\sigma}_{0}\left(\ell_{2}\right)
$$

So $\tilde{\sigma}_{0}$ is essentially a homomorphism, and since it is measurable, it coincides almost everywhere with a continuous homomorphism σ_{0}. Choose a character ℓ_{1} such that the equality $\sigma_{0}(\ell)=\sigma\left(\ell_{1} \ell\right) \overline{\sigma\left(\ell_{1}\right)}$ holds for almost all ℓ. Set $\chi=\sigma\left(\ell_{1}\right) \overline{\sigma_{0}\left(\ell_{1}\right)}$. Then $\sigma(\ell)=\chi \sigma_{0}(\ell)$ for almost all ℓ. Since σ is an invertible measure-preserving transformation, σ_{0} must be an automorphism.

Now we can rewrite (4.1) as

$$
\begin{equation*}
\alpha_{h}\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x)=\left\langle\ell_{1} \overline{\ell_{1}}, h\right\rangle\left\langle\sigma_{0}^{-1}\left(\bar{\ell} \ell_{1}\right), g(h, x)\right\rangle\left(w_{\ell} w_{\ell_{1}}^{*}\right)(x) . \tag{4.4}
\end{equation*}
$$

Lemma 4.7. Let ℓ_{1} be such that (4.4) holds for almost all $(x, \ell) \in X \times \hat{G}$. Then there exist a unitary b in $L^{\infty}(\hat{G})$ and a measurable map $e: X \rightarrow G$ such that for almost all (x, ℓ) we have

$$
\left(w_{\ell \ell_{1}} w_{\ell_{1}}^{*}\right)(x)=b(\ell)\langle\ell, e(x)\rangle .
$$

For all $h \in G$ and almost all $x \in X$ we have

$$
g(h, x)=\beta(e(x))-\beta\left(e\left(T_{-h} x\right)\right)+\beta(h),
$$

where β is the automorphism of G dual to σ_{0}, i.e. $\left\langle\sigma_{0}(\ell), g\right\rangle=\langle\ell, \beta(g)\rangle$.
Proof. Denote $w_{\ell \ell_{1}} w_{\ell_{1}}^{*}$ by v_{ℓ}. Then by (4.4)

$$
\begin{equation*}
\alpha_{h}\left(v_{\ell}\right)(x)=\langle\ell, h\rangle\left\langle\sigma_{0}^{-1}(\bar{\ell}), g(h, x)\right\rangle\left(v_{\ell}\right)(x) . \tag{4.5}
\end{equation*}
$$

Multiplying these identities for $v_{\ell}, v_{\ell_{2}}$ and $v_{\ell \ell_{2}}^{*}$ we see that the function $c\left(\ell, \ell_{2}\right)=v_{\ell} v_{\ell_{2}} v_{\ell \ell_{2}}^{*}$ is G-invariant, so it is a constant. Thus, we obtain a measurable symmetric (i.e. $c\left(\ell, \ell_{2}\right)=c\left(\ell_{2}, \ell\right)$) 2-cocycle on G with values in \mathbb{T}. Since G is abelian, any such a cocycle is a coboundary (see e.g. [M]), $c\left(\ell, \ell_{2}\right)=b(\ell) b\left(\ell_{2}\right) \overline{b\left(\ell \ell_{2}\right)}$. Then $\ell \mapsto \overline{b(\ell)} v_{\ell}$ is a measurable homomorphism of \hat{G} into the unitary group of $L^{\infty}(X)$. By [M, Theorem 1] there exists a measurable map $e: X \rightarrow G$ such that $\bar{b}(\ell) v_{\ell}(x)=\langle\ell, e(x)\rangle$.

Equation (4.5) implies that

$$
\left\langle\ell, e\left(T_{-h} x\right)\right\rangle=\langle\ell, h\rangle\left\langle\sigma_{0}^{-1}(\bar{\ell}), g(h, x)\right\rangle\langle\ell, e(x)\rangle,
$$

equivalently,

$$
\left\langle\ell, e\left(T_{-h} x\right)-h+\beta^{-1}(g(h, x))-e(x)\right\rangle=1
$$

from what the second assertion of the lemma follows.
Recall that S_{1} is the transformation of X defined by $\left.\operatorname{Ad} U\right|_{L^{\infty}(X)}$.
Lemma 4.8. Define a measurable map S_{2} of X onto itself by letting

$$
S_{2} x=S_{1} T_{-\beta(e(x))} S_{1}^{-1} x
$$

Then S_{2} is invertible and measure preserving. Its inverse is given by

$$
S_{2}^{-1} x=T_{e(x)} x
$$

Proof. Recall that $g(h, x)$ was defined by the equality $T_{-h} x=S_{1} T_{-g(h, x)}$ $S_{1}^{-1} x$. Since by Lemma 4.7, $g(-e(x), x)=-\beta\left(e\left(T_{e(x)} x\right)\right)$, it follows that

$$
S_{2} T_{e(x)} x=S_{1} T_{-\beta\left(e\left(T_{e(x)} x\right)\right)} S_{1}^{-1} T_{e(x)} x=S_{1} T_{-\beta\left(e\left(T_{e(x)} x\right)\right)-g(-e(x), x)} S_{1}^{-1} x=x
$$

Hence S_{2} is essentially surjective. Since it is also one-to-one and measure preserving on the sets $e^{-1}(\{g\})$, we conclude that S_{2} is invertible, measure preserving and its inverse is given by $S_{2}^{-1} x=T_{e(x)} x$.

The final step is
Lemma 4.9. The mapping $S=S_{2}^{-1} S_{1}$ has the property $T_{g} S=S T_{\beta(g)}$.
Proof. We compute

$$
\begin{aligned}
S^{-1} T_{-h} x & =S_{1}^{-1} S_{2} T_{-h} x \\
& =S_{1}^{-1} S_{1} T_{-\beta\left(e\left(T_{-h} x\right)\right)} S_{1}^{-1} T_{-h} x \\
& =T_{-\beta\left(e\left(T_{-h} x\right)\right)-g(h, x)} S_{1}^{-1} x \\
& =T_{-\beta(h)-\beta(e(x))} S_{1}^{-1} x \\
& =T_{-\beta(h)} S_{1}^{-1} S_{2} x \\
& =T_{-\beta(h)} S^{-1} x
\end{aligned}
$$

where in the fourth equality we used Lemma 4.7.

Summarizing the results of Lemmas 4.6-4.9, we can decompose $U=$ $W\left(u_{S_{1}} \otimes u_{\sigma}\right)$ as follows. First, by Lemma 4.7 for almost all $(x, \ell), w_{\ell}(x)=$ $\left\langle\ell \overline{\ell_{1}}, e(x)\right\rangle w_{\ell_{1}}(x) b\left(\ell \overline{\ell_{1}}\right)$, so W is the product of $u^{\prime} \otimes 1, v$ and $1 \otimes w$, where $u^{\prime} \in L^{\infty}(X), u^{\prime}(x)=\left\langle\overline{\ell_{1}}, e(x)\right\rangle w_{\ell_{1}}(x), v \in L^{\infty}(X \times \hat{G}), \quad v(x, \ell)=\langle\ell, e(x)\rangle$, and $w \in L^{\infty}(\hat{G}), w(\ell)=b\left(\overline{\ell \ell_{1}}\right)$. By Lemmas 4.8 and $4.9, u_{S_{1}}=u_{S_{2}} u_{S}$. Finally by Lemma 4.6, $u_{\sigma}=\lambda_{\chi} u_{\sigma_{0}}$, where λ_{χ} is the operator of the left regular representation of \hat{G} on $L^{2}(\hat{G})$. Thus with $v^{\prime}=v\left(u_{S_{2}} \otimes 1\right)$, we have

$$
\begin{aligned}
U & =\left(u^{\prime} \otimes 1\right) v(1 \otimes w)\left(u_{S_{2}} u_{S} \otimes 1\right)\left(1 \otimes \lambda_{\chi} u_{\sigma_{0}}\right) \\
& =\left(u^{\prime} \otimes 1\right) v^{\prime}(1 \otimes w)\left(1 \otimes \lambda_{\chi}\right)\left(u_{S} \otimes u_{\sigma_{0}}\right)
\end{aligned}
$$

The unitaries $u^{\prime} \otimes 1$ and v^{\prime} both lie in the commutant R_{T}^{\prime}. This is obvious for $u^{\prime} \otimes 1$ and follows for v^{\prime} from the formula

$$
v^{\prime}=\sum_{g}\left(p_{g} \otimes 1\right)\left(u_{g}^{*} \otimes m_{g}\right)
$$

where p_{g} is the characteristic function of the set $e^{-1}(\{g\})$. Indeed, if $x \in e^{-1}(\{g\})$ then $S_{2}^{-1} x=T_{g} x$ by Lemma 4.8, and hence for arbitrary $\zeta \in L^{2}(X \times \hat{G})$ we have

$$
\left(\left(p_{g} \otimes 1\right)\left(u_{g}^{*} \otimes m_{g}\right) \zeta\right)(x, \ell)=\langle\ell, g\rangle \zeta\left(T_{g} x, \ell\right)=\langle\ell, e(x)\rangle \zeta\left(S_{2}^{-1} x, \ell\right)=\left(v^{\prime} \zeta\right)(x, \ell) .
$$

Thus the automorphism γ is implemented by the unitary $(1 \otimes w)(1 \otimes$ $\left.\lambda_{\chi}\right)\left(u_{S} \otimes u_{\sigma_{0}}\right)$, so $\gamma=\operatorname{Ad} w \circ \sigma_{\chi} \circ \alpha_{S}$, and the proof of Theorem 4.2 is complete.

From the definition of the group $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ it is unclear whether it is a closed subgroup of $\operatorname{Aut}\left(R_{T}, S_{T}\right)$ (in the topology of point-wise strong convergence). But if our conjecture that this group coincides with $\operatorname{Aut}\left(R_{T}\right.$, S_{T}) (which is stronger than our main conjecture in Section 2) is true, then this group must be closed. We shall prove that it is closed under slightly stronger assumptions than weak mixing.

Recall that an action T is called rigid if there exists a sequence $\left\{g_{n}\right\}_{n}$ such that $g_{n} \rightarrow \infty$ and $u_{g_{n}} \rightarrow 1$ strongly.

Proposition 4.10. Suppose T is a weakly mixing action which is not rigid. Then the group $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ is closed in $\operatorname{Aut}\left(R_{T}\right)$.

Proof. Suppose a sequence $\left\{\alpha_{n}\right\}_{n} \subset \operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ converges to an automorphism α. By Theorem 4.2, $\alpha_{n}=\sigma_{\chi_{n}} \circ \operatorname{Ad} w_{n} \circ \alpha_{S_{n}}$. Passing to a subsequence we may suppose that the sequence $\left\{\chi_{n}\right\}_{n}$ converges to a character χ. Then $\left\{\operatorname{Ad} w_{n} \circ \alpha_{S_{n}}\right\}_{n}$ converges to $\sigma_{\chi}^{-1} \circ \alpha$, so to simplify the notations we may suppose that all characters χ_{n} are trivial.

Let f be a unitary generating C_{T}. Set

$$
\delta=\inf _{g \neq 0}\left\|\alpha_{g}(f)-f\right\|_{2}
$$

Since the action is not rigid, $\delta>0$. Suppose for some n and m

$$
\left\|\left(\operatorname{Ad} w_{n} \circ \alpha_{S_{n}}\right)(f)-\left(\operatorname{Ad} w_{m} \circ \alpha_{S_{m}}\right)(f)\right\|_{2}<\varepsilon
$$

We assert that if $\varepsilon<\delta^{2} / 4$ then there exist $g \in G$ and $c \in \mathbb{T}$ such that

$$
\begin{equation*}
\left\|w_{n}-c w_{m} v_{g}\right\|_{2}<(2 \varepsilon)^{1 / 2} \tag{4.6}
\end{equation*}
$$

where $v_{g}, g \in G$ are the canonical generators of S_{T}. Indeed, let $v=$ $w_{m}^{*} w_{n}, v=\sum_{g} a_{g} v_{g}, a_{g} \in \mathbb{C}$. If $E: R_{T} \rightarrow C_{T}$ is the trace-preserving conditional expectation, then for arbitrary $x \in C_{T}$ we have $E\left(v x v^{*}\right)=\sum_{g}\left|a_{g}\right|^{2} \alpha_{g}$ (x), whence

$$
\begin{aligned}
\varepsilon^{2} & >\left\|\left(\operatorname{Ad} w_{n} \circ \alpha_{S_{n}}\right)(f)-\left(\operatorname{Ad} w_{m} \circ \alpha_{S_{m}}\right)(f)\right\|_{2}^{2} \\
& =2\left(1-\operatorname{Re} \tau\left(v \alpha_{S_{n}}(f) v^{*} \alpha_{S_{m}}\left(f^{*}\right)\right)\right) \\
& =2\left(1-\operatorname{Re} \tau\left(E\left(v \alpha_{S_{n}}(f) v^{*}\right) \alpha_{S_{m}}\left(f^{*}\right)\right)\right) \\
& =2 \sum_{g}\left|a_{g}\right|^{2}\left(1-\operatorname{Re} \tau\left(\left(\alpha_{g} \circ \alpha_{S_{n}}\right)(f) \alpha_{S_{m}}\left(f^{*}\right)\right)\right)
\end{aligned}
$$

Set $\quad Y=\left\{g \in G \mid 1-\operatorname{Re} \tau\left(\left(\alpha_{g} \circ \alpha_{S_{n}}\right)(f) \alpha_{S_{m}}\left(f^{*}\right)\right)<\varepsilon / 2\right\}$. If $\quad g \in Y \quad$ then $\left\|\left(\alpha_{g} \circ \alpha_{S_{n}}\right)(f)-\alpha_{S_{m}}(f)\right\|_{2}<\varepsilon^{1 / 2}$. Thus if $g_{1} \neq g_{2}$ both lie in Y then $\|\left(\alpha_{g_{1}} \circ \alpha_{S_{n}}\right)$ $(f)-\left(\alpha_{g_{2}} \circ \alpha_{S_{n}}\right)(f) \|_{2}<2 \varepsilon^{1 / 2}$. Since $\alpha_{g} \circ \alpha_{S_{n}}=\alpha_{S_{n}} \circ \alpha_{\beta(g)}$ for some automorphism β, we get a contradiction if $2 \varepsilon^{1 / 2}<\delta$. Hence the set Y consists of at most one point. On the other hand, we have

$$
\varepsilon^{2}>2 \sum_{g}\left|a_{g}\right|^{2}\left(1-\operatorname{Re} \tau\left(\left(\alpha_{g} \circ \alpha_{S_{n}}\right)(f) \alpha_{S_{m}}\left(f^{*}\right)\right)\right) \geqslant \varepsilon \sum_{g \notin Y}\left|a_{g}\right|^{2},
$$

so that $\sum_{g \notin Y}\left|a_{g}\right|^{2}<\varepsilon$. If follows that Y is non-empty. Hence it consists precisely of one point g, and $\left|a_{g}\right|^{2}>1-\varepsilon$. Then with $c=a_{g} /\left|a_{g}\right|$, we have

$$
\left\|w_{n}-c w_{m} v_{g}\right\|_{2}^{2}=\left\|v-c v_{g}\right\|_{2}^{2}=\sum_{h \neq g}\left|a_{h}\right|^{2}+\left|a_{g}-c\right|^{2}=2\left(1-\left|a_{g}\right|\right)<2 \varepsilon .
$$

It follows that passing to a subsequence we may suppose that for each $n \geqslant 2$ there exist $g_{n} \in G$ and $c_{n} \in \mathbb{T}$ such that

$$
\left\|c_{n} w_{n} v_{g_{n}}-w_{n-1}\right\|_{2}<\frac{1}{2^{n}}
$$

Then replacing w_{n} by $c_{n} \ldots c_{2} w_{n} v_{g_{n}+\cdots+g_{2}}$ and S_{n} by $T_{-g_{2}-\cdots-g_{n}} S_{n}$ we still have $\alpha_{n}=$ Ad $w_{n} \circ \alpha_{S_{n}}$, but now the sequence $\left\{w_{n}\right\}_{n}$ converges strongly to a unitary $w \in S_{T}$. Then $\alpha\left(C_{T}\right)=(\operatorname{Ad} w)\left(C_{T}\right)$.

Note that the group $\operatorname{Aut}\left(R_{T}, C_{T} \mid S_{T}\right)$ consisting of all automorphisms $\gamma \in \operatorname{Aut}\left(R_{T}, C_{T}\right)$ such that $\gamma\left(S_{T}\right)$ and S_{T} are inner conjugate is never closed. Indeed, let $c \in Z^{1}\left(\mathscr{R}_{T}, \mathbb{\mathbb { }}\right)$ be a \mathbb{T}-valued 1-cocycle on the orbit equivalence relation \mathscr{R}_{T} defined by T, and $\sigma_{c} \in \operatorname{Aut}\left(R_{T}, C_{T}\right)$ the corresponding automorphism [FM]. Then $\sigma_{c}\left(S_{T}\right)$ and S_{T} are inner conjugate if and only if c is cohomologous to the cocycle $c_{\chi}, c_{\chi}\left(x, T_{g} x\right)=\langle\chi, g\rangle$, for some $\chi \in \hat{G}$ [P1] (this result was proved in [P1] for actions with purely discrete spectrum, but with minor changes the proof works for arbitrary ergodic actions; in our weakly mixing case using Theorem 4.2 and the fact that if $\gamma \in \operatorname{Aut}\left(R_{T}, C_{T}\right.$ $\left.\mid S_{T}\right)$ then $\operatorname{Ad} u \circ \gamma \in \operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ for some unitary u, it is easy to obtain a more precise result: the group $\operatorname{Aut}\left(R_{T}, C_{T} \mid S_{T}\right)$ consists of automorphisms of the form $\sigma_{c} \circ \alpha_{S}$, where c is a cocycle cohomologous to c_{χ} and $S \in I(T)[T]$, where [T] is the full group generated by $T_{g}, g \in G$). Since the equivalence relation is hyperfinite, any cocycle can be approximated by coboundaries, so all automorphisms σ_{c} are in the closure of $\operatorname{Aut}\left(R_{T}, C_{T} \mid S_{T}\right)$. On the other hand, there always exist cocycles which are not cohomologous to cocycles c_{χ}, because otherwise $Z^{1}\left(\mathscr{R}_{T}, \mathbb{T}\right)$ would be a continuous isomorphic image of the group $\hat{G} \times I(X, \mathbb{T})$, where $I(X, \mathbb{\mathbb { }})$ is the factor of the unitary group of $L^{\infty}(X)$ by the scalars (note that since the action is weakly mixing, c_{χ} is not a coboundary for $\chi \in \hat{G} \backslash\{e\})$, hence $Z^{1}\left(\mathscr{R}_{T}, \mathbb{\mathbb { }}\right)$ would be topologically isomorphic to $G \times I(X, \mathbb{T})$, which would imply that the group of coboundaries is closed.

If the action is rigid, it is still possible that $\operatorname{Aut}\left(R_{T}, S_{T} \mid C_{T}\right)$ is closed. However, as the following result shows the group $\operatorname{Int}\left(S_{T}\right)$ consisting of inner automorphisms of R_{T} defined by unitaries in S_{T} is not closed in this case, which may indicate that we should consider systems satisfying stronger mixing properties than weak mixing. Note that if an action is mixing then it is not rigid.

Proposition 4.11. The following conditions are equivalent:

(i) the action T is rigid;
(ii) there exist non-trivial central sequences in S_{T};
(iii) the subgroup $\operatorname{Int}\left(S_{T}\right)$ of $\operatorname{Aut}\left(R_{T}\right)$ is not closed.

Proof. The equivalence of (ii) and (iii) is well known [C]. The implication (i) \Rightarrow (ii) is obvious. Suppose that the action is not rigid. Let $\left\{u_{n}\right\}_{n}$ be a central sequence of unitaries in S_{T}. For fixed n apply (4.6) to $w_{n}=u_{n}, w_{m}=$ $1, S_{n}=S_{m}=\mathrm{id}$. Then we conclude that there exist $c_{n} \in \mathbb{T}$ and $g_{n} \in G$ such
that $\left\|u_{n}-c_{n} v_{g_{n}}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. The sequence $\left\{v_{g_{n}}\right\}_{n}$ is central, which is equivalent to the strong convergence $u_{g_{n}} \rightarrow 1$ in $B\left(L^{2}(x)\right)$. Since the action is not rigid, this implies that eventually $g_{n}=0$, so the central sequence $\left\{u_{n}\right\}_{n}$ is trivial. Thus (ii) implies (i).

The following corollary is not surprising in view of Proposition 3.1 but is worth mentioning.

Corollary 4.12. There exist weakly mixing transformations $T^{(1)}$ and $T^{(2)}$ such that the singular masas $S_{T^{(1)}}$ and $S_{T^{(2)}}$ are not conjugate but their Pukanszky invariants coincide.

Proof. The class of weakly mixing measure-preserving transformations with simple spectrum, i.e. of spectral multiplicity one, contains both rigid and non-rigid transformations (e.g. certain Gauss systems are rigid and have simple spectrum [CFS, Chap. 14], while Ornstein's rank-one transformations are mixing [Na, Chap. 16]). Since rigidity is a conjugacy invariant by Proposition 4.11, there exist transformations $T^{(1)}$ and $T^{(2)}$ such that $S_{T^{(1)}}$ and $S_{T^{(2)}}$ are not conjugate, while $P\left(S_{T^{(1)}}\right)=P\left(S_{T^{(2)}}\right)=\{1\}$.

5. ENTROPY

A weak form of our conjecture would be to say that conjugacy of masas S_{T} for actions of an abelian group G implies coincidence of the entropies. In this form, the conjecture may hold without any assumptions on the spectrum, since systems with purely discrete spectrum have zero entropy. The main result of this section is a step towards the solution of this weaker problem. While in the previous section we proved that if the conjecture is false, then the isomorphism $\gamma: R_{T^{(1)}} \rightarrow R_{T^{(2)}}$ for non-isomorphic systems sends $C_{T^{(1)}}$ far from $C_{T^{(2)}}$, in this section we shall prove that if the entropies are distinct, the images $\gamma\left(v_{g}\right)$ of the canonical generators of $S_{T^{(1)}}$ cannot coincide with the generators of $S_{T^{(2)}}$ even on small projections.

We shall consider only the case $G=\mathbb{Z}$, since the theory of noncommutative entropy is not well developed for actions of general abelian (or amenable) groups, though in fact the result is true for arbitrary abelian G.

Theorem 5.1. Let $T^{(i)} \in \operatorname{Aut}\left(X_{i}, \mu_{i}\right)$ be a measure-preserving transformation, $i=1,2$. Denote by v_{i} the canonical generator of $S_{T^{(i)}}$. Suppose there exists an isomorphism $\gamma: R_{T^{(1)}} \rightarrow R_{T^{(2)}}$ such that $\gamma\left(S_{T^{(1)}}\right)=S_{T^{(2)}}$, and the unitary $\gamma\left(v_{1}\right) v_{2}^{*}$ has an eigenvalue. Then $h\left(T^{(1)}\right)=h\left(T^{(2)}\right)$.

The result will follow from

Proposition 5.2. Let $T \in \operatorname{Aut}(X, \mu)$ be a measure-preserving transformation, $v \in S_{T}$ the canonical generator. Then for any non-zero projection $p \in S_{T}$ we have $H\left(\left.\operatorname{Ad} v\right|_{p R_{T} p}\right)=h(T)$, where $H\left(\left.\operatorname{Ad} v\right|_{p R_{T} p}\right)$ is the entropy of Connes and Størmer [CS] of the inner automorphism Ad $\left.v\right|_{p R_{T} p}$ computed with respect to the normalized trace $\tau_{p}=\left.\tau(p)^{-1} \tau\right|_{p R_{T} p}$.

Proof of Theorem 5.1. By assumption, there exists $\theta \in \mathbb{T}$ such that the spectral projection p of the unitary $\gamma\left(v_{1}\right) v_{2}^{*}$ corresponding to the set $\{\theta\}$ is non-zero. Then $\gamma\left(v_{1}\right) p=\theta v_{2} p$. By Proposition 5.2, we get

$$
\begin{aligned}
h\left(T_{1}\right) & =H\left(\left.\operatorname{Ad} v_{1}\right|_{\gamma^{-1}(p) R_{T^{(1)}} \gamma^{-1}(p)}\right)=H\left(\left.\operatorname{Ad} \gamma\left(v_{1}\right)\right|_{p R_{T^{(2)}} p}\right) \\
& =H\left(\left.\operatorname{Ad} v_{2}\right|_{p R_{T^{(2)}} p}\right)=h\left(T_{2}\right)
\end{aligned}
$$

To prove Proposition 5.2 consider the more general situation when we are given a finite injective von Neumann algebra M with a fixed normal faithful trace τ and a τ-preserving automorphism α. For each projection p in the fixed point algebra M^{α} we set

$$
\tau_{\alpha}(p)=\tau(p) H\left(\left.\alpha\right|_{p M p}\right)
$$

Proposition 5.3. The mapping $p \mapsto \tau_{\alpha}(p)$ extends uniquely to a normal (possibly infinite) trace τ_{α} on M^{α}, which is invariant with respect to all τ-preserving automorphisms in $\operatorname{Aut}\left(M, M^{\alpha}\right)$ commuting with α.

Proof. To prove that the mapping extends to a normal trace it is enough to check that the following three properties are satisfied: $\tau_{\alpha}\left(u p u^{*}\right)=\tau_{\alpha}(p)$ for any unitary u in M^{α}, if $p_{n} \nearrow p$ then $\tau_{\alpha}\left(p_{n}\right) \nearrow \tau_{\alpha}(p)$, the mapping $p \mapsto \tau_{\alpha}(p)$ is finitely additive.

The first property is a particular case of the last statement of the proposition. If $\beta \in \operatorname{Aut}\left(M, M^{\alpha}\right)$ commutes with α and preserves the trace τ, then it defines an isomorphism of the systems $\left(p M p, \tau_{p}, \alpha\right)$ and $(\beta(p) M \beta(p)$, $\left.\tau_{\beta(p)}, \alpha\right)$, so their entropies coincide.

The second property follows from the well-known continuity properties of entropy:

$$
\tau_{\alpha}\left(p_{n}\right)=\tau\left(p_{n}\right) H\left(\left.\alpha\right|_{p_{n} M p_{n}}\right)=\tau(p) H\left(\left.\alpha\right|_{p_{n} M p_{n}+\mathbb{C}\left(p-p_{n}\right)}\right) \nearrow \tau(p) H\left(\left.\alpha\right|_{p M p}\right)=\tau_{\alpha}(p) .
$$

To prove the third one consider a finite family $\left\{p_{i}\right\}_{i=1}^{n}$ of mutually orthogonal projections in M^{α} and set $p=\sum_{i} p_{i}$. Let

$$
B=p_{1} M p_{1}+\cdots+p_{n} M p_{n}
$$

By affinity of entropy,

$$
H\left(\left.\alpha\right|_{B}\right)=\sum_{i} \frac{\tau\left(p_{i}\right)}{\tau(p)} H\left(\left.\alpha\right|_{p_{i} M p_{i}}\right)=\tau(p)^{-1} \sum_{i} \tau_{\alpha}\left(p_{i}\right) .
$$

So in order to prove finite additivity it is enough to prove that $H\left(\left.\alpha\right|_{p M p}\right)=$ $H\left(\left.\alpha\right|_{B}\right)$. The trace-preserving conditional expectation $E: p M p \rightarrow B$ has the form

$$
E(x)=p_{1} x p_{1}+\cdots+p_{n} x p_{n}
$$

It commutes with α and is of finite index, $E(x) \geqslant \frac{1}{n} x$ for $x \in p M p, x \geqslant 0$. Indeed, if we consider $p M p$ acting on some Hilbert space, then for a vector ξ we set $\xi_{i}=p_{i} \xi$ and get

$$
\begin{aligned}
(x \xi, \xi) & =\sum_{i, j}\left(x^{1 / 2} \xi_{i}, x^{1 / 2} \xi_{j}\right) \leqslant \sum_{i, j}\left\|x^{1 / 2} \xi_{i}\right\| \cdot\left\|x^{1 / 2} \xi_{j}\right\|=\left(\sum_{i}\left\|x^{1 / 2} \xi_{i}\right\|\right)^{2} \\
& \leqslant n \sum_{i}\left\|x^{1 / 2} \xi_{i}\right\|^{2}=n \sum_{i}\left(x p_{i} \xi, p_{i} \xi\right)=n(E(x) \xi, \xi)
\end{aligned}
$$

By [NS, Corollary 2], we conclude that $H\left(\left.\alpha\right|_{p M p}\right)=H\left(\left.\alpha\right|_{B}\right)$.
Proof of Proposition 5.2. Consider the weight $\tau_{\mathrm{Ad} v}$ on S_{T} corresponding to the automorphism Ad v of R_{T}. Then we have to prove that $\tau_{\mathrm{Ad} v}=$ $\left.h(T) \tau\right|_{S_{T}}$. By Proposition 5.3, the weight $\tau_{\mathrm{Ad} v}$ is invariant under the dual action. Since this action is ergodic on $S_{T}, \tau_{\mathrm{Ad} v}$ is a scalar multiple of $\left.\tau\right|_{S_{T}}$, $\tau_{\mathrm{Ad} v}=\left.c \cdot \tau\right|_{S_{T}}$ for some $c \in[0,+\infty]$. By definition of $T_{\mathrm{Ad} v}$ we have $c=$ $H(\mathrm{Ad} v)$. But by [GN, Vo3], $H(\operatorname{Ad} v)=h(T)$, and the proof is complete.

The definition of the weight above leads to the following interesting problem in entropy theory. Let A be an abelian subalgebra of a finite algebra M. For each unitary $u \in A$ consider the weight τ_{u} on A, which is the restriction of the weight $\tau_{\mathrm{Ad} u}$ to A.

Problem. Find the connection between τ_{u} and $\tau_{\phi(u)}$, where ϕ is a Borel mapping from \mathbb{T} onto itself.

Voiculescu's approach to entropy using norm of commutators [Vo1, Vo2] suggests that such a connection exists at least when ϕ is smooth. More interesting is the case when u is a Haar unitary and ϕ is an invertible transformation preserving Lebesgue measure, so that $\phi(u)$ is again Haar and generates the same algebra. Note also some resemblance of this problem to the computation of entropy of Bogoliubov automorphisms [SV, N].

However, the correspondence $u \mapsto \tau_{u}$ does not have nice continuity properties which makes the problem more difficult.

Finally, note that the problems studied in the paper can also be considered for topological dynamical systems and C^{*}-crossed products. In this setting, isomorphism of crossed products already implies that the systems have a non-trivial relationship. For example, for minimal homeomorphisms of Cantor sets the crossed products are isomorphic if and only if the systems are strongly orbit equivalent [GPS]. Since rotations are the only measure- and orientation-preserving homeomorphisms of the circle, if γ is an isomorphism of $C\left(X_{1}\right)>\triangleleft \mathbb{Z}$ onto $C\left(X_{2}\right) \rtimes \mathbb{Z}$ which maps $C^{*}\left(v_{1}\right)$ onto $C^{*}\left(v_{2}\right)$ then $\gamma\left(v_{1}\right)=\theta v_{2}^{ \pm 1}$, so the homeomorphisms have the same topological entropy.

ACKNOWLEDGMENTS

The authors are indebted to J. Packer, S. Popa and A. Vershik for helpful discussions.

REFERENCES

[C] A. Connes, Almost periodic states and factors of type III_{1}, J. Funct. Anal. 16 (1974), 415-445.
[CFW] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431-450.
[CS] A. Connes and E. Størmer, Entropy of automorphisms in II_{1} von Neumann algebras, Acta Math. 134 (1975), 289-306.
[CFS] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, "Ergodic Theory," Springer, New York, 1982.
[D] J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. 59 (1954), 279-286.
[Dy] H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551-576.
[FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325-359.
[GPS] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C^{*} crossed products, J. Reine Angew. Math. 469 (1995), 51-111.
[GN] V. Ya. Golodets and S. V. Neshveyev, Entropy of automorphisms of II_{1}-factors arising from the dynamical systems theory, J. Funct. Anal. 181 (2001), 14-28.
[H] P. Hahn, Reconstruction of a factor from measures on Takesaki's unitary equivalence relation, J. Funct. Anal. 31 (1979), 263-271.
[KL] J. Kwiatkowski and M. Lemanczyk, On the multiplicity function of ergodic group extensions. II, Studia Math. 116 (1995), 207-215.
[M] C. C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), 35-58.
[Na] M. G. Nadkarni, "Spectral Theory of Dynamical Systems," Birkhäuser, Basel, 1998.
[N] S. V. Neshveyev, Entropy of Bogoliubov automorphisms of CAR and CCR algebras with respect to quasi-free states, Rev. Math. Phys. 13 (2001), 29-50.
[NS] S. Neshveyev and E. Størmer, Entropy in type I algebras, Pacific J. Math. 201 (2001), 421-428.
[Ni] O. A. Nielsen, Maximal abelian subalgebras of hyperfinite factors. II, J. Funct. Anal. 6 (1970), 192-202.
[P1] J. A. Packer, Point spectrum of ergodic abelian group actions and the corresponding group-measure factors, Pacific J. Math. 119 (1985), 381-405.
[P2] J. A. Packer, On the embedding of subalgebras corresponding to quotient actions in group-measure factors, Pacific J. Math. 119 (1985), 407-443.
[Pol] S. Popa, Notes on Cartan subalgebras in type II_{1} factors, Math. Scand. 57 (1985), 171-188.
[Po2] S. Popa, An example of a property Γ factor with countable fundamental group, preprint, 2001.
[Po3] S. Popa, On a class of type II_{1} factors with Betti numbers invariants, preprint, 2001.
[P] L. Pukanszky, On maximal abelian subrings of factors of type II_{1}, Canad. J. Math. 12 (1960), 289-296.
[SS] A. Sinclair and R. Smith, Strongly singular masas in type II_{1} factors, preprint, 2001.
[S] S. Ştrǎtilǎ, "Modular Theory in Operator Algebras," Abacus Press, Tunbridge Wells, 1981.
[SV] E. Størmer and D. Voiculescu, Entropy of Bogoliubov automorphisms of the canonical anti-commutation relations, Comm. Math. Phys. 133 (1990), 521-542.
[Vol] D. Voiculescu, Entropy of dynamical systems and perturbations of operators, Ergodic Theory Dynam. Systems 11 (1991), 779-786.
[Vo2] D. Voiculescu, Entropy of dynamical systems and perturbations of operators. II, Houston J. Math. 17 (1991), 651-661.
[Vo3] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170 (1995), 249-281.

[^0]: ${ }^{1}$ Partially supported by the Royal Society/NATO postdoctoral fellowship, the Centre for Advanced Study in Oslo and Award No. UM1-2092 of the Civilian Research \& Development Foundation.
 ${ }^{2}$ Partially supported by the Norwegian Research Council.
 ${ }^{3}$ To whom Correspondence should be addressed.

