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Using the null-geodesic tunneling method of Parikh and Wilczek, we derive the Hawking temperature of
a general four-dimensional rotating black hole. In order to eliminate the motion of φ degree of freedom
of a tunneling particle, we have chosen a reference system that is co-rotating with the black hole horizon.
Then we give the explicit result for the Hawking temperature of the Kerr–Newman–AdS black hole from
the tunneling approach.
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1. Introduction

Since the original discovery of black hole radiation by Hawking
[1], the studies on this topic have not terminated. There are many
different methods for the derivation of Hawking radiation [2–9]. In
[10,11], a semiclassical method for the derivation of Hawking radia-
tion was formulated by Parikh and Wilczek based on the quantum
tunneling picture. In such a method, the radiated particles of a
black hole are treated as s-waves.1 When a particle is radiated
from the black hole horizon, it tunnels through a barrier that is
made by the tunneling particle itself due to the horizon’s contrac-
tion [10,11]. To use the WKB approximation, the tunneling rate of
an s-wave from inside to outside the black hole horizon is given
by

Γ = Γ0 exp(−2 ImI). (1)

Here, I is the action of the tunneling particle, Γ0 is a normaliza-
tion factor. On the other hand, a black hole’s radiation satisfies the
law of Boltzmann distribution classically, thus the emission rate of
a particle of energy E from a black hole horizon can be expressed
by

Γ = Γ0 exp(−βE), (2)

E-mail address: z.z.ma@seu.edu.cn.
1 This is reasonable because for an observer at infinity, the radiation of a black

hole is spherically symmetric, no matter whether the black hole is rotating or not.
0370-2693/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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where β = 2π/κ , κ is the surface gravity of the horizon. To com-
pare (2) with (1), the Hawking temperature of a black hole can be
derived.

After the original work of Parikh and Wilczek, many develop-
ments on this topic have been carried out [12–15], and many ap-
plications of this method for the derivation of Hawking radiation of
different types of black holes have been done [16–27]. In this Let-
ter, we study the Hawking radiation of general four-dimensional
rotating black holes from the tunneling approach. We use the null-
geodesic method of Parikh and Wilczek [10,11] to calculate the
action of a tunneling particle. In [21], Hawking temperature of
Kerr and Kerr–Newman black holes have been derived from tun-
neling approach using dragging coordinate systems. In such a kind
of coordinate system, the spacetime of a four-dimensional rotating
black hole has been contracted to a three-dimensional slice. Thus
the topology of the spacetime of a rotating black hole has been
changed to use the method of [21]. In order to keep the spacetime
topology of a rotating black hole, we choose a reference system
that is co-rotating with the event horizon to eliminate the mo-
tion of φ degree of freedom of a tunneling particle. We obtain
that for a general four-dimensional rotating black hole, its ther-
mal radiation temperature derived from the tunneling approach is
in accordance with its Hawking temperature derived from black
hole thermodynamics. These contents are given in Section 2. In
Section 3, we give the explicit result of the Hawking temperature
of the Kerr–Newman–AdS black hole from the tunneling approach.
In Section 4, we discuss some of the problems.
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2. Hawking temperature of four-dimensional rotating black
holes from tunneling

The metric of a four-dimensional spherically symmetric black
hole can be expressed as

ds2 = −A(r)dt2 + B(r)dr2 + r2 dΩ2 (3)

generally. Following [10,11], the imaginary part of the action of a
tunneling particle in terms of an s-wave can be calculated from

ImI = Im

rh(M−E)∫
rh(M)

pr dr = Im

rh(M−E)∫
rh(M)

pr∫
0

dp′
r dr, (4)

where rh is the radius of the outer horizon, M is the total mass
of the black hole, M − E is the total mass of the black hole after
the particle is emitted, E is the energy of the tunneling particle. To
make use of the Hamilton’s equation

ṙ = dH

dpr
= d(M − ω)

dpr
, (5)

we can write

dpr = d(M − ω)

ṙ
. (6)

To substitute (6) into (4), we have

ImI = Im

rh(M−E)∫
rh(M)

E∫
0

d(M − ω)

ṙ
dr = Im

E∫
0

rh(M)∫
rh(M−E)

dr

ṙ
dω. (7)

Usually, the Hawking temperature of a black hole is very small,
zero-mass particles will possess the main part of the whole radia-
tion spectrum. For a tunneling particle of zero-mass in terms of an
s-wave, it moves in a radial null geodesic. To transform the metric
(3) to the Painlevé form, ṙ can be obtained from ds2 = 0 [10,11].

The metric of a four-dimensional rotating black hole can be cast
in the form

ds2 = −gtt(r, θ)dt2 + grr(r, θ)dr2 + gθθ (r, θ)dθ2

+ gφφ(r, θ)dφ2 − 2gtφ(r, θ)dt dφ (8)

generally. For the tunneling of a rotating black hole, we can still
use the s-wave approximation, this is because for an observer
at infinity, the radiation of a rotating black hole is still spheri-
cally symmetric. However, when a particle is tunneling through
the horizon of a rotating black hole, it will be dragged by the rota-
tion of the black hole. Thus, a tunneling particle will have motion
in the φ degree of freedom, i.e. dφ �= 0, which means that in the
calculation of the action of a tunneling particle in formula (4), we
need also to consider the contribution to the action that comes
from the motion on the φ degree of freedom, as we can see in
[21]. Meanwhile, in the equation of the null geodesic, we cannot
set dφ = 0, thus, ṙ cannot be obtained from ds2 = 0 conveniently.

In order to eliminate the motion of φ degree of freedom of a
tunneling particle, we can choose a reference system that is co-
rotating with the black hole horizon. This can be realized through
the rotating coordinate transformation

φ′ = φ − Ωht or φ = φ′ + Ωht, (9)

where Ωh is the angular velocity of the event horizon of a rotating
black hole, which is a constant and is defined by

Ωh = gtφ

gφφ

∣∣∣∣
r=rh

. (10)

In (10) and in the following, we use rh to represent the radius of
the event horizon of a rotating black hole. In such a co-rotating
reference system, the observers located at the horizon cannot ob-
serve the rotation of the black hole, they will find that the angular
velocity Ω ′

h of the black hole is zero. Because the tunneling of a
particle takes place at the horizon, it will not be dragged by the
rotation of the black hole to observe from such a co-rotating ref-
erence system. Therefore we have dφ′ = 0 for a tunneling particle,
i.e., a tunneling particle has no motion in the φ′ degree of free-
dom. This makes us be able to use Eq. (4) to calculate the action.
Meanwhile, in obtaining the expression of ṙ from the null-geodesic
method, we can set dφ′ = 0.

Under the coordinate transformation (9), the metric (8) turns to
the form

ds2 = −Gtt(r, θ)dt2 + grr(r, θ)dr2 + gθθ (r, θ)dθ2

+ gφφ(r, θ)dφ′ 2 − 2g′
tφ(r, θ)dt dφ′, (11)

where

Gtt = gtt + 2gtφΩh − gφφΩ2
h , (12)

g′
tφ = gtφ − Ωh gφφ. (13)

Because of (10), we have

g′
tφ

∣∣
r=rh

= 0. (14)

This also indicates Ω ′
h = g′

tφ/gφφ |r=rh = 0. On the other hand, ac-
cording to (A.5), we have

Gtt
∣∣
r=rh

= 0. (15)

The horizon’s radius of the metric (11) is determined by grr |r=rh =
g−1

rr |r=rh = 0, which is the same equation of the horizon’s radius of
the metric (8), thus, the horizon’s radius of a rotating black hole
will not be changed under the coordinate transformation (9). On
the other hand, because of (15), the horizon’s radius for the metric
(11) is also determined by (15).

Because in metric (11), grr is singular on the horizon, in order
to calculate the action of a tunneling particle, we need to eliminate
such a coordinate singularity first. This can be realized through the
Painlevé coordinate transformation [10,11]. We use T to represent
the Painlevé time coordinate and make a coordinate transforma-
tion

dt = dT −
√

grr(r, θ0) − 1

Gtt(r, θ0)
dr (16)

to the metric (11). In (16), like that in [15] in studying the tunnel-
ing from Kerr–Newman black hole, we have set θ to be a constant
in order to make the coordinate transformation integrable. Such
a manipulation is reasonable because for a tunneling particle in
terms of an s-wave, it satisfies dθ = 0, therefore we can consider
the tunneling of a particle at a constant angle θ0. At last we can
obtain that the physical result does not depend on the angle θ0.
However, the explicit integral of (16) is not needed to be given
here. Under the above coordinate transformation, for the metric
(11), we have

ds2 = −Gtt(r, θ0)dT 2 + 2
√

Gtt(r, θ0)
√

grr(r, θ0) − 1 dr dT

+ dr2 + gφφ(r, θ0)dφ′ 2

− 2g′
tφ(r, θ0)dφ′

(
dT −

√
grr(r, θ0) − 1

Gtt(r, θ0)
dr

)
. (17)

The horizon’s radius for the metric (17) is determined by Gtt |r=rh =
0, thus, the horizon’s radius for the metric (11) is not changed af-
ter the coordinate transformation (16). As mentioned above, for a
tunneling particle in the co-rotating reference system, it satisfies
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dφ′ = 0. Thus we have

ds2 = −Gtt(r, θ0)dT 2 + 2
√

Gtt(r, θ0)
√

grr(r, θ0) − 1 dr dT

+ dr2. (18)

To suppose that the mass of the tunneling particle is zero, then
its motion is determined by the null-geodesic equation ds2 = 0. To
solve this equation, we obtain

ṙ = √
Gtt(r, θ0) · grr(r, θ0)

(
±1 −

√
1 − 1

grr(r, θ0)

)
. (19)

Because Gtt |r=rh = 0, g−1
rr |r=rh = 0, rh is a simple zero point of Gtt

and g−1
rr , Gtt · grr should be regular at the horizon. The plus and

minus signs in (19) correspond to outgoing and ingoing radial null
geodesics respectively. For an outgoing tunneling particle, ṙ is pos-
itive, we have

ṙ = √
Gtt(r, θ0) · grr(r, θ0)

(
1 −

√
1 − 1

grr(r, θ0)

)
. (20)

To substitute (20) into (7), we obtain

ImI = Im

E∫
0

rh(M)∫
rh(M−E)

dr
√

Gtt(r, θ0) · grr(r, θ0)
(
1 −

√
1 − 1

grr (r,θ0)

) dω.

(21)

To multiply 1 +
√

1 − 1
grr (r,θ0)

in the numerator and denominator

of the integrand at the same time, we obtain

ImI = Im

E∫
0

rh(M)∫
rh(M−E)

1 +
√

1 − 1
grr (r,θ0)√

Gtt(r, θ0) · grr(r, θ0)
1

grr (r,θ0)

dr dω. (22)

For the metric of a four-dimensional rotating black hole, because
grr is singular on the horizon, generally, we can write grr in the
form

grr(r, θ) = C(r, θ)

r − rh
, (23)

where C(r, θ) is a function regular on the horizon. To substitute
(23) into (22), we have

ImI = Im

E∫
0

rh(M)∫
rh(M−E)

1 +
√

1 − r−rh
C(r,θ0)√

Gtt(r, θ0) · grr(r, θ0)
r−rh

C(r,θ0)

dr dω. (24)

In (24), rh is a simple pole of the integrand. To add a small imag-
inary part to the variable r, and to let the integral path round the
pole in a semicircle, the integral of dr can be evaluated which re-
sults

ImI = 2π

E∫
0

C(rh, θ0)√
Gtt(rh, θ0) · grr(rh, θ0)

dω. (25)

It is reasonable to suppose that the energy E of the tunneling par-
ticle is far less than the total mass M of the black hole, i.e. E � M ,
thus, in (25), the integrand can be treated as a constant. Therefore
we obtain

ImI = 2π E
C(rh, θ0)

√
grr(rh, θ0)√

Gtt(rh, θ0)
. (26)

Because Gtt(rh, θ) = 0, grr(rh, θ) = 0, near the horizon, we can
expand Gtt(r, θ0) and grr(r, θ0) in the form

Gtt(r, θ0) = G ′
tt(rh, θ0)(r − rh) + · · · , (27)

grr(r, θ0) = grr′(rh, θ0)(r − rh) + · · · , (28)
where in (27) and (28), “· · ·” represents higher-order terms of
(r − rh). From (23), we have

grr′(rh, θ0) = 1

C(rh, θ0)
. (29)

To substitute (27)–(29) into (26), we obtain

ImI = 2π E√
G ′

tt(rh, θ0)grr′(rh, θ0)
. (30)

To substitute (30) into (1), we can see that the tunneling rate can
be cast in the form of (2), which is the Boltzmann distribution, and
we obtain

ImI = π E

κ(rh)
. (31)

To compare (31) with (30), we obtain

κ(rh) =
√

G ′
tt(rh, θ0)grr′(rh, θ0)

2
. (32)

Thus, we obtain the thermal temperature of a four-dimensional ro-
tating black hole

T H =
√

G ′
tt(rh, θ0)grr′(rh, θ0)

4π
. (33)

Eq. (33) is derived from the tunneling approach. On the other hand,
in Appendix A, we have derived a formula (A.12) for the surface
gravity of a four-dimensional rotating black hole from black hole
thermodynamics which is given by

κ(rh) = lim
r→rh

∂r
√

Gtt√
grr

= lim
r→rh

∂r Gtt

2
√

Gtt · grr
. (34)

From black hole thermodynamics [28,29], we know that on the
horizon, κ(rh) is a constant, therefore we can evaluate it at an
arbitrary angle θ0. To substitute (27) and (28) into (34), we obtain

κ(rh) =
√

G ′
tt(rh, θ0)grr′(rh, θ0)

2
. (35)

To compare (32) with (35), we can see that they are equivalent.
Because κ(rh) is a constant on the horizon, the explicit result for
the surface gravity of a rotating black hole obtained from (35) will
not depend on the parameter θ0. This means that in (32) and (33),
the explicit results for the surface gravity and Hawking tempera-
ture of a rotating black hole will not depend on the parameter θ0
either.

3. Hawking temperature of Kerr–Newman–AdS black hole

In this section, we derive the Hawking temperature of the
Kerr–Newman–AdS black hole using (33) of Section 2. In the
Boyer–Lindquist coordinates, the metric of the Kerr–Newman–AdS
is given by [30]

ds2 = − 1

Σ

[
Δr − Δθa2 sin2 θ

]
dt2 + Σ

Δr
dr2 + Σ

Δθ

dθ2

+ 1

ΣΞ2

[
Δθ

(
r2 + a2)2 − Δra2 sin2 θ

]
sin2 θ dφ2

− 2a

ΣΞ

[
Δθ

(
r2 + a2) − Δr

]
sin2 θ dt dφ, (36)

where

Σ = r2 + a2 cos2 θ, Ξ = 1 + 1

3
Λa2, (37)

Δθ = 1 + 1

3
Λa2 cos2 θ,

Δr = (
r2 + a2)(1 − 1

3
Λr2

)
− 2Mr + Q 2, (38)
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Λ is the cosmological constant, Λ < 0. The horizons of the metric
(36) are determined by

Δr = (
r2 + a2)(1 − 1

3
Λr2

)
− 2Mr + Q 2

= −1

3
Λ

[
r4 −

(
3

Λ
− a2

)
r2 + 6M

Λ
r − 3

Λ

(
a2 + Q 2)]

= −1

3
Λ(r − r++)(r − r−−)(r − r+)(r − r−) = 0. (39)

The equation Δr = 0 has four roots [31], where r++ and r−− are
a pair of complex conjugate roots, r+ and r− are two real positive
roots, and we suppose r+ > r− . Thus, r = r+ is the event horizon.
We first calculate the Hawking temperature at a special value of
θ0 and we choose θ0 = 0. To expand grr(r, θ0 = 0) near the event
horizon rh = r+ , we obtain

grr(r, θ0 = 0) = − 1
3 Λ(r+ − r++)(r+ − r−−)(r+ − r−)

r2+ + a2
(r − r+) + · · · ,

(40)

where “· · ·” are higher-order terms of (r − r+). Gtt is defined by
(12). We can rewrite it in the form

Gtt = gtt + gtφΩh + (gtφ − Ωh gφφ)Ωh

= gtt + gtφΩh + g′
tφΩh (41)

generally. According to (14), g′
tφ is zero on the horizon, thus the

last term of (41) does not need to be considered when we ex-
pand Gtt(r, θ0) near the horizon. The angular velocity of the Kerr–
Newman–AdS black hole defined by (10) is Ωh = aΞ

r2++a2 . At θ0 = 0,

Gtt(r, θ0 = 0) can be expanded as

Gtt(r, θ0 = 0) = − 1
3 Λ(r+ − r++)(r+ − r−−)(r+ − r−)

r2+ + a2
(r − r+) + · · · ,

(42)

where “· · ·” are higher-order terms of (r − r+). To compare (42)
and (40) with (27) and (28), we can obtain G ′

tt(r+, θ0 = 0) and
grr′(r+, θ0 = 0). To substitute G ′

tt(r+, θ0 = 0) and grr′(r+, θ0 = 0)

into (33), we obtain, for the Kerr–Newman–AdS black hole,

T H = − Λ

12π(r2+ + a2)
(r+ − r++)(r+ − r−−)(r+ − r−). (43)

Because Λ < 0, r+ and r− are positive, r+ > r− , r++ and r−−
are complex conjugate, these make sure that T H is positive. At
an arbitrary value of θ0, through explicit calculation, grr(r, θ0) and
Gtt(r, θ0) can be expanded as

grr(r, θ0) = − 1
3 Λ(r+ − r++)(r+ − r−−)(r+ − r−)

r2+ + a2 cos2 θ0

× (r − r+) + · · · , (44)

Gtt(r, θ0) = − 1
3 Λ(r+ − r++)(r+ − r−−)(r+ − r−)(r2+ + a2 cos2 θ0)

(r2+ + a2)2

× (r − r+) + · · · . (45)

To compare (45) and (44) with (27) and (28), we can ob-
tain G ′

tt(r+, θ0) and grr′(r+, θ0). To substitute G ′
tt(r+, θ0) and

grr′(r+, θ0) into (33), we obtain again

T H = − Λ

12π(r2+ + a2)
(r+ − r++)(r+ − r−−)(r+ − r−). (46)

In [32], another expression for the Hawking temperature of the
Kerr–Newman–AdS black hole has been obtained which is given
by

T H = 3r4+ + (a2 + l2)r2+ − l2(a2 + Q 2)

4π l2r (r2 + a2)
, (47)
+ +
where Λ = −3/l2. It is not difficult to verify that these two expres-
sions of T H for the Kerr–Newman–AdS black hole are equivalent.
The result of (46) is also equal to that obtained from (A.13) and
(A.14). From this example, we can also see that the explicit result
of the Hawking temperature given by (33) does not depend on the
parameter θ0.

In the case Λ = 0, the metric (36) degenerates to the metric
of four-dimensional Kerr–Newman black hole. If the charge is zero,
the metric will be the Kerr black hole. Following the same ap-
proach as above, we can also obtain their Hawking temperature
from tunneling.

4. Discussion

In this paper, we have studied the Hawking radiation of general
four-dimensional rotating black holes using the tunneling method
of Parikh and Wilczek [10,11]. We obtain that the tunneling rate of
a zero-mass particle is given by

Γ = Γ0 exp(−βE) = Γ0 exp(−E/T H ), (48)

which is just the Boltzmann distribution. The thermal temper-
ature T H of a four-dimensional rotating black hole is given by
(33), which is in accordance with the Hawking temperature de-
rived from black hole thermodynamics. And we have given the
explicit result for the Hawking temperature of the Kerr–Newman–
AdS black hole from the tunneling approach. In order to elimi-
nate the motion of φ degree of freedom of a tunneling particle
from a rotating black hole, we choose a reference system that
is co-rotating with the black hole horizon. In such a co-rotating
reference system, we avoided the dimension degeneration in the
method of dragging coordinate system adopted in [21] for the tun-
neling of a rotating black hole.

It is necessary to point out that if we use the method of [21]
to calculate the action of a tunneling particle directly for the Kerr–
Newman–AdS black hole, then we need to consider the action that
comes from the motion on the φ degree of freedom, the calcu-
lation will be rather complicated in this case. In order to simplify
the calculation, we have made a rotating coordinate transformation
first. At the same time, the method provided in this paper is gen-
eral for a general four-dimensional rotating black hole. And then
we applied our result to the special case of the Kerr–Newman–
AdS black hole. Another point needed to point out here is that
there are some overlaps between the approach of this paper and
the manipulation of the tunneling from the Kerr–Newman black
hole in [15] using the null-geodesic method. The difference lies in
that in [15] the rotating coordinate transformation for the tunnel-
ing of a rotating black hole was not proposed clearly, and it has
not been used to a general four-dimensional rotating black hole.
While in this Letter, we have studied the Hawking temperature
of a general four-dimensional rotating black hole from tunneling
using the rotating coordinate transformation clearly, and then we
applied our result to the special case of the Kerr–Newman–AdS
black hole. An alternative method for the calculation of the action
of a tunneling particle was proposed in [14] from the Hamilton–
Jacobi equation approach. Such a method was applied to the tun-
neling of some rotating black holes in [14,15]. For the tunneling
of the Kerr–Newman–AdS black hole, to use the Hamilton–Jacobi
equation method of [14], we can also make a rotating coordinate
transformation first to simplify the calculation. The same results
of (33) and (46) will be obtained at last. However, limited by the
length of this Letter, we will not give such a derivation further in
this Letter.

The tunneling rate (48) and Hawking temperature (33) for a ro-
tating black hole are obtained in the reference system co-rotating
with the black hole horizon. However, because the obtained tun-
neling rate and Hawking temperature of a black hole are scalars,
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they will not change for an observer static relatively to infin-
ity. Thus, we can deduce that for an observer static relatively to
infinity, the tunneling rate and Hawking temperature of a four-
dimensional rotating black hole are still given by (48) and (33). The
difference lies in that, for a tunneling particle, or an observer, the
angular velocity of a rotating black hole is zero in the co-rotating
reference system, while it is Ωh in the static reference system. To
combine the first law of black hole thermodynamics, we can gen-
eralize the tunneling rate (48) to a particle with non-zero angular
momentum and non-zero charge.
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Appendix A. Hawking temperature of four-dimensional rotating
black holes from black hole thermodynamics

In this appendix, we give an expression for the Hawking tem-
perature of a four-dimensional rotating black hole from black hole
thermodynamics. The metric of a four-dimensional rotating black
hole is given by (8) generally. For the metric (8), there exists the
Killing field

ξμ = ∂

∂t
+ Ωh

∂

∂φ
, (A.1)

where Ωh is the angular velocity of the horizon which is a con-
stant. Here, we mean that the horizon is the outer horizon for a
rotating black hole. Because the horizon is a null surface and ξμ is
normal to the horizon, we have on the horizon [28]

ξμξμ
∣∣
r=rh

= 0. (A.2)

For the metric (8), we have

ξμξμ = gtt + 2gtφΩh − gφφΩ2
h . (A.3)

Here, we have defined that the square of the norm of the Killing
field is positive outside the horizon, at least for the case Ωh = 0.
As in (12), we define

Gtt = gtt + 2gtφΩh − gφφΩ2
h . (A.4)

Thus we have

Gtt
∣∣
r=rh

= 0. (A.5)

Following [28] we write

ξμξμ = −λ2, (A.6)

where λ is a scalar function, and it is a constant on the horizon.
According to (A.3), we have λ2 = −Gtt for the metric (8) of a four-
dimensional rotating black hole. Let ∇μ represent the covariant
derivative operator, thus ∇μ(ξνξν) is also normal to the horizon.
Then, according to [28,29], there exists a function κ satisfying the
equation

∇μ
(−λ2) = −2κξμ, (A.7)

where on the horizon κ(rh) is a constant and is just the horizon’s
surface gravity.

Similarly, we have the lower index equation

∇μ

(−λ2) = −2κξμ. (A.8)

Thus, from (A.7) and (A.8) we have

∇μ
(−λ2)∇μ

(−λ2) = −4κ2λ2. (A.9)
Because λ2 is a scalar function, κ2 is also a scalar function. There-
fore the surface gravity of a black hole horizon is invariant under
general coordinate transformations, including the rotation of (9).
From (A.3), (A.4), (A.6), (A.9), and the axial symmetry of the met-
ric, we obtain

4κ2Gtt = grr(∂r Gtt)
2 + gθθ (∂θ Gtt)

2. (A.10)

Because of (A.5), we have

lim
r→rh

∂θ Gtt = 0. (A.11)

Therefore, to take the limit r → rh in both sides of (A.10) yields

κ(rh) = lim
r→rh

∂r
√

Gtt√
grr

. (A.12)

In (A.12), because Gtt is zero on the horizon, the partial derivative
is taken before the limit. Thus, the Hawking temperature of the
metric (8) is given by

T H = κ(rh)

2π
= lim

r→rh

∂r
√

Gtt

2π
√

grr
. (A.13)

Because κ(rh) is a constant on the horizon [28,29], it can be eval-
uated at an arbitrary θ . For convenience, it can be evaluated at
θ = 0 usually. For the metrics of many four-dimensional rotating
black holes, we can see that usually they satisfy Gtt |θ=0 = gtt |θ=0.
Thus we can write

T H = κ(rh)

2π
= lim

θ=0,r→rh

∂r
√

gtt

2π
√

grr
. (A.14)

On the other hand, because κ(rh) is a constant on the horizon,
this means that, in formula (A.13), the dependence of T H on the
variable θ is only apparent.
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