Journal of Mathematical Analysis and Applications 238, 451-467 (1999)
Article 1D jmaa.1999.6524, available online at http: //www.idealibrary.com on 1DE §l®

Bilinear Optimal Control of the Velocity Term
in a Kirchhoff Plate Equation

Mary Elizabeth Bradley

Department of Mathematics, University of Louisuville, Louisville, Kentucky

Suzanne Lenhart

Department of Mathematics, University of Tennessee, Knoxville, Tennessee
and

Jiongmin Yong

Department of Mathematics, Fudan University, Shanghai 200433, China
Submitted by Irena Lasiecka

Received May 26, 1998

We consider a bilinear optimal control problem where the state equation is a
Kirchhoff plate equation. The control acts as a multiplier of the velocity term.
We prove the existence of an optimal control in a class 4 € Uy, = {h € L*(0, T);

—M < h(t) < M} and uniqueness of this optimal control for T sufficiently small.
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1. INTRODUCTION

We consider the problem of controlling the solution of a Kirchhoff plate
equation. The motion with appropriate boundary conditions describes the
motion of a thin plate which is clamped along one portion of its boundary
and has free vibrations on the other portion of the boundary. We consider
bilinear optimal control in which the control acts as a multiplier of a
velocity term.
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Given control
heU,={heL(0,T); —M < h(t) <M},
the “displacement” solution w = w(h) of our state equation satisfies

w, + Nw =h(t)w, onQ=QXx(0,T)

w(x,y,0) =wo(x,y), w(x,y,0) =wi(x,y) onQ
ow
w=;=0 on3, =T, x(0,7), (1.1)
Aw + (1 - p)Bw =0
dAw onx, =TI, x(0,T),
W_F(l_/‘L)BZW:O

where Q c R? with C? boundary, 9Q =T, U T, I, NI, =&, T, # I,
v = {ny, n,, is the outward unit normal vector on 9, and
nsw

xXx?

- 2y,
Bw = 2nn,w,, — niw,,

J
BzW = E[(ni - ng)wxy + nl”Z(w}’y a w”)]'

The direction 7 in B,w is the tangential direction along I';. The plate is
clamped along I'; and has free vibrations along I',. The constant u,
0 < u < 3, represents Poisson’s ratio.

We take as our objective functional

J(h) = %(]Q(w —2)2dQ + B/OThz(t) dt),

where z in L*(Q) is the desired evolution for the plate and the quadratic
term in & represents the cost of implementing the control. We seek to
minimize the objective functional, i.e., characterize an optimal control
h* € U, such that

J(h*) = hmilr) J(h).

For background on plate models and control, see the books by Lagnese
and Lions [16], Lagnese [14], Lagnese et al. [15], Kormornik [12], Li and
Yong [20], and Lions [22]. The bilinear control case treated here does not
fit into the Riccati framework [18]; even though the objective functional is
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quadratic, the state equation has a bilinear term, aw,. See [4, 6, 9-11, 13,
17] for control papers involving Kirchhoff plates. Bilinear control problems
similar to the problem here were introduced in three papers by Ball,
Marsden, and Slemrod [1-3], and in Bradley and Lenhart [5] (with control
on a coefficient of a zero-order term, hw).

In Section 2, we show well-posedness of our state problem. In Section 3,
we show the existence of an optimal control by a minimizing sequence
argument. In Section 4, we derive a characterization for optimal controls,
in terms of the solutions of an optimality system. The optimality system
consists of the state equation coupled with an adjoint equation, and it is
derived by differentiating the objective functional and the map & — w(h)
with respect to the control. The existence of the solution of the adjoint
problem had to be handled in an unusual way due to the —(#4p), term. For
T sufficiently small, the uniqueness of the optimal control is shown by the
strict convexity of the functional J(h) with respect to 4.

2. WELL-POSEDNESS OF THE STATE EQUATION

We will begin by proving existence, uniqueness, and regularity results for
the state equation. We first define our solution spaces,

aw
HE(Q) = {w EH?(Q) |w= = 0on Fo}

and
Z=HE(Q) X L2(Q).

Note that the bilinear form on HZ(Q),

a(u,v) = f {AWAU + (1= ) (2w, — Wb, — Wy, xx)}

induces a norm on HF(Q) which is equivalent to the usual H? norm on
H{(Q) (see [11].

DerinITION 1. Given h € U,,, w = w(h) = (w(h),w,(h)) is a weak so-
lution to (1.1) if w € C([0, T'];.7), w(0) = (w,, w,), and w satisfies

[ wi &) + [la(w, $)(1) dt = [ hw, b d€) di
0 0 (@)

for all ¢ eHr(Q) where ¢ -,-) denotes the duality pairing between
[HE(Q)] and HF(Q)



454 BRADLEY, LENHART, AND YONG

THEOREM 2.1 (i). Let w(0) = (wy,w,) € Zand h € U,,. Then the system
(1.1) has a unique weak solution w = w(h) = (w,w,).

(i) In addition, if (wy,w,) € D, where
D, = {(wo,wl) e (H*(Q) N HE(Q)) x HE(Q):
Awy + (1 — p)Bw, =0o0n I},

dAw,
v

+ (1 - p)B,w, =0o0n Fl},

and if h € Uy, N C?(0,T), then the weak solution satisfies
we ([0, T]: (H (Q) N HE(Q)) x HE(Q))
and
w, € C([0,T]; L*(Q)).

Furthermore, Eq. (1.1) holds in the L? sense.

Proof. (i) To write the system in semigroup form, we define the
operator .<7:

&w = A’w with domain
() ={weH'(Q) NHE(Q):Aw + (1 — u)Bw =0on T,

JAwW
(9_ + (l — /_,L)BZW =0on Fl}
14

Then define operator A by
A: HY(Q) xHFZO(Q) -7

AW = [—M o|" with Z(A4) = D,.

0 I]~
Then the state equation (1.1) can be written as
d_ ~ ~
Ew(t) = Aw(t) + Bw(t)

W(0) = Wy = m
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with

- 0
Bwte) = [h(t)wz(t)}'

where w,(¢) = w,(x, ). Using skew-adjointness, the operator 4 generates
a strongly continuous unitary group on /#. Since B is a bounded perturba-

tion of A4 on .Z, by standard semigroup theory [23], we have the conclusion
of (i).

(i) Assume that w, € D, and h € U,, N C?(0, T). From the varia-
tion of parameters [23] and (i),

W(t) = e, + /OteA(t’T’B(W)(T) dr, (2.1)

where e’ represents the semigroup generated by A. Proceeding to for-

maIIy dlfferentlate (2.1) in the r variable and defining a new variable
7= (v,,v,) = 4 we seek a solution of the form

T(t) = Ae™', + Bi(1) + fAeA(’ DB (7) dr.
Setting
Fv = Ae ', + Bw(t) + /O’AeAU-ﬂBW(T) dr, (2.2)

we seek a fixed point of F, i.e.,
Fo=7

has a unique fixed point in C([0, T'];.%). Note that

ftAeA(’f Bw(t) dr
0

r d 4 d
_ (t—1) A(t T)
-/d'r( Biw(1)) d7+f - —Bw(7)dr

—Biv(t) + e

0 foA—1) 0
h(oyw, | * L€ [h,w7+hw”}d7
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Thus from (2.2), F can be rewritten as

F(D) = Ae'w, + e dr.

! A=) 0
+ /e h.v, + hv,

0
h(0)w, 0

Since W, €2(A4) and h is continuous at ¢=0, F: C(0,T],Z) —
C(0,T];#) is bounded. We now verify that F is a contraction on
C(0,T1#7) for small T, for 0 < ¢ < T,

I FD, — FU,lleqo, o1

<

LoA-m) 0
¢ dr
'/O I:hT(Ull - U21) + h(Ulz - UZZ)} (0, To1;.7)

t,
< Ssup j(;“hr(un = ) () l20) d7

0<t<T,

t
+sup [llA(0r, = v2) (7)) dr
0<t<Ty"0

< T,ClITy = Dylleqo, 7y1:7)

where C = max(llh,llcpo. 73, 1Allcpo, 7). Taking T, < &, we have that F is a
contractive mapping on C([0, T,1,.#). To complete the proof, we set 7(7,)
(where 7 is the fixed point) as the new initial data and repeat the
argument to obtain F as a contraction on C([T,,27,],.7). Repeating this
procedure yields the result on [0, T'].

We observe first that

(w,,w,) € C([0,T];7),
and then hw, € L*(Q) with Eq. (1.1) gives
Aw e C([0,T]; L*(Q)).
By standard elliptic theory,
we C([0,T]; H*(Q) N H{(Q)).
1

We now present an a priori estimate needed for the existence of an
optimal control.

LEMMA 2.1 (A priori estimate). Given wy €% and h € U,,, the weak
solution to (1.1) satisfies

~ 1/2
1#llcqo. 732, < Co(1 + 2MTe2MTYY?, (2.3)

with Cy = (|l
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Proof. Since D, is dense in #Z, there exist sequences, {#J} in D, and
{h"} in C%([0,T]D N U,,, such that

Wi — W, strongly in Z
and
h" — h  strongly in L?([0,T]).
Denotmg by w" the solution of (1.1) with initial data w; and control A",

w" has the additional regularity from Theorem 2.1(ii). Using w/ as a
multiplier in (1.1), we obtain

0= fsf (w['jwl” + A2wrw — h”(w,")z) dQ dt

_ffgzd (wr') dﬂd”f ”(W w") dt - fsfnh”(w,")zdﬂdt.

Consequently, we have

1 ) 1
5 (9 ey ) A0+ Sa(w, W) (s)

1 s
~n||2 n n\ 2
E||Wo||;z/+f0fﬂh (w)? dQ dt

1., )
E”WO”WM/ 17" ()13 dr.

IA

Gronwall’s Inequality implies

sp | [ (0% (.3.5) d2 + a(w w0 9)|

0<s<T
< IWEIZ(1 + 2MTe?MT), (2.4)
which gives the desired result for smooth approximations. Now since (2.4)

does not depend on the C2smoothness of the 4", we can pass to the limit
and obtain (2.3) for w. |

3. EXISTENCE OF OPTIMAL CONTROLS

We now prove the existence of an optimal control by a minimizing
sequence argument.
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THEOREM 3.1.  There exists an optimal control h* € U,,, which minimizes
the objective functional J(h) over h in Uy,.

Proof. Let {h"} be a minimizing sequence in U,,, i.e.,
limJ(h") = inf J(h).
(k) = inf J(R)

n— o

By Lemma 2.1, for w" = w(h"),

||W"||C([o, TL7) < C1€C2MT-

On a subsequence, we have

n

w" —w*  weakly*in L*([0,T]; HZ(Q))

w! —w}  weakly*in L*([0,T]; L*(Q))

n

wl —wk  weakly* in L°°([0,T]; (HFZO(Q))/)

and
h" — h*  weaklyin L*(0,T).
In weak form, w” satisfies

[ 1w @) + atw, 6) ()] de = [ wiip . (3.)

where ¢ € HFZO(Q). In the convergence as n — o, the only difficult term is
on the RHS of (3.1). We now show convergence of the RHS. Define the
sequence of functions v"(¢) by

on(t) = [ wi(x,y, 1) b(x,y) dQ,
Q
so that the RHS of (3.1) becomes
IREGTRGY?
0

We note that {v"} is uniformly bounded, independent of n, by the a priori
estimate (2.3). By the continuity of w/” in time into L?(Q), for each fixed ¢,

v™(1) = v(t) = fﬂw,*(x,y,t)¢(x,y) dQ  pointwise as n — o,
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using the weak convergences above. By Egorof’'s Theorem [24], for any
g > 0, there exists a set £ c [0, T] such that m(E) < ¢ and

v"(t) = v(t) uniformly on [0, T ]\ E.

Then we obtain

[nror = weolde < [\ = 10) gl di
0 0

T
+:L|(h”v”——h*u)xm'ﬂ\E|dL

The integral term on [0, T]\ E approaches 0 as n — o by the uniform
convergence of v” — v on [0,T]\ E. The integral term on E can be
estimated,

T T
J " wm = hew) xplde < M [ (10" + o) xe de

< M(“UnHLZ(O,T) + ||U||L2(0,T))m(E)
<Cm(E),

where C does not depend on n and m(E) < &. Hence we obtain the
desired convergence,

th"w;u) do — th*w;'wp do.

We can pass to the limit in the w"” PDE and obtain w* = w(h*), the
solution to (1.1).

Since the objective functional is lower semicontinuous with respect to
weak convergence, we obtain

J(h*) = inf J(h)

and A* is an optimal control. ||

4. NECESSARY CONDITIONS

We now derive necessary conditions that any optimal control must
satisfy. To derive these necessary conditions, we must differentiate our
functional J(&) and w = w(h) with respect to 4. The differentiation of J
and uniqueness result give a characterization of the unique optimal control
in terms of the optimality system.
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LEMMA 4.1. The mapping

h e U, - w(h)eC([0,T];7Z)
is differentiable in the sense

W(h+el)y —w(h) -~
- — ¢ weakly* in L*([0,T];7),

as € = 0, forany h, h + &l € U,,. Moreover, the limit $= (4, ) is a weak
solution to the system

Y + AZ‘!’ — hiy, = lw, inQ
#(x,y,0) = ¢(x,y,0) =0 in Q

— ad - s
d/—;—o on 2z, (41)
Ap+ (1 —p)By=0 on 3,

INY
— + (11— wu)By=0 on %,.
v

Proof. Denote by w?® = w(h + &l) and w = w(h). By (1.1), (W® — W) /e

is a weak solution of
wé —w weé—w weé—w
=h
& & &
with homogeneous initial and boundary conditions. Using the proof of
Lemma 2.1 with source term Iw;/, we obtain

+ A?

tt

+wf  inQ

t

we—w

< 1wl 12 0ye™T
e e, 1.2 @

But we have a priori estimates on w/’,

||th8||L2(Q) < T“l”oc”WgHC(o,T;;z’) < Cy,

using Lemma 2.1 on w*. Hence on a subsequence, as & — 0,
e~

we—w -
— ¢ weakly*in L*([0,T];#7).
&

Similar to the proof of Theorem 3.1, we can obtain that ¢ is a weak
solution of (4.1). 1
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We obtain the existence of an adjoint solution and use it in the
differentiation of the map 4 — J(h) to obtain our characterization of an
optimal control.

THEOREM 4.1. Given an optimal control h* in Uy, and corresponding
state solution w* = w(h*) to (1.1), there exists a unique weak solution,

p=(p.p)el([0.T]7),
to the adjoint problem

P+ Np+ (hp),=w*—z inQ

Jd
p= P 0 on3,
v
Ap+(1—-puw)B,p=0 on s
p+( m)Byp 1 (4.2)
dAp
— +(1-w)B,p=0 on %,
v
p(x,y,T) =p(x,y,T) = 0 (transversality condition)
in Q X {T},

where the solution is distributionally defined with respect to t. Furthermore,

1
h*(t) = max(—M,min(—Efﬂw,*p(x,y,t)dﬂ,M)). (4.3)

Proof.  First, we prove the existence of the solution to the adjoint
equation. This proof differs from the existence of the solution of the state
equation due to the (hp), term with 4 not necessarily weakly differentiable
and the source term w — z. In the system formulation, the solution to the
adjoint equation formally becomes

p(t) = —ftTeA(‘”[(hp)s ?r v _Z} ds,

where A is as in Theorem 2.1. However, this solution is only formal, since
h(t) is only in L*(0,T). It has been shown (see [7] and [19]) that the
solvability of the system (4.2) is equivalent to showing that there exists
p € L*(0,T],#) of the form

~ T NI
po = [ e[ 2

ds +

o]
hp(1)
in[D(A)]". (4.4)

+ A=) 0
w—z
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Initially, we must understand this equation only in the sense of duality (i.e.,
in [D(A)]'). However, from our fixed-point argument below, we will
achieve the stronger regularity needed for the well-posedness of (4.2). To
find a solution p satisfying (4.4), we prove the existence of a unique fixed
point in L*([0, T'];#) of the map

0 = ['[ae ] 0]+ exo] 0 Y], 0]

One first step is to prove the fixed-point result on [T — T,, T] for T,
sufficiently small. We show that
F:L([T-T,T)7)—>L(T-T,T),7)

is bounded and contractive.
To show boundedness, consider the hp(¢) term,

]

ds +

= ||hp||L*([T—TU,T],L2(Q))
L(T-Ty, T, )

< Mess smip(/ﬂ(p(x,t))Z dx)l/2

= Mess sgp(fﬂ(_/tTpt(x,s) ds)2 dx)l/z

1/2
< Mess sup (f Tofrpf(x, 5) dsdx)

t Q t
1/2

< MTy/? /T pr(x,s) dxds
-1

< MTy 2l pll gz -7y, 73 L2002 -
To complete the boundedness property,

VP 7 - 101,72y < MTG7 21 p | - 70, 77; 1202y

i)

T
€ss SUp/ Apll 2oy ds + MTS'/ZHPZHL”([TfTO,T];LZ(Q))
t t

T
+ ess supf L/ds + TOHW - Z”L"([T—TO,T];LZ(Q))
t t

IA

+ Tollw = zll -1y, 73; 12000y

IA

2MTy 21 Pl qr-1y,11.2) + Tollw = zlli=qr-15, 73:).
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the last inequality holding since & = h(z). For the contraction property, we
have

| Fpy — Fﬁz“L”([TfTO,T],Z’) < 2MT01/2||171 —172||L°°([T—T0,T];i/),

which gives the contraction for 7,, small. Thus we obtain our unique fixed
point on [T — T,, T] and then apply the argument on [T — 27, T — T,].
Continuing gives the existence of a unique solution to the adjoint equa-
tion.

Let 4* + &l be another control in U,, and let w* = w(h* + &) be the
corresponding solution to the state equation. Then since J achieves its
minimum at 4*, we have

o J(h* + el) = J(hY)
lim

e—>07" &
wé‘_w*

Iimf

e=0% 79 &

/Q¢(w* ~2)dO + ﬁfoTh*zdz.

(w""-l—w*—Zz

B r, . )
5 dQ+EfO(21h + el?) dt

Substituting in from the adjoint equation (4.2) for w* — z and then using
¢ PDE (4.1), we obtain

05f0T<¢,pn>dt+foTa(¢.p) dt
+fQ¢th*de + BfoTh*ldf

=j;)T<¢’tt’p>dt+j;Ta(¢’p) dt
n /Q‘l/’h*de + B fo Th1dr

- fOTl(Bh*+ fﬂ(w,*p) dQ)dt.

Using a standard control argument based on the choices for the variation
1(¢), we obtain the desired characterization for i*:

* 1 1 *
h*(t) = max(—M,mln(—E/lep(x,y,t) dQ,M)).
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Last, we prove a uniqueness result for the optimal control.
THEOREM 4.2.  For T sufficiently small, there is a unique optimal control.

Proof. We show uniqueness by showing strict convexity of the following
map:

h e Uy, = J(h).
This convexity follows from showing for all 4,/ € U,;, 0 < € < 1,
g"(e) >0,

where g(e) =J(eh + (1 — €))) =JU + e(h — D).
To calculate

J(1+ (e+ 8)(h=1)) —J(I + e(h — 1))
5

g'(e) = lim (45)

denote
we=w(l+e(h—1))
wel=w(l+ (e+ 8)(h—1)).

By an argument like that in Lemma 4.1,

— < weak*in L*([0,T],%)

as 6 = 0, and y < satisfies
l/jtf + Az‘pe = (l + 6(h - l))‘pte + (h - l)wte

with zero initial and boundary conditions. Estimating as in Lemma 2.1, for
0 <s < T, we obtain

[ (5)() dQ + a(ue, ) (s)

N

< josfﬂ(z +e(h — 1) () dQ dt + /(J'/Q(h — Yywihe dQ dr
< CM/OSfQ(lp;)Z dQ dr + fos(h =~ f () dds

< Cyf [ (9 ddr + Cy(1 + 2MTeMT) ["(h = 1) at,
07Q 0
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where C,, depends on M and C,(1 + 2MTe*M7) is from Lemma 2.1.
Using Gronwall’s Inequality, we obtain

fﬂ(l/;;)z(s) dQ < szOT(h — )2 dr, (4.6)

with C, = C,(1 + 2MTe*M7)(1 + C,, TeT).
To calculate g”(e), we need a second derivative of w with respect to the
control. Similar a priori estimates imply that

¢/6+n _ Q#e
n

—a° weak*in L*([0,T],%7)

as m — 0, and o ¢ satisfies
of+Noc=(l+e(h—1))o+2(h -1,

with zero initial and boundary conditions. Estimating in this case gives
] (0)°(s) dQ + a(o<, o) ()
Q
s €\2 s _ € _€
sfofﬂ|z+e(h—1)|(at) der+f0f92(h 1) o, dQ d
<Cy[ [ ()2 a0d+ [(h—D7[ (4) dQ dt
NACY J =07 ()

2
N T P
<C Ededt+C( h—1 dt,)
o e [T
using (4.6) in the last inequality. Using Gronwall’s inequality to estimate
T 2
[ oc(5)?dQ +a(o o) (1) < c3(f (h —1)° dt)
Q 0
with C; = C,(1 + C,,Te“»T), Poincaré’s Inequality gives
2
[ (o9 d < TC4C3((/T(h —1)? dt) ,
Q 0

where C, is from Poincaré’s Inequality.
Continuing from (4.5), we are ready to calculate derivatives of g. We
have

g'(€) = fQ¢f(wf ~2)dO + B/OT[(h — 1)+ e(h — 1) dt.
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For the second derivative, we have

e - tim £l M 8

n—-0 n

1 - ,
lim fQ[w”"(w”"—z) —ye(we —z)] ;)dQ+Bfo (h=1)"a

n—-0

- (fQ(af)z dQ)m(fQ(wf —2)*dQ

(B=TC,Cy) ['(h = 1) ar
0

1/

%

2
+ B[ (h-1)a
0

2

which gives the desired result for T sufficiently small. i

Remark. One can also obtain the strict convexity of the objective
functional and the resulting uniqueness of the optimal control if one
assumes that B is sufficiently large (as opposed to assuming T is suffi-
ciently small). Note that the condition that 7T be sufficiently small also
occurs in the uniqueness of optimal controls for solutions of the optimality
systems in wave equations [21], parabolic equations [8], and plate equations

[5].
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