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We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds 
of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical 
and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence 
the properties of the holographic p-wave insulator/superconductor phase transition, which is different 
from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly
to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for 
the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave 
models with Weyl corrections share some similar features for the condensation of the vector operator.
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1. Introduction

As a brilliant concept, the anti-de Sitter/conformal field theory 
(AdS/CFT) correspondence conjectures a duality between strongly 
coupled quantum field theories and weakly coupled gravity theo-
ries [1], which has become a powerful tool to study the condensed 
matter systems. It was shown that a gravitational model of hairy 
black holes [2], where the Abelian symmetry of Higgs is sponta-
neously broken below some critical temperature, can be used to 
model high Tc superconductor [3]. Interestingly, the properties of 
a (2 + 1)-dimensional superconductor can indeed be reproduced in 
the (3 + 1)-dimensional holographic dual model in the background 
of AdS black hole [4]. Extended the investigation to the bulk AdS 
soliton background, it is found that when the chemical potential is 
sufficiently large beyond a critical value μc , the soliton becomes 
unstable to form scalar hair and a second order phase transition 
can happen, which can be used to describe the transition between 
the insulator and superconductor [5]. In recent years, the so-called 
holographic superconductor models have attracted a lot of atten-
tion; for reviews, see Refs. [6–8] and the references therein.

In general, the studies on the holographic superconductors fo-
cus on the Einstein–Maxwell theory coupled to a charged scalar 
field. In order to understand the influences of the 1/N or 1/λ (λ is 
the ’t Hooft coupling) corrections on the holographic dual models, 
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it is interesting to consider the curvature correction to the grav-
ity [9,10] and the higher derivative correction related to the gauge 
field [11]. Recently, an s-wave holographic superconductor model 
with Weyl corrections has been introduced in order to explore the 
effects beyond the large N limit on the superconductor [12]. It was 
observed that, unlike the effect of the higher curvature corrections 
[9,10], the higher Weyl corrections make it easier for the conden-
sation to form. Then, introducing an SU(2) Yang–Mills action with 
Weyl corrections into the bulk, Momeni et al. studied the p-wave 
holographic superconductor with Weyl corrections and found that 
the effect of Weyl corrections on the condensation is similar to 
that of the s-wave model [13]. Considering the holographic insula-
tor/superconductor phase transition model with Weyl corrections 
to the usual Maxwell field in the probe limit, we found that the 
higher Weyl corrections make the insulator/superconductor phase 
transition harder to occur in p-wave model but will not affect 
the properties of the insulator/superconductor phase transition in 
s-wave case [14]. Holographic superconductor models with Weyl 
corrections can also be found, for example, in Refs. [15–21].

More recently, Cai et al. constructed a new p-wave holographic 
superconductor model by introducing a charged vector field into 
an Einstein–Maxwell theory with a negative cosmological constant 
[22]. In the probe limit, they obtained a critical temperature at 
which the system undergoes a second order phase transition and 
observed that an applied magnetic field can induce the conden-
sate even without the charge density. When taking the backreac-
tion into account, a rich phase structure: zeroth order, first order 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and second order phase transitions in this p-wave model has been 
found [23,24]. Using a five-dimensional AdS soliton background 
coupled to such a Maxwell complex vector field, the authors of 
[25] reconstructed the holographic p-wave insulator/superconduc-
tor phase transition model in the probe limit and showed that the 
Einstein–Maxwell-complex vector field model is a generalization 
of the SU(2) model with a general mass and gyromagnetic ratio. In 
Ref. [26], the complete phase diagrams of this new p-wave model 
has been discussed by considering both the soliton and black hole 
backgrounds. Other generalized investigations based on this new 
p-wave model can be found, for example, in Refs. [27–31].

Considering that the increasing interest in study of the Maxwell 
complex vector field model, in this work we will consider the 
new p-wave holographic dual models with Weyl corrections to the 
usual Maxwell field via the action

S = 1

16πG

∫
d5x

√−g

×
[

R + 12

L2
− 1

4

(
Fμν F μν − 4γ Cμνρσ Fμν Fρσ

)
−1

2
ρ

†
μνρ

μν − m2ρ
†
μρμ + iqγ0ρμρ

†
ν F μν

]
, (1)

where G is the gravitational constant in the bulk, γ is the Weyl 
coupling parameter which satisfies −L2/16 < γ < L2/24 [32], and 
L is the AdS radius which will be chosen to be unity. m and q rep-
resent the mass and charge of the vector field ρμ , respectively. The 
strength of U (1) field Aμ is Fμν = ∇μ Aν − ∇ν Aμ and the tensor 
ρμν is defined by ρμν = Dμρν − Dνρμ with the covariant deriva-
tive Dμ = ∇μ − iq Aμ. The parameter γ0, which describes the in-
teraction between the vector field ρμ and the gauge field Aμ , will 
not play any role because we will consider the case without exter-
nal magnetic field. Since the Weyl corrections do have effects on 
the metal/superconductor [13] and insulator/superconductor [14]
phase transitions for the holographic p-wave dual models via the 
Yang–Mills theory, we try to discuss the effect of the Weyl correc-
tions on this new p-wave holographic dual models, and want to 
know the difference between these two p-wave models. In order 
to extract the main physics, we will concentrate on the probe limit 
to avoid the complex computation.

The structure of this work is as follows. In Section 2 we will 
investigate the p-wave insulator/superconductor phase transition 
with Weyl corrections of the Maxwell complex vector field which 
has not been constructed as far as we know, and compare it with 
that of the Yang–Mills theory. In Section 3 we extend the discus-
sion to the metal/superconductor case. We will conclude in the last 
section with our main results.

2. p-Wave superconductor models with Weyl corrections 
in AdS soliton

In Ref. [14], we considered an SU(2) Yang–Mills action with 
Weyl corrections in the bulk theory to construct the holographic p-
wave insulator/superconductor phase transition with Weyl correc-
tions and found that the higher corrections make the phase transi-
tion harder to occur. Now we will study the effect of the Weyl cor-
rections on the new p-wave insulator/superconductor phase tran-
sition via the Maxwell complex vector field model (1).

2.1. Numerical investigation of holographic insulator/superconductor 
phase transition

In order to study the superconducting phase dual with Weyl 
corrections to the AdS soliton configuration in the probe limit, we 
start with the five-dimensional Schwarzschild–AdS soliton in the 
form

ds2 = −r2dt2 + dr2

f (r)
+ f (r)dϕ2 + r2(dx2 + dy2), (2)

where f (r) = r2(1 − r4
s /r4) with the tip of the soliton rs which is a 

conical singularity in this solution. By imposing a period β = π/rs

for the coordinate ϕ , we can remove the singularity. For the con-
sidered solution (2), the nonzero components of the Weyl tensor 
Cμνρσ are

C0i0 j = −r4
s δi j, C0r0r = r4

s

r4 − r4
s
, C0ϕ0ϕ = r4

s

(
1 − r4

s

r4

)
,

Crϕrϕ = 3r4
s

r4
,

Cir jr = − r4
s

r4 − r4
s
δi j, Ciϕ jϕ = −r4

s

(
1 − r4

s

r4

)
δi j,

Cijkl = r4
s δikδ jl, (3)

with i, j, k, l = x or y.
Just as in Refs. [22,23], we assume the condensate to pick out 

the x direction as special and take the following ansatz

ρνdxν = ρx(r)dx , Aνdxν = φ(r)dt, (4)

where we can set ρx to be real by using the U (1) gauge symmetry. 
Thus, we can obtain the equations of motion from the action (1)
for the vector hair ρx and gauge field φ

ρ ′′
x +

(
1

r
+ f ′

f

)
ρ ′

x +
(

q2φ2

r2 f
− m2

f

)
ρx = 0 , (5)

(
1 + 8γ r4

s

r4

)
φ′′ +

[
1

r

(
1 − 24γ r4

s

r4

)
+ f ′

f

(
1 + 8γ r4

s

r4

)]
φ′

− 2q2ρ2
x

r2 f
φ = 0, (6)

where the prime denotes the derivative with respect to r.
Using the shooting method [3], we can solve numerically the 

equations of motion (5) and (6) by doing integration from the tip 
out to the infinity. At the tip r = rs , the appropriate boundary con-
ditions for ρx(r) and φ(r) are

ρx = ρ̃x0 + ρ̃x1(r − rs) + ρ̃x2(r − rs)
2 + · · · ,

φ = φ̃0 + φ̃1(r − rs) + φ̃2(r − rs)
2 + · · · , (7)

where ρ̃xi and φ̃i (i = 0, 1, 2, · · ·) are the integration constants, 
and the Neumann-like boundary conditions to render the physi-
cal quantities finite have been imposed [5]. It should be noted that 
there is a constant nonzero gauge field φ(rs) at r = rs , which is 
in strong contrast to that of the AdS black hole where φ(r+) = 0
at the horizon [3,5]. At the asymptotic AdS boundary r → ∞, we 
have the boundary conditions

ρx = ρx−
r�− + ρx+

r�+ , φ = μ − ρ

r2
, (8)

with the characteristic exponent �± = 1 ± √
1 + m2. According to 

the AdS/CFT correspondence, μ, ρ , ρx− and ρx+ are interpreted as 
the chemical potential, the charge density, the source and the vac-
uum expectation value of the vector operator J x in the dual field 
theory respectively. In this work, we impose boundary condition 
ρx− = 0 since we require that the condensate appears sponta-
neously.



106 L. Zhang et al. / Physics Letters B 743 (2015) 104–111
Fig. 1. (Color online.) The condensate of the operator 〈 J x〉 = ρx+ with respect to the chemical potential μ for different Weyl coupling parameters γ with fixed masses of the 
vector field m2 L2 = 0 (left) and m2 L2 = 5/4 (right) in the holographic p-wave insulator and superconductor model. In each panel, the six lines from left to right correspond 
to decreasing γ , i.e., 0.04 (blue), 0.02 (orange), 0 (black and dashed), −0.02 (red), −0.04 (green) and γ = −0.06 (black) respectively.

Fig. 2. (Color online.) The charge density ρ with respect to the chemical potential μ for different Weyl coupling parameters γ with fixed masses of the vector field m2 L2 = 0
(left) and m2 L2 = 5/4 (right) in the holographic p-wave insulator and superconductor model. In each panel, the six lines from left to right correspond to decreasing γ , i.e., 
0.04 (blue), 0.02 (orange), 0 (black and dashed), −0.02 (red), −0.04 (green) and γ = −0.06 (black) respectively.
Interestingly, we note that the equations of motion (5) and (6)
have the useful scaling symmetries

r → αr , (t,ϕ, x, y) → 1

α
(t,ϕ, x, y) ,

(ρx, φ) → α(ρx, φ) , (9)

where α is a real positive number. Using these symmetries, we can 
get the transformation of the relevant quantities

μ → αμ, ρ → α3ρ , ρx+ → α1+�+ρx+ . (10)

For simplicity, we will scale rs = 1 and set q = 1 in the following 
just as in [5].

In Figs. 1 and 2 we plot the condensate of the vector operator 
〈 J x〉 and charge density ρ as a function of the chemical potential 
μ for different Weyl coupling parameters γ with fixed masses of 
the vector field m2L2 = 0 (left) and m2 L2 = 5/4 (right) in the holo-
graphic p-wave insulator and superconductor model. From Figs. 1
and 2, we find that the system is described by the AdS soliton 
solution itself when μ is small, which can be interpreted as the 
insulator phase [5]. However, there is a second order phase transi-
tion when μ → μc and the AdS soliton reaches the superconductor 
(or superfluid) phase for larger μ. For the fixed Weyl coupling pa-
rameter γ , with the increase of the vector field mass, the critical 
chemical potential μc becomes larger. This property agrees well 
with the findings in the s-wave holographic insulator and super-
conductor model [14,10]. But for the fixed mass of the vector field, 
it is interesting to note that the critical chemical potential μc is 
independent of the Weyl coupling parameter γ , i.e.,

μc = 2.265, for m2L2 = 0 and ∀γ ,

μc = 2.785, for m2L2 = 5/4 and ∀γ , (11)

which shows that the Weyl couplings will not affect the proper-
ties of the holographic insulator/superconductor phase transition 
for the fixed mass of the vector field. This behavior is reminiscent 
of that seen for the holographic s-wave insulator/superconduc-
tor phase transition with Weyl corrections, but different from the 
holographic p-wave case with Weyl corrections via the Yang–Mills 
theory where the corrections do have effects on the insulator/su-
perconductor phase transition [14]. Thus, we conclude that the 
Weyl corrections have completely different effects on the critical 
chemical potential for the p-wave phase transitions of the Maxwell 
complex vector field model and that of the Yang–Mills theory.
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2.2. Analytical understanding of holographic insulator/superconductor 
phase transition

Since the analytic Sturm–Liouville (S–L) method, which was 
first proposed by Siopsis and Therrien [33] and later generalized 
to study holographic insulator/superconductor phase transition in 
[34], can clearly present the condensation and critical phenomena 
of the system at the critical point, we will apply it to investigate 
analytically the properties of holographic p-wave insulator/super-
conductor phase transition with Weyl corrections. In addition to 
back up numerical results, we will calculate analytically the critical 
exponent of the system at the critical point and obtain an analyti-
cal understanding in parallel.

Introducing the variable z = rs/r, we can rewrite the equations 
of motion (5) and (6) into

ρ ′′
x +

(
1

z
+ f ′

f

)
ρ ′

x +
(

φ2

z2 f
− m2

z4 f

)
ρx = 0 , (12)

(1 + 8γ z4)φ′′ +
[
(1 + 40γ z4)

1

z
+ (1 + 8γ z4)

f ′

f

]
φ′

− 2ρ2
x

z2 f
φ = 0, (13)

where the function f now is f (z) = (1 − z4)/z2 and the prime 
denotes the derivative with respect to z.

At the critical chemical potential μc , the vector field ρx = 0. So 
below the critical point (13) reduces to

(1 + 8γ z4)φ′′ +
[
(1 + 40γ z4)

1

z
+ (1 + 8γ z4)

f ′

f

]
φ′ = 0, (14)

which results in a general solution

φ = μ + c1

4 + 32γ

×
[

4
√

2γ ArcTan(2
√

2γ z2) + ln(1 + z2) − ln(1 − z2)
]
, (15)

where c1 is an integration constant. We see that the term in 
the square bracket is divergent at the tip z = 1. Considering the 
Neumann-like boundary condition (7) for the gauge field φ at the 
tip z = 1, we will set c1 = 0 to keep φ finite, i.e., in this case φ has 
to be a constant. Thus, we can get the physical solution φ(z) = μ
to Eq. (14) if μ < μc , which agrees with our previous numerical 
results.

As μ → μc from below the critical point, the vector field equa-
tion (12) becomes

ρ ′′
x +

(
1

z
+ f ′

f

)
ρ ′

x +
(

μ2

z2 f
− m2

z4 f

)
ρx = 0 . (16)

Obviously, the Weyl coupling parameter γ is absent in the master 
equation (16) although Eq. (14) for the gauge field φ depends on 
γ , which leads that the Weyl corrections do not have any effect on 
the critical chemical potential μc for the fixed mass of the vector 
field, just as shown in Figs. 1 and 2.

Defining a trial function F (z) near the boundary z = 0 as [33]

ρx(z) ∼ 〈 J x〉z�+ F (z), (17)

with the boundary conditions F (0) = 1 and F ′(0) = 0, from 
Eq. (16) we can get the equation of motion for F (z)

(M F ′)′ + M
(

U + μ2 V
)

F = 0, (18)

where we have introduced
M = z2�+−1(z4 − 1),

U = �+(�+ − 1)

z2
+ �+

z

(
1

z
+ f ′

f

)
− m2

z4 f
,

V = 1

z2 f
. (19)

Following the S–L eigenvalue problem [35], we obtain the ex-
pression which can be used to estimate the minimum eigenvalue 
of μ2

μ2 =
∫ 1

0 M
(

F ′ 2 − U F 2
)

dz∫ 1
0 M V F 2dz

= �(a,m)

�(a,m)
, (20)

with

�(a,m) = (a − 1)2 + 1 + m2

2 (�+ − 1)
− am2

�+
+ a2

(
1 + m2

) − 1

2 (1 + �+)

− a2

2 (3 + �+)
,

�(a,m) = 1

2

[
1

�+
+ a

(
a

2 + �+
− 2

1 + �+

)]
, (21)

where we have assumed the trial function to be F (z) = 1 −
az2 with a constant a in the calculation. For different val-
ues of the mass of the vector field, we can get the minimum 
eigenvalue of μ2 and the corresponding value of a, for exam-
ple, μ2

min = 7.768 and a = 0.382 for m2L2 = 5/4, which lead 
to the critical chemical potential μc = μmin = 2.787. In Ta-
ble 1, we present the critical chemical potential μc for cho-
sen mass of the vector field. Comparing with numerical re-
sults, we observe that the analytic results derived from S–L 
method are in very good agreement with the numerical compu-
tations.

From Table 1, we find that, with the increase of the mass of 
the vector field, the critical chemical potential μc becomes larger, 
which agrees with our previous numerical results. More impor-
tantly, due to the absence of the Weyl coupling parameters from 
the master equation (16), the Weyl corrections do not have any 
effect on the critical chemical potential μc for the fixed mass of 
the vector field, which supports the numerical finding as shown in 
Figs. 1 and 2.

Now we are in a position to study the critical phenomena of 
this holographic p-wave system. Noting that the condensation of 
the vector operator 〈 J x〉 is so small when μ → μc , we will expand 
φ(z) in small 〈 J x〉 as

φ(z) ∼ μc + 〈 J x〉χ(z) + · · · , (22)

where the boundary condition is χ(1) = 0 at the tip. Defining a 
function ξ(z) as

χ(z) = 2μc〈 J x〉ξ(z), (23)

we will have the equation of motion for ξ(z)

(Kξ ′)′ − z2�+−3(z4 − 1)F 2

f
= 0, (24)

with

K (z) =
(
z4 − 1

) (
1 + 8γ z4

)
z

. (25)

According to the asymptotic behavior in Eq. (8), we can expand 
φ near z → 0 as
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Table 1
The critical chemical potential μc for the vector operator 〈 J x〉 obtained by the analytical S–L method and numerical shooting method with chosen various masses of the 
vector field for the holographic p-wave insulator/superconductor model. It should be noted that the Weyl corrections do not have any effect on μc for the fixed mass of the 
vector field.

m2 L2 −1/2 −1/4 0 1/4 1/2 3/4 1 5/4

Analytical 1.959 2.127 2.267 2.390 2.502 2.603 2.698 2.787
Numerical 1.958 2.125 2.265 2.388 2.500 2.601 2.696 2.785
φ(z) � μ − ρz2

� μc + 〈 J x〉
[
χ(0) + χ ′(0)z + 1

2
χ ′′(0)z2 + · · ·

]
. (26)

From the coefficients of the z0 term in both sides of the above 
formula and with the help of Eq. (23), we arrive at

〈 J x〉 = 1

[2μcξ(0)]
1
2

(μ − μc)
1
2 , (27)

with

ξ(0) = c2 −
1∫

0

1

K (z)

⎡
⎣c3 +

z∫
1

x2�+−3 F (x)2(x4 − 1)

f (x)
dx

⎤
⎦dz, (28)

where the integration constants c2 and c3 can be determined 
by the boundary condition χ(z). For example, for the case of 
γ = 0.02 with m2L2 = 5/4, we have 〈 J x〉 ≈ 1.891(μ −μc)

1/2 when 
a = 0.382, which agrees well with the numerical result given in 
the right panel of Fig. 1. Note that the expression (27) is valid for 
all cases considered here. Thus, the vector operator 〈 J x〉 satisfies 
〈 J x〉 ∼ (μ − μc)

1/2 near the critical point, which holds for vari-
ous values of Weyl coupling parameters and masses of the vector 
field. The analytic result shows that the holographic p-wave insu-
lator/superconductor phase transition belongs to the second order 
and the critical exponent of the system takes the mean-field value 
1/2, which can be used to back up the numerical findings obtained 
from Fig. 1.

Comparing the coefficients of the z1 term in Eq. (26), we see 
that χ ′(0) → 0, which leads to ξ ′(0) → 0. This behavior is con-
sistent with the following relation by making integration of both 
sides of Eq. (24)

[
ξ ′(z)

z

] ∣∣∣∣
z→0

=
1∫

0

z2�+−3(z4 − 1)F 2

f
dz. (29)

Considering the coefficients of the z2 term in Eq. (26), we get

ρ = −1

2
〈 J x〉χ ′′(0) = �(γ ,m)(μ − μc), (30)

with

�(γ ,m) = − 1

2ξ(0)

1∫
0

z2�+−3(z4 − 1)F 2

f
dz, (31)

which is a function of the Weyl coupling parameter and the vec-
tor field mass. For the case of γ = 0.02 with m2L2 = 5/4, as an 
example, we can find ρ = 1.068 (μ − μc) when a = 0.382, which 
is in good agreement with the result shown in the right panel of 
Fig. 2. Since the Weyl coupling parameters and masses of the vec-
tor field will not alter Eq. (30), we can obtain the linear relation 
between the charge density and the chemical potential near μc , 
i.e., ρ ∼ (μ − μc), which supports the numerical result presented 
in Fig. 2.
3. p-Wave superconductor models with Weyl corrections 
in AdS black hole

Since the Weyl couplings will not affect the properties of the 
new p-wave superconductor in AdS soliton via the Maxwell com-
plex vector field model, which is different from that via the Yang–
Mills theory where the Weyl corrections do have effects on the 
insulator/superconductor phase transition, it seems to be an inter-
esting study to consider the influences of the Weyl corrections on 
this new p-wave superconductor in AdS black hole.

3.1. Numerical investigation of holographic metal/superconductor phase 
transition

In the probe limit, the background metric is a five-dimensional 
planar Schwarzschild–AdS black hole

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

(
dx2 + dy2 + dz2

)
, (32)

where f (r) = r2(1 −r4+/r4) with the radius of the event horizon r+ . 
The Hawking temperature of the black hole can be expressed as

T = r+
π

, (33)

which can be interpreted as the temperature of the CFT. The met-
ric (32) has the following nonzero components of the Weyl tensor 
Cμνρσ

C0i0 j = r4+ f (r)

r2
δi j, C0r0r = −3r4+

r4
,

Cir jr = − r4+
r2 f (r)

δi j, Cijkl = r4+δikδ jl, (34)

with i, j, k, l = x, y or z.
For completeness, we still work on the ansatz (4) and get the 

equations of motion from the action (1) in the Maxwell complex 
vector field model

ρ ′′
x +

(
1

r
+ f ′

f

)
ρ ′

x +
(

q2φ2

f 2
− m2

f

)
ρx = 0 , (35)(

1 − 24γ r4+
r4

)
φ′′ + 3

r

(
1 + 8γ r4+

r4

)
φ′ − 2q2ρ2

x

r2 f
φ = 0, (36)

where the prime denotes the derivative with respect to r.
In order to solve the equations of motion (35) and (36) numer-

ically, we have to impose the appropriate boundary conditions for 
ρx(r) and φ(r). At the horizon r = r+ , the boundary conditions are

ρx(r+) = f ′(r+)

m2
ρ ′

x(r+) , φ(r+) = 0 . (37)

Obviously, we require φ (r+) = 0 in order for gμν Aμ Aν to be finite 
at the horizon, which is in strong contrast to that of the AdS soli-
ton where there is a constant nonzero gauge field φ(rs) at r = rs . 
But near the boundary r → ∞, we find that the solutions have 
the same boundary conditions just as Eq. (8) for the holographic 
p-wave insulator and superconductor model with Weyl corrections.
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Fig. 3. (Color online.) The condensate of the operator 〈 J x〉 = ρx+ as a function of temperature for different Weyl coupling parameters γ with fixed masses of the vector field 
m2 L2 = 0 (left) and m2 L2 = 5/4 (right) in the holographic p-wave superconductor model. In each panel, the six lines from top to bottom correspond to increasing γ , i.e., 
γ = −0.06 (black), −0.04 (green), −0.02 (red), 0 (black and dashed), 0.02 (orange) and 0.04 (blue) respectively.
For the equations of motion (35) and (36), we can also obtain 
the useful scaling symmetries

r → αr , (t, x, y, z) → 1

α
(t, x, y, z) ,

(ρx, φ) → α(ρx, φ) , (38)

which result in the transformation of the relevant quantities

T → αT , μ → αμ, ρ → α3ρ ,

ρx+ → α1+�+ρx+ , (39)

with a real positive number α. Without loss of generality, we can 
scale r+ = 1 and set q = 1 in the following just as in [22].

In Fig. 3, we present the condensate of the vector operator 
〈 J x〉 as a function of temperature for different Weyl coupling pa-
rameters γ with fixed masses of the vector field m2 L2 = 0 (left) 
and m2L2 = 5/4 (right) in the holographic p-wave superconduc-
tor model. Obviously, we observe that the behavior of each curve 
for the fixed γ and m2L2 is in good agreement with the holo-
graphic superconducting phase transition in the literature, which 
shows that the black hole solution with non-trivial vector field can 
describe a superconducting phase.

From Fig. 3, for the fixed Weyl coupling parameter γ , we find 
that the condensation gap for the vector operator 〈 J x〉 becomes 
larger with the increase of the mass of the vector field, which 
implies that the increase of the mass makes it harder for the vec-
tor operator to condense. However, if we concentrate on the same 
mass of the vector field, we see that the higher correction term γ
makes the condensation gap smaller, which means that the con-
densation is easier to be formed when the parameter γ increases. 
In fact, Table 2 shows that the critical temperature Tc for the vec-
tor operator 〈 J x〉 with the fixed vector field mass increases as the 
correction term γ increases, which agrees well with the finding in 
Fig. 3. This behavior is reminiscent of that seen for the holographic 
p-wave dual models via the Yang–Mills theory, where the critical 
temperature Tc increases as the Weyl correction γ increases [13]. 
So we conclude that these two p-wave models with Weyl cor-
rections share some similar features for the condensation of the 
vector operator.

3.2. Analytical understanding of holographic metal/superconductor 
phase transition

We still use the S–L method to deal with the effect of the Weyl 
corrections on the holographic p-wave metal/superconductor phase 
via the Maxwell complex vector field model. Changing the coordi-
nate and setting z = r+/r, we can convert the equations of motion 
(35) and (36) to be

ρ ′′
x +

(
1

z
+ f ′

f

)
ρ ′

x + 1

z4

(
φ2

r2+ f 2
− m2

f

)
ρx = 0 , (40)

(
1 − 24γ z4

)
φ′′ −

(
1

z
+ 72γ z3

)
φ′ − 2ρ2

x

r2+z2 f
φ = 0. (41)

Here the function f has been rewritten into f (z) = (1 − z4)/z2 and 
the prime denotes the derivative with respect to z.

At the critical temperature Tc , the vector field ρx = 0. Thus, 
below the critical point (41) becomes(

1 − 24γ z4
)

φ′′ −
(

1

z
+ 72γ z3

)
φ′ = 0. (42)

Note that at z = 0, from the boundary condition we have

φ′′|z=0 = −2ρ

r2+
at T = Tc. (43)

Thus, neglecting terms of order O (γ n≥2), we can obtain the solu-
tion to Eq. (42)

φ(z) = λr+ϕ1(z) = λr+
(

1 − z2
)[

1 + 8γ
(

1 + z2 + z4
)]

, (44)

with λ = ρ/r3+ .
Near the boundary z = 0, we introduce a trial function F (z)

ρx| ∼ 〈 J x〉
r�++

z�+ F (z), (45)

with the boundary conditions F (0) = 1 and F ′(0) = 0. Therefore 
the equation of motion for F (z) is given by

(M F ′)′ + M
(

P + λ2 Q
)

F = 0, (46)

with

P = �+
z

(
�+

z
+ f ′

f

)
− m2

z4 f
, Q = ϕ2

1

z4 f 2
, (47)

where M(z) has been defined in (19). According to the S–L eigen-
value problem [35], we deduce the eigenvalue λ minimizes the 
expression
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Table 2
The critical temperature Tc obtained by the numerical shooting method for the vector operator 〈 J x〉 with different Weyl coupling parameters γ and fixed masses of the 
vector field, i.e., m2 L2 = 0 and 5/4. We have set ρ = 1 in the table.

γ −0.06 −0.04 −0.02 0 0.02 0.04

m2 L2 = 0 0.172 0.179 0.188 0.201 0.222 0.309
m2 L2 = 5/4 0.157 0.163 0.172 0.184 0.205 0.288

Table 3
The critical temperature Tc obtained by the analytical S–L method for the vector operator 〈 J x〉 with different Weyl coupling parameters γ and fixed masses of the vector 
field, i.e., m2 L2 = 0 and 5/4. We have set ρ = 1 and chosen different expanded solutions to Eq. (42), i.e., ϕ1 up to 0(γ ) and ϕ2 up to 0(γ 6) in the table.

γ −0.02 −0.01 0 0.01 0.02

m2 L2 = 0 (ϕ1) 0.181 0.190 0.199 0.207 0.214
m2 L2 = 0 (ϕ2) 0.186 0.192 0.199 0.208 0.221
m2 L2 = 5/4 (ϕ1) 0.165 0.174 0.182 0.189 0.196
m2 L2 = 5/4 (ϕ2) 0.169 0.175 0.182 0.191 0.203
λ2 =
∫ 1

0 M
(

F ′ 2 − P F 2
)

dz∫ 1
0 M Q F 2dz

. (48)

Here we still assume the trial function to be F (z) = 1 − az2 with a 
constant a. Using above equation to compute the minimum eigen-
value of λ2, we can get the critical temperature Tc for different 
Weyl coupling parameters γ and masses of the vector field m from 
the following relation

Tc = 1

πλ
1/3
min

3
√

ρ. (49)

As an example, for the case of m2L2 = 5/4 with the chosen value 
of the Weyl coupling parameter γ = 0.02, we obtain the mini-
mum λmin = 18.069 at a = 0.748. According to the relation (49), 
we can easily get the critical temperature Tc = 0.196 3

√
ρ , which is 

consistent with the numerical result Tc = 0.205 3
√

ρ in Table 2. In 
Table 3 we give the critical temperature Tc obtained by the analyt-
ical S–L method for the vector operator 〈 J x〉 when we fix the mass 
of the vector field m2L2 for different Weyl couplings by choosing 
the expanded solution (44) up to first order in the Weyl coupling 
parameter. Comparing with the numerical results of Table 2 in the 
range −0.02 ≤ γ ≤ 0.02, we observe that the differences between 
the analytical and numerical values are within 4.5%.

When we perform analytic computation of the solution to 
Eq. (42) up to sixth order in the Weyl coupling parameter γ , i.e., 
change the solution (44) into

φ(z) = λr+ϕ2(z)

= λr+
[
ϕ1(z) + 242

5
(1 − z10)γ 2 + 243

7
(1 − z14)γ 3

+ 244

9
(1 − z18)γ 4 + 245

11
(1 − z22)γ 5

+ 246

13
(1 − z26)γ 6

]
, (50)

the agreement of the analytic results presented in Table 3 with the 
numerical calculation shown in Table 2 is impressive. Thus, we can 
improve the analytic result and get the critical temperature more 
consistent with the numerical result if we expand the solution to 
Eq. (42) up to a sufficiently high order in the Weyl coupling pa-
rameter γ , even we consider the case of larger γ .

From Table 3, we point out that the critical temperature Tc in-
creases as the Weyl correction γ increases for the fixed vector 
field mass but decreases as the mass m2 increases for the fixed 
Weyl coupling parameter, which supports the numerical computa-
tion shown in Fig. 3 and Table 2.
We will investigate the critical phenomena of the system. Since 
the condensation for the vector operator 〈 J x〉 is so small when 
T → Tc , we can expand φ(z) in 〈 J x〉 near z = 0

φ(z)

r+
= λϕ1 + 〈 J x〉2

r2(1+�+)
+

χ (z) + · · ·, (51)

with the boundary conditions χ(1) = 0 and χ ′(1) = 0 [33,36]. 
Thus, substituting the functions (45) and (51) into (41), we can 
get the equation of motion for χ (z)

(
W χ ′)′ − 2λz2�+−3 F 2ϕ1

f
= 0, (52)

where we have introduced a new function

W (z) = 1 − 24γ z4

z
. (53)

From the asymptotic behavior (8), near z → 0 we can arrive at

φ(z)

r+
= ρ

r3+
(1 − z2)

= λ
(

1 − z2
)[

1 + 8γ
(

1 + z2 + z4
)]

+ 〈 J x〉2

r2(1+�+)
+

[
χ(0) + χ ′(0)z + 1

2
χ ′′(0)z2 + · · ·

]
. (54)

Considering the coefficients of the z1 term in both sides of the 
above formula, we can find that χ ′(0) → 0, which agrees well 
with the following relation by making integration of both sides of 
Eq. (52)

[
χ ′(z)

z

] ∣∣∣∣
z→0

= −2λϒ(γ ,m) = −2λ

1∫
0

z2�+−3 F 2ϕ1

f
dz, (55)

where ϒ(γ , m) is a function of the Weyl coupling parameter and 
the vector field mass. Comparing the coefficients of the z2 term in 
Eq. (54), we have

ρ

r3+
= λ − 〈 J x〉2

2r2(1+�+)
+

χ ′′(0), (56)

which leads to

〈 J x〉 = (π Tc)
1+�+

√
3

ϒ(γ ,m)

(
1 − T

Tc

) 1
2

. (57)

Obviously, the expression (57) is valid for all cases considered here. 
For example, for the case of γ = 0.02 with m2L2 = 5/4, we have 
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〈 J x〉 ≈ 1.580(1 − T /Tc)
1/2 when a = 0.748, which is in agreement 

with the numerical calculation given in the right panel of Fig. 3. 
Since the Weyl coupling parameters and masses of the vector field 
will not alter Eq. (57) except for the prefactor, we can obtain the 
relation 〈 J x〉 ∼ (1 − T /Tc)

1/2 near the critical point. The analytic 
result shows that the holographic p-wave metal/superconductor 
phase transition belongs to the second order and the critical ex-
ponent of the system takes the mean-field value 1/2, which can 
be used to back up the numerical findings shown in Fig. 3.

4. Conclusions

In the probe limit, we have investigated the holographic p-wave 
dual models with Weyl corrections both in the backgrounds of 
AdS soliton and AdS black hole in order to understand the influ-
ences of the 1/N or 1/λ corrections on the vector condensate via 
a Maxwell complex vector field model. Different from the holo-
graphic p-wave insulator/superconductor models in the Yang–Mills 
theory, we found in the AdS soliton background that the critical 
chemical potentials are independent of the Weyl correction term, 
which tells us that the correction to the Maxwell field will not 
affect the properties of this new holographic p-wave insulator/su-
perconductor phase transition. We also observed that the effect of 
the Weyl corrections cannot modify the critical phenomena, and 
found that this new insulator/superconductor phase transition be-
longs to the second order and the critical exponent of the system 
always takes the mean-field value 1/2. We confirmed our numeri-
cal result by using the S–L analytic method and concluded that the 
Weyl corrections have different effects on the holographic p-wave 
insulator/superconductor phase transition of the Maxwell complex 
vector field model and that of the Yang–Mills theory.

However, the story is completely different if we study the holo-
graphic p-wave metal/superconductor phase transition with Weyl 
corrections. We observed that similar to the effect of the Weyl cor-
rections in the Yang–Mills theory, in the black hole background, 
the critical temperature for the vector operator increases as the 
correction term increases, which implies that the higher Weyl cor-
rections make it easier for the vector condensation to form. Further 
analytic studies showed that the holographic p-wave metal/super-
conductor phase transition belongs to the second order and the 
critical exponent of the system takes the mean-field value 1/2, 
which supports our numerical findings. Comparing the holographic 
p-wave metal/superconductor phase transitions of the Maxwell 
complex vector field model with that of the Yang–Mills theory, we 
argued that these two p-wave models with Weyl corrections share 
some similar features for the condensation of the vector operator.
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