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Modeling the Electrophoresis of Lysozyme. 11. Inclusion of Ion Relaxation
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ABSTRACT In this work, boundary element methods are used to model the electrophoretic mobility of lysozyme over the
pH range 2-6. The model treats the protein as a rigid body of arbitrary shape and charge distribution derived from the crystal
structure. Extending earlier studies, the present work treats the equilibrium electrostatic potential at the level of the full
Poisson-Boltzmann (PB) equation and accounts for ion relaxation. This is achieved by solving simultaneously the Poisson, ion
transport, and Navier-Stokes equations by an iterative boundary element procedure. Treating the equilibrium electrostatics
at the level of the full rather than the linear PB equation, but leaving relaxation out, does improve agreement between
experimental and simulated mobilities. Including ion relaxation improves it even more. The effects of nonlinear electrostatics
and ion relaxation are greatest at low pH, where the net charge on lysozyme is greatest. In the absence of relaxation, a linear
dependence of mobility and average polyion surface potential, (Ao)s, is observed, and the mobility is well described by the
equation

EO(Ao)s

where E0 is the dielectric constant of the solvent, and 7 is the solvent viscosity. This breaks down, however, when ion
relaxation is included and the mobility is less than predicted by the above equation. Whether or not ion relaxation is included,
the mobility is found to be fairly insensitive to the charge distribution within the lysozyme model or the internal dielectric
constant.

INTRODUCTION

Electrophoresis and related methods are extensively used in
biochemistry, biophysics, and molecular biology. In fact, it
has been estimated that over half of all papers in biochem-
istry utilize electrophoresis to some degree (Vesterberg,
1993). Despite this widespread use, electrophoresis of mac-
roions remains poorly understood at the molecular level,
which we attribute to two factors. First of all, it is experi-
mentally difficult to obtain absolute mobilities, and the
resulting paucity of mobility data has resulted in a lack of
impetus for theortical development. Second, electrophoresis
is an intrinsically complex phenomenon involving the poly-
ion, ion atmosphere, solvent flow, and (if present) gel ma-
trix and/or capillary surfaces, and this has made the problem
a challenge for theorists. It can be expected that recent
developments in both experimental technique as well as
numerical methodology will both facilitate the acquisition
of mobility data and aid in their interpretation. In the fol-
lowing two paragraphs, both experimental and theoretical
issues are briefly reviewed.
The oldest and most straightforward technique of obtain-

ing absolute mobilities involves Tiselius cells (Beychok and
Warner, 1959), but the use of these was largely abandoned
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in the 1960s, when gel electrophoresis came into wide-
spread use. Although it is possible to obtain absolute mo-
bilities from gel electrophoresis measurements by construct-
ing a Ferguson plot and extrapolating to zero gel
concentration (Holmes and Stellwagen, 1991), this ap-
proach has not been widely used. Electrophoretic light scat-
tering was developed in the 1970s (Ware and Flygare, 1971;
Tagaki, 1993) and has been applied to a variety of proteins
(Basak and Ladisch, 1995). NMR techniques such as
ENMR and MOSY have also been developed to measure
mobilities, but to date applications have dealt with relatively
small ions (Morris and Johnson, 1993). Capillary electro-
phoresis (CE) is a promising new technique, but as in the
case of NMR methods, application to the problem of abso-
lute mobilities has, for the most part, been restricted to
smaller polyions such as short polypeptides (Grossman et
al., 1989). A major difficulty with the CE method has been
the complicating feature of electroendoosmotic flow, which
arises from the small diameter of the capillaries used and the
fixed charges that are usually present on the capillary sur-
faces. Recently, however, this problem was overcome in the
measurement of absolute mobilities of DNA by coatiiag the
capillaries with acrylamido polymers, which reduces the
electroendoosmotic flow to zero (Stellwagen et al., 1997).
Finally, electroacoustic methods developed by O'Brien and
co-workers over the last 10 years should be mentioned
(O'Brien et al., 1995). Although applications to date have
been restricted to large particles such as colloids, measure-
ments on proteins and other "smaller" polyions may be
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feasible. The electroacoustic measurements have the advan-
tage over other techniques of measuring absolute dynamic
mobilities, which provide information about ion atmosphere
dynamics. In summary, there is a fairly wide variety of
techniques available at this time that either can or have the
potential to be used in obtaining absolute electrophoretic
mobilities of polyions that are comparable in size to proteins
and nucleic acids. These are the polyions of interest in this
work.

There exists an extensive literature on the theory of
electrophoresis, which is reviewed in the text by Dukhin and
Shilov (1974) or in review articles such as that of Anderson
(1989). A recent text by Schmitz (1993) provides a good
overall view of current polyion theory and experiment. In
the present work, we shall narrow the field substantially by
focusing only on those theories of polyions that model them
as a rigid structure of arbitrary shape and charge distribution
that are not small compared to the thickness of the ion
atmosphere. The ion atmosphere is approximately K- in
thickness, where K is the Debye-Huckel screening parame-
ter. For a 0.1 M NaCl solution, K-1 is -1 nm, which is
roughly the size of a protein or "hydration radius" of DNA.
Two years ago, boundary element (BE) procedures were
developed and applied to calculate the mobility of rigid
polyions such as proteins (Chae and Lenhoff; Allison and
Tran, 1995). The application to lysozyme yielded only fair
agreement between theory and experiment, and it was sug-
gested that a Stem layer of fluid and ions moving with the
protein as a rigid body could reconcile the two (Allison and
Tran, 1995). There were, however, approximations made in
these BE studies that can be removed. The first approxima-
tion was to treat the electrostatics at the level of the linear
Poisson-Boltzmann equation. At high salt and/or electro-
static potential, this approximation breaks down. The sec-
ond approximation was to neglect "ion relaxation," which
refers to the perturbation of the ion atmosphere in the
vicinity of the polyion in response to the imposed electric
and/or flow field. From theories on spheres containing cen-
trosymmetrical charge distributions, it has been known for a
long time that ion relaxation has a significant effect on
mobility when the polyion is highly charged or, more pre-
cisely, when the electrostatic potential at the polyion surface
is large (Wiersema et al., 1966). Within the last year, the BE
method has been generalized to account for both factors and
applied to spherical model polyions (Allison, 1996). The
solvent and mobile ion distributions are treated at the con-
tinuum level. Following a long-established protocol
(Wiersema et al., 1966; O'Brien and White, 1978; Fixman
and Jagannathan, 1983), the Poisson, Navier-Stokes, and
ion transport equations are solved simultaneously. What the
BE approach makes possible is the application of this pro-
tocol to polyions of arbitrary size and charge distribution,
such as detailed models of lysozyme. The objective of the
present work is to reconsider lysozyme, but to use a more

realistic model that accounts more accurately for electro-

considerations result in a substantial improvement in the
model results relative to experiment.

Because the BE procedure, in both the absence (Allison
and Tran, 1995) and presence (Allison, 1996) of ion relax-
ation, is described in detail elsewhere, only an outline of the
methodology is presented here in the next four subsections.
The methodology is then applied to lysozyme to assess the
importance of ion relaxation and a more accurate treatment

of electrostatics to the calculated mobilities.

OVERVIEW OF THE PROBLEM

An important quantity required in the mobility calculation is
the external force per unit volume, s(r), exerted on the fluid
at position r. It shall be assumed that s arises from the
various electrostatic interactions that are present. If A is the
total electrostatic potential and p is the charge density that
arises as a result of a local imbalance between co- and
counterions, then

(1)

The ion atmosphere is treated as a continuum, and p and A
are related through Poisson's equation,

v
- (E(r)VA(r)) = -4lTp(r) (2)

where E is the local dielectric constant, assumed to be equal
to Ei inside the polyion and E. outside. Outside the polyion,
p represents the charge density due to mobile salt ions:

p(r) = qE Zafna(C) (3)
a

where q is the protonic charge, a is an index over the mobile
ion species present, Za is the valence of ion a, and naX(r) is
the local concentration. Inside the polyion, p represents the
discrete fixed charge distribution relevant to some model of
interest. In the present case, this corresponds to the charged
residues of lysozyme derived from the crystal structure. It is
convenient to break the problem down into the potential of
a stationary polyion in the absence of an external electric or

flow field, AO, and a perturbation potential, 4,, defined
through

A= Ao + ip-er (4)

where e is an external electric field assumed to be constant
(or zero) in this work. In general, the local ion densities
cannot be determined by the potentials AO and alone.

Additional potentials, /Fa, are also introduced (O'Brien and

White, 1978), which represent the departure of n,, from its

equilibrium value, nayO:

n.( ) = () )3zq(t(r )+ b(r )) (5)

n.a0(?) = caOe -3zqAo(r) (6)

statics and includes ion relaxation. As shown below, these
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where ,3 = l/kBT, and c,,o is the ambient concentration of
ion a. To obtain (D,,, we must solve the ion transport
equation, which can be cast in the form (Allison, 1996)

V2' J(r) = faO) (7)

f(r) = [Da v(r) + P3zaq(Q'Da(C) + e)] AO(C)
(8)

where D. is the (scalar) diffusion constant of ion a, and v(r)
is the local fluid velocity. To obtain (D,, it is clear that we
also need v. The fluid is treated as an incompressible
continuum, and determination of the fluid velocity requires
solution of the Navier-Stokes (NS) and solvent incompress-
ibility equations,

V2v(r)- Yp([) =-s(

v(r) = 0 (10)

INCLUSION OF ION RELAXATION

Equation 2 for 4, and Eq. 7 for (F,a, can be put into the general
form

V*#(r) =f(r) (11)

which is amenable to BE procedures similar to those applied
to AO. Because the source terms, f, contain unknown quan-
tities that we are seeking to obtain, an iterative procedure is
adopted in which previous extimates of ,, Fa, (and v) are
used inj(r) to obtain updated 4, and '>,,. To begin with, ion
relaxation is ignored (nOa = n,O), and 4, can be solved
directly. Physically, 4i - e - r is the potential of the un-
charged, (low) dielectric polyion placed in a constant ex-
ternal field, e. In those cases in which the polyion is trans-
lated in the absence of an electric field, 4, is simply set to
zero to begin with. From Eq. 5, we can also set our initial
estimate of I, equal to -4,. Our initial estimate of s can be
written

&(r) = -po(r)V(AO(r) + +(r) - e r) (12)

where q is the solvent viscosity and p is the pressure.
Equation 9, however, requires s(r), given by Eq. 1.

In the general case, it can be seen that determination of s
requires simultaneous solution of the Poisson, Navier-
Stokes, and ion transport equations and that these equations
are inextricably coupled. In the absence of an electric or
flow field, the problem is greatly simplified, and that case
shall be considered next, followed by a discussion of the
general solution.

CALCULATION OF Ao
Before the external field is turned on or before the polyion
is translated with uniform velocity through the fluid, A
reduces to A0 (4, goes to 0), and Eqs. 2, 3, and 6 reduce to
the nonlinear Poisson-Boltzmann equation. This, in turn, is
uncoupled from both the ion transport and NS equations. As
described elsewhere (Allison, 1996), Ao is solved by a
nonlinear boundary element procedure similar to that of
Zhou (1994). The polyion surface is subdivided into N
triangular plates, and the assumption is made that the elec-
trostatic potential and normal derivative are constant over a
given plate. The space around the polyion is also divided
into J (typically 50) shells or "onion skins" that conform
closely to the polyion surface. Each shell, in turn, is divided
into N volume elements. In the present work, the shells are
not of uniform thickness. Shell thickness increases as the
distance from the polyion surface increases. Because poten-
tials enter as nonlinear source terms in the BE formulation,
it is necessary to iterate the potentials until they converge
(typically 5-10 iterations are sufficient).

The Ao term on the right side of Eq. 12 actually does not
contribute to the net force on the polyion and can be
ignored.
As in the case of the Poisson and ion transport equations,

a BE method is employed in the solution of the NS equation.
Given a rigid polyion translating with velocity u through an
incompressible fluid at rest far from the polyion, we can
write

=(r) - I U(x, r ) *w(xj)dSx- U(x, r) * s(x )dVx
s v

(13)

where S represents the polyion surface, V is the volume
external to the polyion, s is the external force on the fluid
per unit volume (Eq. 1), w represents the hydrodynamic
stress force per unit area on the polyion, and

1
(xQ, r) = - 8 y[T + R(x, )]

(R(x, r)ij = 2

(14)

(15)

where y = r - x, y = IYIy and I is the 3 x 3 identity matrix.
As discussed previously, the surface is discretized into N
platelets and the volume into M = J x N volume elements.
The assumption is made that w (or s) is constant over a
surface (or volume) element. It shall be assumed we have an
estimate for s and that stick boundary conditions hold,
which allows us to set v(r) = u for points on the polyion
surface. At the polyion surface, the only unknowns are the
w's, which can be computed by inverting a 3N X 3N matrix.
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Once the w's are known, a discretized version of Eq. 13 can
be used to compute v(r) at the M volume elements.

With initial estimates of qi, DFa, and v, Eq. 11 is used to
obtain better estimates of (D. and qf, which then allows us to
reestimate s. These can then be used in Eq. 13 to recompute
w and v. The whole procedure is iterated until all quantities
converge.

ELECTROPHORETIC MOBILITY

Consider a polyion translating with velocity u through a
fluid that is at rest far from the polyion. The jth component
of the total force is computed using a Teubner relation
(Teubner, 1982):

Zi =- u z + j [v(x) - I] s(x)dVx (16)

completely determine K and Q. From this, an electro-
phoretic mobility tensor, M, is readily obtained:

M=K-'1Q (20)

where -1 denotes matrix inversion. Averaging over all
orientations (which is valid, provided the external field is
sufficiently weak not to- significantly orient the polyion)
gives the"low field" electrophoretic mobility

1
Ax = Tr(M) (21)

where Tr denotes trace. For the cases considered in this
work, we have found that an accurate approximation for ,t
is given by

where zg) is the hydrodynamic force on an identical but
uncharged model polyion translating with unit velocity in
direction j, v(j)(x) is the fluid velocity at x that is due to the
uncharged polyion (translating with unit velocity in direc-
tion j), ij is a unit vector in direction j, and s is the external
force per unit volume (Eq. 1). It is straightforward to cal-
culate v0) by solving Eq. 13 subject to the boundary con-
dition v0) = ij at the polyion surface and setting the volume
integral to zero (because s equals 0 in this case). If we let
w00) represent the corresponding hydrodynamic stress force
per unit area on the uncharged polyion, we can also identify

N

zgh -wh(x)dSx IYO'Ak (17)
S k=1

where Ak is the area of platelet k.
Following O'Brien and White (1978), it is useful to

consider two transport cases and then combine them by
superposition to yield the mobility. In case 1, no external
electric field, e, is present, but the polyion is translated with
velocity u through an unbounded fluid that is at rest far from
the polyion. The total force, z(1), can be written

z(1) =-*K- u (18)

where K is a friction tensor. The components of K are
readily obtained by translating the polyion along three or-
thogonal directions and computing z(1) for each. In case 2,
the polyion is held stationary in a constant e-field, and the
total force can be written

z(2) = JQ * e (19)

As before, the components of Q can be determined by
placing a stationary particle in constant external fields along
three orthogonal directions. A total of six complete calcu-
lations (three of z(1) and three of z(2)) are required to

l3 Q
i= 3 (22)

This corresponds to simply ignoring the off-diagonal terms
in the K and Q matrices.

LYSOZYME STUDIES

The mobility studies on lysozyme reported here extend
earlier work (Allison and Tran, 1995) by 1) treating Ao at
the level of the full Poisson Boltzmann (PB) rather than the
linear PB equation, and 2) inclusion of ion relaxation. As in
previous work, we have the coordinates of the nonhydrogen
atoms of hen eggwhite lysozyme from the Brookhaven
Protein Databank (6lyz.brk). Associated with each nonhy-
drogen atom is an atom "exclusion radius," a, which is
assumed to be constant for all atoms. Following a procedure
described in detail previously (Allison and Tran, 1995),
surfaces made up of 128 triangular platelets are constructed
to approximate the actual surface of the protein. Basically,
each vertex vector associated with each platelet (three vec-
tors per platelet) is placed just far enough from the center of
mass of the protein to ensure that no "exclusion sphere" lies
beyond the vertex vector. For the N = 128 platelet structure,
o- is set to 0.45 nm. This choice gives a translational diffu-
sion constant of 10.6 x 10-7 cm2/s at T = 20°C and i1 =
1 cp, in good agreement with the low pH diffusion constant
measured experimentally (Dubin et al., 1971). We also need
the charge state of lysozyme as a function of pH, and for this
purpose we initially use the pKa values of Kuramitsu and
Hamaguchi (1980), which were also employed in our earlier
study (Allison and Tran, 1995). With these pKa's, the total
lysozyme charge (in protonic units) equals 16.79, 13.96,
12.80, 10.23, and 8.98 at pH = 2, 3, 4, 5, and 6, respec-
tively. We shall focus on the mobilities at low pH as before,
because of the reported dimerization of lysozyme above a
pH of -6 (Sophianopoulos and Van Holde, 1964). To
compare computed mobilities with experimental values of
Beychok and Warner (1959), the calculations are carried out
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at 0°C and 0.15 M monovalent salt. For the Ds'5, a hydro-
dynamic ion radius of 0.132 nm is employed, which corre-
sponds fairly well to the ionic conductivities of Na+ and
Cl- (Allison, 1996).
Once the model surface and charge states are defined, the

next step is to calculate Ao by the BE procedure. Shown in
Fig. 1 is the average surface potential of lysozyme at pH 3
as a function of iteration number. Unless otherwise stated,
Ei = 2, and Eo = 78 in this and subsequent cases, and
charges are placed at the appropriate positions based on the
crystal structure. The first potential represents the linearized
PB value. As the tigure illustrates, the surface potential
converges in about eight iterations. As the pH increases and
the magnitude of the net charge of the protein decreases,
nonlinear terms contribute progressively less to the poten-
tial. Shown in Fig. 2 is the behavior of the mobility of
lysozyme at pH 3 as a function of iteration number. The first
entry represents the mobility (using A0 computed at the
level of the full PB equation) in the absence of ion relax-
ation. At the start of the second iteration, new (Da and are

computed using previous estimates of 'Fa, 4,, and v in the
"source terms," f(r), in Eq. 11. Then s (Eq. 1) and then v

(Eq. 13) are updated, followed by calculation of net forces
(Eq. 16) and, finally, mobilities (Eqs. 18-22). Successive
iterations recompute ,a,, 4,, and v by the same procedure.
From Fig. 2 it is seen that the mobility converges in about
eight iterations.
The pH-mobility studies for lysozyme are summarized in

the next three figures. Ion relaxation is ignored in Fig. 3, but
the effect of going from the use of linear PB to full PB AO's
is demonstrated. On going from linear to full, the mobilities
decrease in the direction of experimental values. The effect
is seen to be greatest at low pH, which is what one would
expect, given the variation in net charge on lysozyme with
pH. In Fig. 4, ion relaxation is included, and calculated
mobilities are reduced more, which leads to still better
agreement between calculated and experimental mobilities.
Except at the lowest pH studied, agreement between the two

1.2

1.15 -

1.05

1 3 5 ~~~79 1 1 13 15
Iteration Number

FIGURE 1 Average surface potential, AO, versus iteration number. Ly-
sozyme at pH 3, N = 128, salt = 0.15 M, E, = 2, E0 = 78. The surface
potential is in 10-4 erg/esu.
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FIGURE 2 Mobility versus iteration number. Lysozyme at pH 3, N =

128, salt = 0.15 M, T = OC, Ei = 2, E. = 78.

is seen to be quite good. Furthermore, inclusion of ion
relaxation is seen to make the biggest difference when the
protein is most highly charged. This is qualitatively consis-
tent with the findings of Wiersema et al. (1966) on spheres.
The assumed charge distribution on lysozyme merits

additional consideration. In the studies reported so far, the
pKa's summarized by Kuramitsu and Hamaguchi (1980)
(KH values) have been used. Quite recently (Bartik et al.,
1994), these have been reexamined, and the revised pKa's
are called the B values. Although the two sets are, for the
most part, in good agreement, some significant differences
do exist. These include the following (residue, pKa(KH),
pKa(B)): Asp'8, 2.0, 2.7; Asp48, 4.3, 1.6; Asp52, 3.4, 3.7;
Asp66, 1.6, 0.9; Asp119, 2.5, 3.2; and C-term, 3.1, 2.8. At
most pH's, the net charge on lysozyme is very similar for
the two sets. At pH 2, for example, the net charge is
estimated to be 16.79 (KH) or 16.42 (B), so using the B pKa
values is expected to yield a slightly lower mobility. The
greatest difference is around a pH of 4.0, where the net
charge is estimated to be 12.80 (KH) and 11.41 (B). Be-
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FIGURE 3 Mobility of lysozyme at 0.15 M versus pH. +, Linear PB, no

relaxation; K, full PB, no relaxation; *, experiment.

B-O

II

Allison et al. 137

0 +

0 0

0
0

0 0

MO

l



Volume 73 July 1997

12

10

u 1

8

-

44

3 5
pH

FIGURE 4 Mobility of lysozyme at 0.15 M versus pH. +, Linear PB, no

relaxation; O, full PB, ion relaxation included; *, experiment.

cause of these differences, we felt it important to also study
the mobility versus pH using the B pKa's. The results (full
PB, ion relaxation included) for both the KH (diamonds)
and B (+) pKa sets are shown in Fig. 5, along with exper-

imental mobilities. The calculated mobilities are about the
same for the two cases, except at pH 4, where the mobility
calculated using the B pKa's is significantly lower and
much closer to the experimental value. Thus excellent
agreement between calculated and experimental mobilities
has been achieved in the pH range of 4-6, although differ-
ences remain at lower pH.

In colloid science, there is a long history of relating the
average polyion surface potential (zeta-potential) to electro-
phoretic mobilities. Consider the relation

EokBTT
t4~)47rYqc

12

1 0 -

8-

6-d

A

.: 5
pH

FIGURE 5 Mobility of lysozyme versus pH for Kuramitsu and Hamagu-
chi (KH) and Bartic (B) pKa) data sets. In the calcuated mobilities, salt

equals 0.15 M, electrostatics are calculated at the full PB level, and ion

relaxation is included. +, B data set; O, KH data set; E, experiment.

(23)

where

(24)
= kBT

is a reduced surface potential ((s denotes the average over

the polyion surface) and c is a dimensionless quantity. In the
theory of electrophoresis of thin double layers (Ka >> 1),
and a constant surface potential, c equals 1 (Smoluchowski,
1921). Fair and Anderson (1989) also considered thin dou-
ble layers in the absence of ion relaxation, but with a surface
potential that was not necessarily constant over the polyion
surface. They derived an equation equivalent to Eq. 23 with
c = 1. In the theory of electrophoresis of spheres (cen-
trosymmetrical charge, radius = a) in the absence of ion
relaxation (Henry, 1931), c is a complicated sigmoidal
function of Ka that approaches 2/3 in the limit Ka->O
("thick" double layer limit) and approaches 1 in the limit of
thin double layers. Similar behavior is also predicted for
spheroidal particles (Yoon and Kim, 1989) in the absence of
ion relaxation. For the size of polyions (a 2 nm) and

monovalent salt concentration (less than -0.15 M) of in-
terest in this work, c should be -2/3 on the basis of the
Henry, Yoon, and Kim models. On the basis of electro-
phoresis theory, we would expect a strong correlation be-
tween mobility and average surface potential. Plotted in Fig.
6 is the mobility versus y for the lysozyme model studies
(salt = 0.15 M) described above, using the KH pKa values.
Note that both the linear and full PB mobility results in the
absence of relaxation fall, to a good approximation, on a

straight line. In fact, the c values extracted from these
mobilities lie close to 2/3, which is expected from the Henry
or Yoon and Kim model-thick double layer limit. When ion
relaxation is included, mobilities fall below the no-relax-
ation curve, and the descrepancy increases with increased
surface potential.
To explore the dependence of mobility on surface poten-

tial further, additional detailed models of lysozyme are
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FIGURE 6 Mobility of lysozyme at 0.15 M versus reduced surface

potential. *, Linear PB, no relaxation; +, full PB, no relaxation; O, full

PB, ion relaxation included.
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considered in which 1) the actual charge distribution is
replaced with a single net charge placed at the "center of
mass"; 2) a range of monovalent salt concentrations is
considered; 3) the internal dielectric constant, Es, is varied.
The results of these studies are summarized in Table 1.
Mobility results are given in terms of the reduced variable c
defined by Eq. 23. Keep in mind that y is obtained from the
calculation of Ao that precedes the actual mobility calcula-
tion. A number of conclusions can be arrived at on the basis
of these results. In the absence of relaxation, we can con-
clude that Eq. 23, with c 2/3, gives a very good estimate
of the electrophoretic mobility. On the basis of the Henry
(1931) or Yoon and Kim (1989) models, it would be ex-
pected that c would actually be larger than 2/3 and approach
1 in the limit of high salt and/or large polyion size. From the
salt = 0.6 M case in Table 1 (where Ka = 5.4 if one adopts
a hydrodynamic radius (from the diffusion constant) of
2.025 nm for lysozyme), it does appear that c is indeed
larger than 2/3 in the absence of relaxation, but not by very
much. Furthermore, the details of the charge distribution
and internal dielectric constant have little effect on the
mobility whether or not ion relaxation is included or not. Ion
relaxation becomes progressively important as y increases,
which is consistent with the findings of Wiersema et al.
(1966) on spherical polyions containing a centrosymmetri-
cal charge distribution.

DISCUSSION

In earlier modeling studies (Allison and Tran, 1995) mobil-
ities were calculated at the level of the linear PB equation in
the absence of ion relaxation; the resulting mobilities are
given by + in Figs. 3 and 4. At the time, it was proposed
that a possible explanation for the discrepancy between
calculated and experimental mobilities was the existence of
a Stern layer of fluid and ions adjacent to the protein surface
that moved with the protein as a rigid body. The present
results, however, indicate that much of the discrepancy can

TABLE I Mobility c coefficients for various lysozyme models

Charge
pH Salt (M) model* E, y c(nr)# c(r)

2 0.01 d 2 3.247 0.676 0.579
2 0.05 d 2 2.235 0.682 0.610
2 0.15 d 2 1.635 0.685 0.635
2 0.15 d 78 1.655 0.640 0.659
2 0.15 p 2 1.646 0.666 0.619
2 0.60 d 2 1.043 0.699 0.662
3 0.15 d 2 1.382 0.686 0.648
4 0.15 d 2 1.279 0.684 0.651
4 0.15 p 2 1.302 0.664 0.636
5 0.15 d 2 1.035 0.684 0.659
6 0.15 d 2 0.914 0.687 0.664
6 0.15 p 2 0.942 0.665 0.647

*d/p refers to detailed/point charge distributions.
nr/r refers to no ion relaxation/ion relaxation included.

be removed by treating the equilibrium electrostatics more
accurately and by including ion relaxation.
As expected on the basis of electrophoresis theory, a

strong correlation between mobility and average surface
potential was shown to exist for lysozyme by considering a
range of pH, salt, and charge distributions. In the absence of
relaxation, a good estimate of the electrophoretic mobility is
given by

Eo(Ao)s
/.L z_

w
(25)

The advantage of this approximate expression is that it only
requires knowledge of the equilibrium potential on the
polyion surface rather than a full mobility calculation.
Equation 25 was arrived at by examining an array of models
for lysozyme, and we anticipate that it is valid for small
globular polyions in general, provided Ka (a is the hydro-
dynamic radius of the polyion) is less than -5. Ion relax-
ation reduces the mobility and the degree of reduction
increases as the average surface potential increases. From
Table 1, however, it appears that mobilities are not sensitive
to charge distribution and the internal dielectric constant,
even when ion relaxation is present.

In the present study, lysozyme was represented as a
structure made up of 128 plates. In previous work on
lysozyme in the absence of ion relaxation (Allison and Tran,
1995), as well as spherical polyions containing a variety of
charge distributions where ion relaxation was included (Al-
lison, 1996), it was found that mobilities obtained from the
128-platelet structures were comparable to those obtained
from more detailed 512-platelet structures. Furthermore, the
present mobility results on lysozyme are nearly independent
of charge distribution. On this basis, we have decided to
forego model calculations on 512-platelet models, because
they are computationally time consuming and, in all prob-
ability, would not change the results or conclusions of this
work. When ion relaxation is included and the electrostatics
are treated at the level of the full PB equation, calculated
and experimental mobilities are in very good agreement
above a pH of -3, where the absolute charge on lysozyme
is relatively small. At lower pH, experimental mobilities fall
below calculated values. This could be due to the adsorption
of counterions to the polyion surface, resulting in the for-
mation of "contact pairs." The contact pairs, in turn, would
not be expected to contribute to the mobility (Fuoss, 1978).
This point merits further study.
We expect that the conclusions arrived at in this work

regarding lysozyme can be extended to other globular pro-
teins, and future work will address that issue. A major
difficulty in the modeling of proteins comes in assigning the
appropriate charge to the residues. Fortunately, recent ad-
vances in the computation of ionization states of proteins
(Antosiewicz et al., 1996) are expected to be of considerable
value in that regard.
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