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SUMMARY

The Piwi-piRNA pathway represents a germline-spe-
cific transposon-defense system. C. elegans Piwi,
prg-1, is a non-essential gene and triggers a second-
ary RNAi response that depends on mutator genes,
endo-siRNAs (22G-RNAs), and the 22G-RNA-binding
Argonaute protein HRDE-1. Interestingly, silencing
of PRG-1 targets can become PRG-1 independent.
This state, known as RNAe, is heritable and depends
on mutator genes and HRDE-1. We studied how
the transgenerational memory of RNAe and the
piRNA pathway interact. We find that maternally
provided PRG-1 is required for de novo establish-
ment of 22G-RNA populations, especially those tar-
geting transposons. Strikingly, attempts to re-estab-
lish 22G-RNAs in absence of both PRG-1 and RNAe
memory result in severe germline proliferation de-
fects. This is accompanied by a disturbed balance
between gene-activating and -repressing 22G-RNA
pathways. We propose a model in which CSR-1
prevents the loading of HRDE-1 and in which both
PRG-1 and HRDE-1 help to keep mutator activity
focused on the proper targets.

INTRODUCTION

The Piwi-piRNA pathway is an RNAi-related mechanism that

is essential for germ cell development in most organisms

(Ghildiyal and Zamore, 2009; Ketting, 2011; Malone and Han-

non, 2009). Loss of this pathway results in strong upregulation

of transposon activity, apoptosis, and blocks at various stages

of meiosis. In contrast, the C. elegans Piwi pathway has been

shown to be not acutely required in germ cells (Batista et al.,

2008; Cox et al., 1998; Das et al., 2008; Wang and Reinke,

2008). Also the impact of PRG-1 on transposon silencing is

very limited (Das et al., 2008). Intriguingly, prg-1 mutant ani-

mals have a so-called mortal germline (Mrt) phenotype (Simon

et al., 2014), meaning that the germline deteriorates over

generations.

PRG-1 uses Piwi-interacting RNAs (piRNAs; in C. elegans

named 21URNAs) to identify targets, onwhich it triggers the pro-
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duction of endogenous short-interfering RNAs (endo-siRNAs;

22G RNAs) (Bagijn et al., 2012; Lee et al., 2012). This occurs in

a process that depends on an RNA-dependent RNA polymerase

(RdRP) and mutator proteins (Zhang et al., 2011), in so-called

mutator foci (Phillips et al., 2012) that flank bigger peri-nuclear

aggregates (P granules). Animals lacking mutator activity display

defects in RNAi and activation of various transposable elements

(Ketting et al., 1999; Tabara et al., 1999). Different Argonaute

proteins, including WAGO-1 (Gu et al., 2009), PPW-1 (Simon

et al., 2014), and HRDE-1 (Ashe et al., 2012; Buckley et al.,

2012; Luteijn et al., 2012; Shirayama et al., 2012), act as recipi-

ents for the 22G-RNA output of mutators. Interestingly, whereas

hrde-1 mutants also display a Mrt phenotype (Buckley et al.,

2012), mutator mutants do not (Simon et al., 2014). However,

mutator genes do affect germline mortality because they are

required for the suppression of the Mrt phenotype of prg-1 by

daf-2 (Simon et al., 2014).

As mentioned, PRG-1 can silence target genes through the

involvement of mutator genes. Interestingly, such PRG-1-initi-

ated silencing can become PRG-1 independent (Ashe et al.,

2012; Luteijn et al., 2012; Shirayama et al., 2012). This state,

referred to as RNAe, can be faithfully inherited across many

generations and depends on mutators, the nuclear 22G-RNA-

binding Argonaute protein HRDE-1, and chromatin factors

(Ashe et al., 2012; Luteijn et al., 2012; Shirayama et al.,

2012). In this light it is interesting to note that transposon acti-

vation is much stronger in mutator mutants than in prg-1 mu-

tants, as one of the most active transposons in C. elegans,

Tc1, is still mostly inactive in prg-1 mutants (Das et al., 2008).

Possibly, transposon silencing depends for a large extent on

the PRG-1-independent, but mutator-dependent RNAe-related

silencing memory.

In parallel to a memory that transmits silencing, C. elegans

gametes also transmit information on genes that are active (Con-

ine et al., 2013; Seth et al., 2013; Wedeles et al., 2013). This re-

quires the Argonaute proteins ALG-3, ALG-4, and CSR-1. In fact,

CSR-1 can reactivate genes that have been silenced through

PRG-1 and mutator activity (Seth et al., 2013). The molecular

mechanisms behind this activation are currently not clear. These

may involve chromatin-related effects (Claycomb et al., 2009;

Wedeles et al., 2013) but could also relate to 22G-RNA turnover,

since we previously described an enzyme named CDE-1 that is

required for CSR-1-bound 22G-RNA turnover through non-tem-

plated uridylation of CSR-1-bound 22G RNAs (van Wolfswinkel

et al., 2009). Whatever its mechanism of action, the CSR-1
r Inc.
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Figure 1. Mutator Genes Induce Sterility in Absence of Maternal 21U RNAs

(A) Schematic depicting the crosses performed to erase RNAe memory from prg-1 mutant animals.

(B) DAPI staining showing the range of germline defects in worms whose mutator activity was restored in the absence of PRG-1. Gonads are outlined by the

dashed line. The germlines of individual animals were classified into one of four categories: type I—none or very few germline cells; type II—some germ cells, but

no apparent differentiation; type III—some germ cells with apparent differentiation; type IV—wild-type germline. Types I–III animals are sterile.

(C and E) Quantification of the observed germline defects in wild-type animals where themutator pathway was reactivated in different genetic backgrounds. Each

dot represents 1%.

(D) Levels of 21U RNA determined by small RNA-seq of total RNA from L1 larvae of the indicated genotype. Error bars represent SD between biological

duplicates.

See also Figure S1.
pathway is extremely important since loss of its activity leads to

embryonic lethality and sterility (Claycomb et al., 2009; Qiao

et al., 1995; Rocheleau et al., 2008; Yigit et al., 2006).

We set out to test the idea that transposons are kept silenced

through RNAe-related memory and that PRG-1 is required

specifically for the initiation of transposon silencing and not for

maintenance. To do this we first erased the mutator-mediated

silencing memory from prg-1 mutant animals, and then re-

activated this memory system. Indeed, we find that trans-

poson-targeting 22G RNAs require PRG-1 to re-establish, and

we demonstrate that PRG-1 and HRDE-1 synergistically act to

silence Tc1 transposition. In addition, our experiments reveal

an acute requirement for PRG-1 for proper germ cell develop-

ment. We propose that this defect is related to mis-targeted mu-

tator complexes that start to act, through HRDE-1 andWAGO-1/
Develop
WAGO-2/WAGO-3, on transcripts that are normally protected

from silencing through CSR-1.

RESULTS

Mutator-Induced Sterility in prg-1 Mutants
To erase RNAe memory from prg-1 mutants, in the presence

of intact mutator activity, we created two strains (prg-1;mut-7

and prg-1;mut-16). Both strains lack 21U RNAs and RNAe-

related memory. These lines exhibit strong transposon mobiliza-

tion (see below) and are fertile. Cross offspring of these two

lines will remain prg-1 defective but will have mutator activity,

allowing one to address whether prg-1 is required to initiate

transposon silencing (Figure 1A). Unexpectedly, however, the

offspring of these crosses are completely sterile (Figures 1B,
mental Cell 34, 448–456, August 24, 2015 ª2015 Elsevier Inc. 449



1C, and S1A–S1C).We first checked the generality of this pheno-

type by combining prg-1mutation with other mutator alleles. For

this we used mut-14 and smut-1, two redundant RNA helicases

(Phillips et al., 2014). Animals lacking both mut-14 and smut-1

were shown to be RNAi defective, and we show here that mut-

14;smut-1 double mutants cannot maintain RNAe (Figure S1D).

When prg-1;smut-1;mut-14mutant hermaphrodites are crossed

with mut-7 animals that lack PRG-1 activity, again a strong ste-

rility phenotype develops (Figure 1C). If the sterility really comes

from the re-establishment of mutator activity, the above crosses

should yield fertile offspring if a third mutator protein is kept inac-

tive. Indeed, prg-1 mutant animals in which mut-7 and mut-16

are complemented while mut-14 and smut-1 are kept homozy-

gous mutant are fertile (Figure 1C). Consistent with the fact

that PRG-1 acts through 21U RNAs, re-establishment of mutator

activity in absence of PID-1, a factor required for 21U-RNA

biogenesis (de Albuquerque et al., 2014), results in the same

phenotype (Figure 1C).

Overall, the germ cell count in these animals is strongly

reduced, and no or only limited numbers of mature germ cells

are present. Both gonad arms tend to contain similar numbers

of germ cells (Figure S1E). The germ cells that are still present

in these animals express variable levels of the germ cell marker

PGL-1 (Figure S1F) (Kawasaki et al., 1998). We did not detect

expression of a somatic, neuronal gene unc-119 in the remain-

ing germ cells (data not shown), indicating that these germ cells

are not subject to gross germ cell-to-soma transformation.

Interestingly, the precise gonadal phenotype varies strongly

among individuals (Figure 1B). Collectively, our data show that

the prg-1 pathway is required for normal germ cell development

upon de novo establishment of mutator activity. The variable

nature of the developmental defect would be consistent with

rather stochastic molecular defects underlying the sterility

phenotype.

Parental Effects of Mutator-Induced Sterility
PRG-1-mediated silencing has a strong maternal component

(de Albuquerque et al., 2014). Consistent with this, we find that

prg-1/+ L1-stage offspring from prg-1 mutant hermaphrodites

have as few 21U RNAs as straight prg-1 mutant L1 larvae (Fig-

ure 1D), showing that the vast majority of 21U RNAs detected

in wild-type L1 larvae are of maternal origin. We then tested

whether maternal or paternal PRG-1 could rescue the sterility

and found that loss of maternal PRG-1 is sufficient to trigger ste-

rility upon re-establishment of mutator activity (Figure 2B, right

panel). Loss of only maternal (Figures 1C and 1E) or paternal

(data not shown) mutator activity does not result in sterility. We

conclude that PRG-1 affects fertility mainly through the maternal

lineage, whereas mutator activity acts both maternally as well as

paternally.

PRG-1 and HRDE-1 Cooperate to Silence Tc1
Transposition
We next analyzed small RNAs isolated from animals displaying

mutator-induced sterility. In order to reduce potential secondary

effects stemming from the developing germ cell phenotype, we

focused our sequencing efforts on L1 and L2 larvae. We used

homozygous wild-type and corresponding mutant strains as

controls as well as offspring from a cross between two mutator
450 Developmental Cell 34, 448–456, August 24, 2015 ª2015 Elsevie
mutants that have wild-type PRG-1 activity. For all samples,

two or three biological replicates were processed, and progeny

from crosses were hand-picked to make sure cross-progeny

were analyzed. Finally, we included random barcodes in the

small RNA libraries for the identification of unique ligation events.

We first looked at the abundance of transposon-targeting 22G

RNAs. As expected, these 22G RNAs are largely missing in

mutator mutants, and their levels stay stable in wild-type and

in prg-1 mutants (Figure 2A). This shows that the majority of

these 22G RNAs are inherited in a PRG-1-independent manner,

consistent with ongoing transposon silencing in prg-1 mutants.

When mutator activity is de novo established, transposon-tar-

geting 22G RNAs start to build up in L2 stage, in a process

that depends on PRG-1 (Figures 2A and 2B). This strongly sug-

gests that PRG-1 is required to initiate transposon silencing in

C. elegans, whereas it is not required for the 22G-RNA-mediated

memory of it.

To obtain more direct evidence of this idea, we determined

the germline reversion frequency of the unc-22::Tc1(st136)

allele. We confirmed that in prg-1 mutants this allele reverts at

a very low (Das et al., 2008) but reproducible frequency of

�10�5 (Figure 2C). In contrast, we could not detect reproducible

reversion events in hrde-1 mutants. Strikingly, in prg-1;hrde-1

double mutants we observe a 100-fold increase in Tc1 excision

frequencies, comparable with those in mut-16 mutants (Fig-

ure 2C). Loss of PRG-1 does not further increase Tc1 activity

in mut-16 mutants (Figure 2C), consistent with the idea that

PRG-1-mediated silencing is fully dependent on mutator activity

(Bagijn et al., 2012). Since PRG-1 seems to act primarily via sec-

ondary Argonaute proteins, and Tc1 silencing is still intact in

hrde-1 mutants, it is likely that additional Argonaute proteins

participate in Tc1 silencing. Indeed, we find that wago-1;

wago-2; wago-3 triple-mutant animals display activation of

Tc1 at levels similar to those observed in prg-1;hrde-1 double

mutants or mut-16 single mutants (Figure 2C). These data sug-

gest that both HRDE-1 and PRG-1 act through WAGO-1/

WAGO-2/WAGO-3 to silence Tc1.

Inappropriate Gene Silencing in Animals with
Mutator-Induced Sterility
Since transposon activation per se does not result in sterility in

C. elegans, the question remains: What causes sterility upon

reactivation of mutator activity in absence of 21U RNAs? Within

the so-called WAGO-clade, CSR-1 is the only Argonaute

required by itself for fertility (Yigit et al., 2006), and the RdRP

enzyme that makes CSR-1-bound 22G RNAs, EGO-1, has

been identified as an enhancer of a germline proliferation defect

(Qiao et al., 1995). Interestingly, CSR-1 stimulates gene expres-

sion (Claycomb et al., 2009), suggesting that loss of gene activity

is more detrimental to germ cells than loss of silencing. We hy-

pothesized that mutator-induced sterility may stem from inap-

propriate silencing of germ-cell-expressed genes. To test this

we checked whether expression of endogenous genes is

affected through single-worm RT-PCR analysis of a random

set of germ-cell-specific transcripts. We found that our ability

to detect transcripts from these genes differs among individual

sterile animals (Figure S2A), suggesting that these genes may

be stochastically, inappropriately silenced. Since this assay is

blind to the specific germ-cell-defect individuals and may report
r Inc.



Figure 2. Maternal 21U RNAs Are Required to Re-establish Transposon Silencing

(A) Column chart showing levels of 22G small RNAs mapping anti-sense to transposons in L1 and L2 larvae of the indicated genotypes. Error bars represent SD

between at least two biological duplicates. U: corrected for 21U RNA levels (see Experimental Procedures).

(B) Bar chart showing levels of 22G RNAs targeting various transposon families in larvae where the mutator pathway was reactivated in the presence (control

cross; mut-7_ 3 mut-16\) or absence (sterile cross; mut-7_ 3 mut-16;prg-1\) of maternal 21U RNAs.

(C) Column chart depicting the reversion frequency of unc-22::Tc1 in animals of the indicated genotype. Error bars represent SD among the values obtained from

three experiments.
on secondary defects, we addressed this issue also through vi-

sual analysis of a germ-cell-specific fluorescent reporter trans-

gene. We crossed a 21U-targeted mCherry transgene from a

mut-7 mutant male into prg-1 or prg-1;mut-16 double-mutant

hermaphrodites. Consistent with what we published before (de

Albuquerque et al., 2014), all cross offspring of the prg-1mutant

hermaphrodites showed mCherry expression in the germline.

Cross offspring of the prg-1;mut-16 double-mutant hermaphro-

dites displayed stochastic silencing of mCherry, even in animals

with apparently almost wild-type germline morphology (Figures

3A and S2B). We conclude that genes that are normally not

targeted for silencing can be silenced by mutator activity in
Develop
absence of both maternal 21U RNAs and mutator information

from both parents, possibly triggering the observed sterility

phenotype that develops in these animals.

CSR-1 and WAGO Pathways Recognize Mutual Targets
The above-described mutator-driven, ectopic silencing of genes

suggests that Argonaute proteins that induce silencing, such as

WAGO-1 and HRDE-1, have the potential to be effectively loaded

with 22G RNAs derived from expressed genes. In other words,

WAGO-1 and HRDE-1 should be able to accept 22G RNAs

that are normally found enriched in CSR-1. To address this,

we re-analyzed published HRDE-1 (Shirayama et al., 2012) and
mental Cell 34, 448–456, August 24, 2015 ª2015 Elsevier Inc. 451



Figure 3. Loading of CSR-1-Type 22G RNAs

into HRDE-1 and Inappropriate Gene

Silencing in the Germline

(A) Pie chart showing the fraction of offspring

that expresses a germline-specific mCherry::H2B

transgene, from a control cross (left) and cross

that results in sterile offspring (right).

(B) Levels of 22GRNAsmapping to protein-coding

genes targeted by CSR-1 (Table S1). Error bars

represent SD between at least two biological

replicates.

(C) Fraction of 22G RNAs mapping to protein-

coding genes targeted by CSR-1 that contain non-

templated 30 uridylation.
(D) Left panel depicts levels of 21U RNAs,

miRNAs, and 22G RNAs anti-sense to genes,

pseudogenes, and transposons in input and

HRDE-1 immunoprecipitates from either wild-

type or cde-1(tm1021) animals. Right panel

shows the proportion of 22G RNAs mapping

to genes annotated as CSR-1 targets and

genes annotated as mutator targets in HRDE-1

immunoprecipitates.

(E) Pie chart depicting fertility of cde-1;mut-16 and

cde-1;mut-16;hrde-1 mutant animals.

Also see Figures S2 and S3.
WAGO-1 (Gu et al., 2009) immunoprecipitation (IP) data and

found significant amounts of 22GRNAs from typical CSR-1 target

genes. To check whether these 22G RNAs represent truly

WAGO-1- or HRDE-1-bound 22G RNAs, we made use of the

fact that CSR-1-bound 22G RNAs show higher 30 non-templated

uridylation than 22GRNAs bound by other Argonautes (vanWolf-

swinkel et al., 2009). The uridylation frequencies of typical CSR-1-

bound 22G RNAs from theWAGO-1 and HRDE-1 IP datasets are
452 Developmental Cell 34, 448–456, August 24, 2015 ª2015 Elsevier Inc.
lower than in CSR-1 IPs (Figure S3) (Clay-

comb et al., 2009), suggesting that

these 22G RNAs do not stem from

CSR-1 contamination but reflect genuine

WAGO-1- and HRDE-1-bound 22G

RNAs. Consistent with this, a moderate

but significant drop of 22G RNAs derived

from CSR-1 target genes can be

observed upon loss of either mut-16 or

prg-1 (Figure 3B), accompanied by

increased uridylation frequencies of

CSR-1-pathway 22G RNAs (Figure 3C).

Given that CSR-1 operates independently

of mutator genes (Gu et al., 2009), these

data suggest that a non-CSR-1-bound

pool of 22G RNAs derived from typical

CSR-1 target genes is lost upon loss of

PRG-1 or MUT-16.

The reverse is also true. In previously

described CSR-1-bound 22G-RNA pop-

ulations (Claycomb et al., 2009), we

detect significant amounts of 22G

RNAs from genes that are not consid-

ered to be typical CSR-1 target genes

(Figure S3). Importantly, these 22G

RNAs show similar uridylation rates compared to 22G RNAs

derived from genes considered to be true CSR-1 targets (Fig-

ure S3), indicating that they are indeed bound by CSR-1 and

do not stem from non-CSR-1-bound 22G RNA contaminations.

These findings indicate that CSR-1 and WAGO-Argonautes do

not bind 22G RNAs from unique genes. Rather, a gene is char-

acterized by a certain ratio in which its 22G RNAs are repre-

sented in CSR-1 and WAGO-Argonaute proteins.



Figure 4. HRDE-1 and WAGO-1/WAGO-2/WAGO-3 Drive Mutator-Induced Sterility

(A) Levels of 22G RNAs mapping to protein-coding genes targeted by CSR-1 (Table S1). Error bars represent SD between at least two biological replicates. U:
corrected for 21U RNA levels (see Experimental Procedures).

(B) Fraction of 22G RNAs mapping to protein-coding genes targeted by CSR-1 that contain non-templated 30 uridylation in L1 and L2 larvae of the indicated

genotype. p values where calculated using the two-tailed t test and assuming a normal distribution. Error bars represent SD between at least two biological

replicates.

(C) Pie chart showing the fraction of the offspring expressing a germline-specific mCherry::H2B transgene, from the two indicated crosses. The left panel reflects

the same data as depicted in Figure 3A, right panel.

(D) Quantitation of the observed germline defects in the hrde-1 mutants and in wago-1/wago-2/wago-3 triple mutants, where the mutator pathway was re-

activated in the absence of functional 21U RNAs. Each dot represents 1%.

(E) Model describing how mutator-induced sterility can develop. See main text for more detailed description.

Also see Figure S4.
To further probe this balance, we checked whether

increasing the amount of 22G RNAs from typical CSR-1 tar-

gets can result in increased loading of HRDE-1 with such

22G RNAs. Since disruption of cde-1 leads to an over-accu-

mulation of CSR-1-type 22G RNAs (van Wolfswinkel et al.,

2009), we sequenced 22G RNAs from HRDE-1 immunoprecip-

itates from wild-type and cde-1 mutant animals. This revealed

that in cde-1 mutant animals, the fraction of CSR-1-target-

derived 22G RNAs in HRDE-1 is higher than in wild-type ani-

mals (Figure 3D). Interestingly, loss of MUT-16 in a cde-1

mutant animal triggers sterility that can be partially rescued

by loss of HRDE-1 (Figure 3E), strongly suggesting that in a

cde-1;mut-16 double mutant, HRDE-1 may be effectively

silencing CSR-1 target genes. We conclude that CSR-1,

WAGO-1, and HRDE-1 are loaded with 22G RNAs from each

other’s target genes and that a disturbed loading balance
Develop
among the various Argonaute proteins can have significant ef-

fects on germ cell development.

Impact of Mutator-Induced Sterility on 22G RNAs from
CSR-1 Target Genes
We next analyzed the 22G RNA content of L1 and L2 larvae that

develop mutator-induced sterility. The various small RNA pools,

including 21U RNAs and different 22G RNA classes, overall

behaved as can be expected from a loss of mutator activity or

PRG-1 (Figure S4). We then focused on 22G RNAs derived from

typical CSR-1 target genes and used uridylation frequencies of

22G-RNApools asaproxy for their physical associationwitheither

CSR-1 (high uridylation) or other Argonautes (low uridylation).

In wild-type animals, uridylation frequencies of typical CSR-1

22G RNAs increase when animals develop from L1 into L2 larvae

(Figure 4A). At the same time, the abundance of these 22G RNAs
mental Cell 34, 448–456, August 24, 2015 ª2015 Elsevier Inc. 453



drops strongly (by �70%) (Figure 4B). In contrast, during the

same developmental step, a significant decrease in uridylation

of CSR-1 22G RNAs is observed in animals that display muta-

tor-induced sterility, accompanied by only a small drop in 22G-

RNA abundance (�35%) (Figures 4A and 4B). A possible expla-

nation for these observations could be that in animals that

develop mutator-induced sterility, the 22G RNAs from typical

CSR-1 targets are in fact not bound by CSR-1 but by another Ar-

gonaute protein, triggering ectopic gene silencing and sterility.

HRDE-1 Is Required to TriggerMutator-Induced Sterility
The nuclear protein HRDE-1 is a good candidate to be loaded

with such CSR-1-target-derived 22G RNAs, because HRDE-1

has been shown to be downstream of mutator proteins and

PRG-1 (Ashe et al., 2012; Buckley et al., 2012; Luteijn et al.,

2012; Shirayama et al., 2012). Furthermore, we have shown

that HRDE-1 can be readily loaded with 22G RNAs that normally

load into CSR-1 (Figure S3) and that mutation of hrde-1 can

partially rescue the sterility ofmut-16;cde-1mutants (Figure 3E).

We thus tested whether HRDE-1 is required for the above-

described, undue, stochastic silencing of a germline-expressed

mCherry reporter transgene during mutator-induced sterility.

Indeed, in absence of HRDE-1, this silencing is no longer

observed (Figure 4C). In fact, the sterility phenotype itself is

also largely rescued by loss of HRDE-1 (Figure 4D), and, consis-

tent with these data, Phillips et al. (2015; in this issue of Develop-

mental Cell) demonstrate that immuno-purified HRDE-1 binds

more 22G RNAs from CSR-1 targets during mutator-induced

sterility. Interestingly, a wago-1/wago-2/wago-3 triple mutation

also rescues the sterility (Figure 4D). These combined results

provide strong evidence that Argonaute-driven silencing drives

the mutator-induced sterility phenotype.

DISCUSSION

Multiple Argonaute Proteins Drive Tc1 Silencing in
C. elegans

We demonstrate a requirement for PRG-1 in the establishment

of de novo transposon 22G RNAs and show that prg-1, hrde-1,

and wago-1/wago-2/wago-3 are all involved in executing Tc1

silencing. An interesting possibility is that the WAGO-1/WAGO-

2/WAGO-3 proteins reflect the actual silencing Argonautes and

that PRG-1 and HRDE-1 only bring targeting specificity into

the mutator foci that drive 22G-RNA biogenesis. In this light,

PRG-1 could be seen as the provider of hard-wired (i.e.,

genome-encoded) silencing information, while HRDE-1 provides

epigenetic memory of silencing. These findings extend the func-

tional parallel between the C. elegans PRG-1 pathway and

piRNA activity in other animal species, including the importance

of the maternal piRNA pool (Le Thomas et al., 2014a, 2014b).

Parental Memory of RNAe
This study, as well as previous studies (Alcazar et al., 2008; Ashe

et al., 2012; Grishok et al., 2000; Luteijn et al., 2012; Shirayama

et al., 2012; Stoeckius et al., 2014), clearly demonstrates that

mutator-dependent silencing information inherits through both

the paternal and maternal lineages. It is, however, not clear

how this memory is precisely transmitted. It seems likely that

this occurs in the form of 22G RNAs, but how these small
454 Developmental Cell 34, 448–456, August 24, 2015 ª2015 Elsevie
RNAs drive self-renewal is unclear. Given that mutator proteins

are clustered in foci (Phillips et al., 2012), one scenario is that

certain Argonaute proteins, including PRG-1 and HRDE-1, are

capable of targeting mRNAs to these mutator foci, even though

at steady state neither PRG-1 nor HRDE-1 has been reported to

be in these foci. Since mutator foci are very small, this could be

due to a lack of resolution in the experiments. Alternately, such

targeting of transcripts to mutator foci may be indirect. For

example, chromatin changes induced by HRDE-1 may lead to

routing of transcripts from HRDE-1-targeted loci into mutator

foci. Such mechanisms have been proposed to act in small-

RNA-related chromatin pathways in Drosophila and fission

yeast (Keller et al., 2012; Klattenhoff et al., 2009; Zhang et al.,

2014).

Molecular Mechanism behind Mutator-Induced Sterility
Our results suggest that inappropriate targeting of CSR-1 target

transcripts, i.e., mRNAs that are expressed in germ cells, by mu-

tator activity, followed by loading of silencing-inducing Argo-

naute proteins with the resulting 22G RNAs, leads to sterility

(see Figure 4E for a model). Interestingly, our data indicate that

also in wild-type animals, mutators act on CSR-1 targets,

although apparently this does not result in silencing of these tar-

gets. The easiest explanation for this is that in wild-type animals

the small number of CSR-1-type 22G RNAs that is loaded into

Argonaute proteins that drive silencing does not suffice to trigger

silencing (also see next section). We propose that sterility de-

velops only when 22G-RNA production fromCSR-1 target genes

is amplified, for example, through mis-directed mutator activity,

triggered by absence of both parental 22G-RNA populations and

maternal 21URNAs. Various Argonaute proteins can execute the

silencing leading to sterility. Whether these serve redundantly or

act in more specialized settings is currently unclear. A second

mechanism through which typical CSR-1-target 22G RNAs can

be increased is through loss of CDE-1. These can trigger sterility,

through HRDE-1, when ‘‘regular’’ mutator-driven 22G RNAs are

removed, indicating that the ectopic mutator activity is but one

mechanism to disrupt the balance between gene silencing and

gene activity.

CSR-1: Gene Activation or Protection from Silencing?
How does CSR-1 counteract silencing? This issue has not been

fully resolved. Some experiments have indicated that CSR-1 as-

sociates with chromatin (Claycomb et al., 2009; Wedeles et al.,

2013), and hence a role for CSR-1 in maintaining open chromatin

seems plausible. However, whether this is a direct effect of

CSR-1 on chromatin or whether such chromatin effects are sec-

ondary remains unresolved. CSR-1 is also found on P granules,

which are cytoplasmic structures. Therefore, CSR-1’s role in

maintaining gene expression might also depend on cytoplasmic

activities. We propose that an important function of CSR-1 may

be to de-stabilize 22G RNAs in a target RNA-dependent manner,

similar to what has been described for miRNAs (Ameres et al.,

2010). This is inspired by our finding that the number of CSR-

1-bound 22G RNAs drop abruptly when animals develop from

L1 to L2 stage, when the primordial germ cells (PGCs) become

transcriptionally more active, accompanied by a rise in uridyla-

tion frequency. We demonstrated before that uridylation of

these 22G RNAs by CDE-1 suppresses their abundance (van
r Inc.



Wolfswinkel et al., 2009), and we now show that at least a frac-

tion of this expanded pool of 22G RNAs is bound by HRDE-1.

Hence, target-dependent 22G-RNA de-stabilization might pre-

vent the loading of 22G RNAs into HRDE-1, or similar Argonaute

proteins, thus repressing silencing activities on CSR-1-targets.

Such amechanism could provide a silencing threshold, ensuring

that a minimum level of 22G-RNA production needs to be

achieved before silencing takes effect. Mutator activity may

have evolved for that very purpose. Future experiments aimed

at the loading of individual Argonaute proteins under different

experimental conditions will be required to further test these

hypotheses.

EXPERIMENTAL PROCEDURES

Sample Preparation for Small RNA Sequencing

C. elegans L1 larvae were obtained by bleaching gravid adults and hatching

the eggs in M9. L1 cross-offspring larvae were obtained by single picking

200 eggs to an unseeded nematode growth media (NGM) plate, bleaching

those eggs to remove any bacteria that were carried along, and allowing

the eggs to hatch overnight. L1 larvae were then re-suspended in M9. Cross

offspring were identified through the punc-119::GFP transgene brought in

via the male. L2 larvae were picked and washed in M9 buffer for each

sample.

Total RNA Isolation

One hundred fifty L1 or 50 L2 C. elegans larvae were washed in M9 buffer

(22 mM Na2HPO4, 33 mM KH2PO4, 86 mM NaCl, and 1 mM MgSO4) and di-

gested in lysis buffer (200 mM NaCl, 100 mM Tris [pH 8.5], 50 mM EDTA,

0.5% SDS, and 200 ug/mL Proteinase-K) for 3 hr at 65�C followed by 15 min

at 95�C to denature the Prot-K. Lysate was then incubated with DNase I

(NEB) for 30 min at 37�C. Total RNA was then isolated using TRIZOL-LS ac-

cording to manufacturer instructions and dissolved in 8 uL of H2O.

Library Preparation, Sequencing, and Data Analysis

Detailed procedures are described in the Supplemental Experimental Proce-

dures. Sequencing data are available at GEO: GSE68988.

WAGOs IP Data Analysis

Sequencing data from CSR-1 IP, WAGO-1 IP, and WAGO-9 IP were obtained

from Claycomb (Claycomb et al., 2009), Gu (Gu et al., 2009), and Shiryama

(Shirayama et al., 2012), respectively. The raw reads in FastQ format were

filtered from 50 barcodes 30 adaptor sequences using a custom python script,

mapped, and processed to the C. elegans genome reference WS224, as

mentioned before, with the exception that any gene was allowed to be in

several ‘‘target categories.’’

Transposon Excision Analysis

For each analyzed genotype, mutant worms carrying the unc-22::Tc1 inser-

tion were singled into a 6 cm NGM plate seeded with 100 ml of OP50 and

grown at 20�C. Plates were scored for wild-type moving worms at three

different time points: when the total number of worms per plate was around

50, when the total number of worms per plate was around 100, and when

the plate was starved, to which we estimated the total number of worms

per plate to be 1,000. Transposition frequencies at each time point were

calculated using the following formula: f = �ln[(T � R) / T] / N, where T = total

number of plates scored, R = number of plates with revertants, and N = num-

ber of worms in the plate. Each time point was considered as a biological

replicate.
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