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a b s t r a c t

In the 21st century, climate change is considered to be one of the greatest environmental threats to the
world, and the changes in climate extremes are estimated to have greater negative impacts on human
society and the natural environment than the changes in mean climate. This study presents the
projections of future changes in extreme temperature events under A2 and B2 SRES scenarios using the
statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum River basin. This area
is located in Pakistan and India. In order to get realistic results, bias correction was also applied to
downscale the daily maximum and minimum temperature values before calculating 8 intensity and
4 frequency indices. Validation (1991–2000) showed great reliability of SDSM in ascertaining changes for
the periods 2011–2040, 2041–2070 and 2071–2099, relative to 1961–1990.

The intensity of the highest and the lowest night time temperatures is simulated to be higher than
the highest and lowest day time temperatures. In contrast, the intensity of high night time temperature
(hot nights) is projected to be lower than high day time temperature (hot days). The number of hot days
and hot nights is predicted to increase, and by contrast, the frequency of cold days and cold night is
predicted to decrease in all three future periods. Almost all the seasons will witness warming effects in
the basin. However, these effects are much more serious in spring (hot days and nights) and in winter
(cold and frosty days).

On the whole in the Jhelum basin, the intensity and frequency of warm temperature extremes are
likely to be higher and the intensity and frequency of cold temperature extremes to be lower in the
future.

& 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

According to the 5th Assessment Report (AR5) of the Inter-
governmental Panel on Climate Change (IPCC), global (land and
ocean) average temperature has shown a 0.85 1C (0.65–1.06 1C)
increase over the period of 1800–2012 (IPCC, 2013), and a
0.7470.18 1C increase during the last hundred years (1906–
2005) (IPCC, 2007). This trend in global warming is predicted to
likely increase during the 21st century under all the Representative
Concentration Pathways (RCPs). The projected values of increase
are 0.3–1.7 1C (RCP2.6), 1.1–2.6 1C (RCP4.5), 1.4–3.1 1C (RCP6.0),
2.6–4.8 1C (RCP8.5) for 2081–2100, relative to 1986–2005 (IPCC,
2013). Such changes in globle mean temperature can radically

disturb human society and the natural environment (Ashiq et al.,
2010). However, the changes in extreme temperature events such
as heat waves, severe winter and summer storms, hot and cold
days, and hot and cold nights (Mastrandrea et al., 2011) can cause
more severe impacts on human society and the natural environ-
ment. Consequently, extreme events have got greater attention by
scientists in the last few years (Sanchez et al., 2004). It is reported
in AR5 that between 1951 and 2010, the number of warm days and
nights has increased, and the number of cold days and nights has
decreased on a global scale. In addition, the time length and
frequency of warm spells, including heat waves, have also
increased since the middle of the 20th century (IPCC, 2013).

In the last one decade, many studies have reported different
extreme temperature events due to climate change in many
regions of the globe; for example, the 2003 summer heat wave
over Europe and the Russian heat wave (Zong and Chen, 2000;
Schar and Jendritzky, 2004; Cheng et al., 2012; Frias et al., 2012;
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Lau and Kim, 2012). Huynen et al. (2001) explored how extreme
cold or hot temperature events can increase human mortality rates
(Huynen et al., 2001).

Changes in extreme events have triggered massive conse-
quences for human society and for the natural environment all
over the world. Moreover, climate change has the potential to
change the intensity and frequency of extremes. More severe
climate changes can cause more severe extreme events, causing
dramatic impacts with unpredictable consequences. Therefore, the
prediction of climate extremes is critical information that is
needed to assess the impact of potential climate change on human
beings and on the natural environment. Such information is also vital
for long-term planning at regional and national levels for mitigation
and adaptation strategies (Frias et al., 2012; Gu et al., 2012).

Currently, a commonly used approach for predicting the
variability and changes in climate variables, on global and con-
tinental levels, is to drive Global Climate Models (GCMs) with
different emission scenarios of CO2 (Fowler et al., 2007; Gu et al.,
2012). However, the GCMs' coarse resolutions (100–500 km)
reduce their applicability where regional scales are concerned.
Regional scales require a high resolution to adequately represent
complex topographical features when the environmental and
hydrological impacts of climate change are to be examined there.
Topographies such as the Tibet Plateau and the Himalayas in Asia
are cases in point (Gu et al., 2012).

To overcome this problem, several statistical and dynamical
downscaling models have been developed in the last two decades
to make the GCMs' coarse temporal and spatial outputs useful at a
local or regional level (Mahmood and Babel, 2013). The local scale
is defined as 0–50 km and the regional scale as 50�50 km
(Xu, 1999). Among these downscaling models, the Statistical
Downscaling Model (SDSM) has been used widely throughout
the world in climate change (both mean and extreme) assessment
studies (Wilby et al., 2002; Gachon et al., 2005; Gagnon et al.,
2005; Chu et al., 2010; Huang et al., 2011; Wang et al., 2012;
Mahmood and Babel, 2013).

A few studies carried out in East and South Asia, such as Islam
et al. (2009), Gu et al. (2012), Revadekar et al. (2012) and Wang
et al. (2012), explore observed and future changes in extreme
temperature events of climate variables. Most of these studies
have been conducted over Chinese and Indian regions. To the best
of our knowledge, only one study, conducted by Islam et al. (2009),
was carried out in Pakistan. Islam et al. study assessed future
changes in extreme temperature events (for example, warm and
cold spells, warm and cold nights, and warm and cold days) for
only one future period (2071–2100) and under only the A2
scenario, using a regional climate model, Providing Regional
Climates for Impacts Studies (PRECIS), with a resolution of
50 km. In general, the skill of the RCM depends greatly on the
GCM's driving forces, such as land use data, land–sea contrast, and
orography. Thus, RCMs are likely to inherit systematic errors
present in GCMs. Moreover, RCMs are computationally intensive
and dependent upon the resolution used and the domain size
adopted, which limits the number of experiments for climate
change scenarios (Wilby and Wigley, 1997; Hay and Clark, 2003;
Fowler et al., 2007). In Islam et al.'s study, the model was validated
with Climate Research Unit (CRU) and observed data. During the
validation with CRU data, the researchers validated only mean
monthly temperature instead of all the temperature indices which
were used in their study. The model's performance was reasonably
good only in February, July, August, and September, while in the
other months, the researchers stated that the model showed cold
and warm biases of about 2–5 1C. During validation with observed
data, although more than a hundred climate stations are available
in Pakistan, they used only 17 climate stations for the entire area
(796,095 km2) of the country, a number that appears to be quite

insufficient. They also reported that the simulated daily data was
not reliably compatible with observed data because in the model,
topographic features like narrow peaks and valleys were
smoothed out. In other words, to the best of our knowledge, no
studies have been published so far that explore the extreme
temperature events in the trans-boundary region (located in
Pakistan and India) of the Jhelum River basin. While it is true that
Islam et al. (2009) did cover some area of the Jhelum River basin,
they restricted themselves to only the western part of the basin,
which is located in Pakistan.

The present study is targeted to offer comprehensive simula-
tions of extreme temperature events under two scenarios of
HadCM3, A2 and B2, using SDSM in the trans-boundary area of
the Jhelum River basin for three future periods: 2011–2040, 2041–
2070, and 2071–2099. A total of 12 indices (8 intensity and
4 frequency) were used to explore temperature extremes in the
basin. In addition, this study also faced the big challenge of
applying SDSM to examine extreme temperature events in the
Jhelum basin, which is mountainous in nature and is greatly
influenced by the monsoon.

2. Study area and data description

2.1. Study area

The Jhelum River basin (JRB) is located in the north of Pakistan,
and is spread between 33–351N and 73–75.621E, as shown in
Fig. 1. The Jhelum River is one of the major tributaries of the Indus
River, the largest river of Pakistan. The Indus River's drainage area
is 1,165,500 km2. The Jhelum River drains a total area of
33,342 km², with an elevation ranging between 235 and 6285 m.
The JRB is actually the watershed of the Mangla Reservoir, the
second biggest reservoir in Pakistan. The primary function of this
reservoir is to supply water for irrigation. Hydropower is a
byproduct of irrigation. The installed capacity of the Mangla power
plant is 1000 MW, which is 6% of the country's total installed
capacity. The Mangla reservoir has the capacity to irrigate 6 million
hectares of land (Archer and Fowler, 2008; Mahmood and Babel,
2013).

The basin has great spatial and temporal variability in climate,
with a mean annual temperature of 13.72 1C and a mean annual
precipitation of 1202 mm. The northern areas of the basin are
much colder than the southern areas. For example, Naran (located
in the northern part of the basin) and Jhelum (located in the
southern part of the basin) are the coldest and hottest climate
stations in the basin, with mean annual temperatures of 6.14 1C
and 23.53 1C respectively. January with a mean annual tempera-
ture of 2.9 1C and July with a mean annual temperature of 23 1C
are the coldest and the hottest months respectively. Murree
receives the highest precipitation among all the climate stations.
Its mean annual precipitation is 1765 mm, and Srinagar, with
mean annual precipitation of 764 mm, gets the lowest precipita-
tion among all the climate stations (Mahmood and Babel, 2013).

2.2. Data description

The historical daily and monthly data of maximum tempera-
ture (Tmax) and minimum temperature (Tmin) for 14 climate
stations (Fig. 1) was obtained from the Pakistan Meteorological
Department (PMD), the Water and Power Development Authority
of Pakistan (WAPDA), and the India Meteorological Department
(IMD), for the period of 1961–2000. The data of 4 weather stations,
namely Srinagar, Kupwara, Gulmarg, and Qazigund, were obtained
from the IMD. The data of another 4 stations, Rawlakot, Plandri,
Kotli, and Naran, were obtained from the WAPDA, and the data of
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the rest of the weather stations (Muzaffarabad, Jhelum, Garido-
patta, Balakot, Murree, and Astore) were obtained from the PMD.
From among this data of climate stations, there were some parts
that were missing; such missing parts were completed with
multilevel regression using WinMice software (Jacobusse, 2005).

Two types of daily predictors’ data required for this study were
obtained from a Canadian website (http://www.cics.uvic.ca/scenar
ios/sdsm/select.cgi): (a) the 26 predictors of the National Center of
Environmental Prediction (NCEP) for the period of 1961–2000;
and (b) the 26 predictors of HadCM3, for A2 and B2 scenarios, for
the period of 1961–2099. These datasets were specially processed
for SDSM. During the preparation, the NCEP predictors (2.51�2.51)
were first interpolated to the grid resolution of HadCM3
(2.51�3.751) to eliminate the spatial mismatch. Then, the NCEP
and HadCM3 predictors were normalized with the mean and
standard deviation obtained by the long period of 1961–1990
(CCCSN, 2012).

3. Methodology

3.1. Description of SDSM

The Statistical Downscaling Model (SDSM), developed by Wilby
et al. (2002), is a combination of Multiple Linear Regression (MLR)
and the Stochastic Weather Generator (SWG). MLR generates
statistical/empirical relationships between NCEP predictors and
predictands during the screening process of predictors, and the
calibration process of SDSM results in some regression parameters.
These parameters, along with NCEP and GCM predictors, are used
to generate a maximum of 100 daily time series to fit closely with
the observed data during validation, and twenty time series are
considered as the standard, a precedent set by other studies as
well (Wilby et al., 2002; Gagnon et al., 2005; Chu et al., 2010).

In SDSM, various indicators—partial correlation, correlation
matrix, explained variance, P-value, histograms, and scatter plots
—can be used to select some suitable predictors from a multitude
of atmospheric predictors. Multiple co-linearity, which can mis-
guide end results among predictors, must be considered during
the selection of predictors. Ordinary Least Squares (OLS) and Dual
Simplex (DS) are two kinds of optimization methods available for
SDSM. OLS is faster than DS and produces comparable results with
DS (Huang et al., 2011). There are two kinds of sub-models,
unconditional and conditional, which are used according to the
requirement of the predictands. For example, the unconditional
sub-model is used for an independent variable like temperature,
and the conditional is used for a conditional (dependent) variable
like precipitation (Wilby et al., 2002; Ashiq et al., 2010). SDSM has
the ability to transform the data into different forms such as the
logarithmic, square root, and fourth root to make it normal before
the said data can be used in regression equations (Khan et al.,
2006). To develop SDSM, two kinds of daily time series are
needed: NCEP predictor daily time series and observed daily time
series (Huang et al., 2011). The mathematical details of this model
are provided in the study by Wilby et al. (1999).

3.1.1. The screening of predictors
The screening of large scale variables is the most important

process in all types of statistical downscaling (Wilby et al., 2002;
Huang et al., 2011). There are many indicators that can be used in
this process. In the current study, a combination of the correlation
matrix, partial correlation, and P-value was used. The same
combination was also used in Huang et al. (2011) and Mahmood
and Babel (2013). The selection of the first and the most appro-
priate predictor is relatively easy, but the selection of the second,
third, fourth and so on is much more subjective. Therefore, a more
quantitative procedure, also used by Mahmood and Babel (2013),

Fig. 1. Location map of the Jhelum River basin and the meteorological stations used in the present study.
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was applied for screening the predictors for each local climate
variable and at each climate station in this study.

First, a correlation matrix between each predictand and the
NCEP predictors (26 in this study) is found out; and then highly
correlating predictors (10 in this case) are selected and arranged in
descending order. These predictors must show a physical relation
with the predictands. In this method, the highest ranked predictor
is called the super predictor (SP). Following this, each predictand,
along with the SP, is regressed with the remaining predictors (9 in
this study) to find out the absolute correlation coefficient between
the predictor and predictand, the absolute correlation coefficient
between individual predictors, absolute partial correlation, and
the P-value. Then, the predictors with P-value greater than α (0.05)
are eliminated to make the results more statistically significant,
and the predictors with high individual correlation (0.5 in this
study) are also removed in order to eliminate any multi-co-
linearity. According to Pallant (2007), a correlation coefficient less
than 0.7 between two predictors is acceptable (Pallant, 2007).
After this, percentage reduction (PR) in absolute partial correlation
is calculated by the absolute correlation coefficient between a
predictor and a predictand (R) and the partial correlation coeffi-
cient between a predictor and a predictand (Pr) using the follow-
ing equation:

PR¼ Pr�R
R

� �
ð1Þ

At the end, the predictor with the least PR is selected as the
second most suitable predictor. Similarly, the third, the fourth and
further predictors are chosen by repeating the procedure outlined
above.

It can be seen in different studies (Wilby et al., 2002; Chu et al.,
2010; Mahmood and Babel, 2013) that mostly 1–3 large scale
variables are believed to be enough to capture the variation of a
predictand during calibration. It is better to use a smaller number
of predictors during calibration because as the number of pre-
dictors increases in the regression equation, the chances of multi-
ple co-linearity also increase. So, the fewer the predictors, the
lower is the chance of multiple co-linearity during calibration.

3.1.2. Calibration and validation
Based on the available observed data, two daily datasets, 1961–

1990 and 1970–1990, were selected for the calibration of Tmax
and Tmin. In the present study, SDSM, using a monthly sub-model,
was developed with the NCEP predictors that were selected during
the screening process at each site in the Jhelum basin. Explained
Variance (E) and Standard Error (SE) were used as performance
indicators during the calibration of SDSM, a procedure also followed

in studies like Chu et al. (2010), Huang et al. (2011) and Mahmood
and Babel (2013).

With the calibrated model, 20 ensembles each for Tmax and
Tmin were simulated for 1961–2000, feeding the NCEP, A2, and B2
predictors. The mean values of these ensembles were used in this
study. The model was validated with observed data for 1991–2000
(Wang et al., 2012), using daily, monthly and seasonal time series
(Huang et al., 2011). In the present study, three performance
indicators—the coefficient of determination (R2), the ratio of
simulated to observed standard deviations (RS), and the root mean
square error (RMSE)—were used for validation (Wang et al., 2012).
RS indicates the degree of dispersion and should be closer to 1.
A value of 1 shows that both datasets—observed and simulated—
have the same kind of dispersion. R2 and RMSE describe the
accuracy of the model. For this study, these indicators were
calculated for each climate station, and then the mean values of
each indicator were obtained from all the stations. In addition, the
mean monthly, seasonal and annual values of extreme indicators
calculated from simulated Tmax and Tmin daily time series (NCEP,

Table 1
Description of extreme temperature indices used in this study.

Code Description Definition Units

Intensity indices
TXx Hottest days Max values of daily max temperature 1C
TNx Hottest nights Max values of daily min temperature 1C
TXn Coldest days Min values of daily max temperature 1C
TNn Coldest nights Min values of daily min temperature 1C
TX_90P Hot days 90th percentile value of data describes that at least 90% of the values in the data are less than or equal to this value 1C
TN_90P Hot nights 90th percentile value of data describes that at least 90% of the values in the data are less than or equal to this value 1C
TX_5M Max_5Tot Max 5 day average of Tmax 1C
TN_5M Max_5M Max 5 day average of Tmin 1C

Frequency indices with fixed thresholds
HD Hot days Number of days with Tmax4351C days
CD Cold days Number of days with Tmaxo151C days
HN Hot nights Number of days with Tmax4201C days
FD Frost days (Cold nights) Number of days with Tmaxo01C days

Table 2
Selected predictors for Tmax and Tmin during screening, for calibration, in the
Jhelum River basin.

Predictor name Code Abs.
Pr.

Relationship b/w predictand
(Tmax) and predictors

Tmin (predictand)
Mean

temperature
at 2 m height

temp 0.76 These predictors show physical and logical
relationships with the predictand (Tmax).
Mean temperature at 2 m height (temp) is
directly proportional with the Tmax, and
others predictors are indirectly proportional
to Tmax

Surface zonal
velocity

p_u 0.38

Surface vorticity p_z 0.32
850 hPa vorticity P8_z 0.25
500 hPa relative

humidity
r500 0.22

Tmin (predictand)
Mean

temperature
at 2 m height

temp 0.82 Same as Tmax

Surface zonal
velocity

p_u 0.37

850 hPa vorticity P8_z 0.32
Surface vorticity p_z 0.32
Surface relative

humidity
rhum 0.18

500 hPa relative
humidity

r500 0.12

Abs. Pr.: absolute partial correlation coefficient.
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A2, and B2) were plotted against the observed datasets. This
method has been used by many users of SDSM (for instance,
Ashiq et al., 2010; Chu et al., 2010; Wang et al., 2012) in order to
observe the variations and patterns.

3.2. Future changes in extreme temperature indices

After successful validation, the daily time series of Tmax and
Tmin were generated for three future periods—the 2020s (2011–
2040), the 2050s (2041–2070) and the 2080s (2071–2099)—feed-
ing the predictors of A2 and B2. In this study, in order to get
realistic results, bias correction (BC)—discussed in detail below—

was applied to these datasets to remove any biases in the
simulated data. For this, more recent datasets for the period of
1980–2009 were applied to calculate mean monthly biases using
observed and simulated (A2 and B2) temperatures (Tmax and
Tmin). Mahmood and Babel (2013) concluded that recent datasets
give better results than earlier datasets in the application of BC. In
this study, these biases were adjusted with the daily time series of
three future periods, according to their respective months. At the
end, the changes in all extreme indicators for the three future
periods were calculated by comparing them to the baseline period.
In this study, the period from 1961 to 1990 was taken as the
baseline period because this period has been used in the majority
of climate change studies across the world (Huang et al., 2011).
A 30-year period is also considered long enough to define the local
climate because such a lengthy period is likely to include dry, wet,
cool, and warm periods. The IPCC also recommends such a length
(of 30 years) for the baseline period (Gebremeskel et al., 2005).

3.3. Bias correction

Bias correction (BC) has been used in several studies, such as
Salzmann et al. (2007) and Mahmood and Babel (2013), to remove
biases from the daily temperature series of downscaled data. In
this technique, first, the biases are calculated by subtracting the
mean monthly (30 years) observed data from the mean monthly
simulated control data. Then, the biases are adjusted with future
simulated daily time series, according to their respective months.
More details about this method are given in Salzmann et al.
(2007). The following equation is used to correct the biases of
temperature daily time series:

Td ¼ TS � TC � To
� � ð2Þ

Td—the de-biased (corrected) daily temperature data for the
future periods (e.g., 2011–2040 and 2041–2070).
TS—the daily temperature data generated by SDSM for the
future period (e.g., 2011–2040 and 2041–2070).

TC —the long-term mean monthly values of simulated tem-
perature for the control period (e.g. 1980–2009).
To—the long-term mean monthly values of observed tempera-
ture for the control period (e.g. 1980–2009).

3.4. Extreme temperature indices

One of the main concerns while assessing extreme climate
events is properly defining extreme indices for climate variables
(temperature and precipitation). Different studies have defined
varying indices according to their study regions’ climates. While
these indices may have similar names, their definitions and their
ways of calculations can be significantly different (Zhang et al.,
2011). Recently, the Expert Team on Climate Change Detection
Indices (ETCCDI) has developed a core set of 27 indices to analyze
the wide range of extreme climate changes. In the current study,
12 temperature indices (Table 1) out of the ETCCDI's recommen-
dations were used to explore possible changes in temperature
extremes in the future in the trans-boundary region of the Jhelum
River basin. The same kinds of indices were also used to assess the
changes in extreme temperature events in India (Revadekar et al.,
2012) and Pakistan (Islam et al., 2009).

4. Results and discussion

4.1. Screening of predictors

Table 2 illustrates the selected predictors with mean absolute
partial correlation (P.r) for Tmax and Tmin with a confidence
level of 95%. During the screening process, the temp predictor
was seen as the super predictor for both Tmax and Tmin, in the
basin. These selected predictors (Table 2) also showed physical
relationships with the local variables (Tmax and Tmin). The
same kinds of predictors have been used in and around the
Jhelum River basin in studies like Chu et al. (2010), Huang et al.
(2011), and Mahmood and Babel (2013). For each site, different
combinations of predictors in the presence of the super predictor
were used for each predictand to improve the performance of SDSM
during calibration.

4.2. Calibration and validation

4.2.1. Calibration
During the calibration of SDSM using NCEP predictors, two

indicators—Explained Variance and Standard Error—were used to
check the model's performance. The mean explained variances,
calculated from different sites, range between 60–72% and 67–85%
for Tmax and Tmin respectively, and the mean standard error lies
between 1 and 2.5 1C for both the variables. The results arrived at
are satisfactory and comparable to some previous studies con-
ducted in and around the Jhelum River basin, such as Wilby et al.
(2002), Huang et al. (2011), Souvignet and Heinrich (2011) and
Mahmood and Babel (2013).

4.2.2. Tabular validation
During the validation process, daily data for Tmax and Tmin

was generated (using NCEP, A2 and B2 predictors) for the period of
1991–2000 and compared with observed data by calculating R2,
RMSE and RS (Table 3). These indicators were calculated from the
daily, monthly and seasonal time series of NCEP, and from the
monthly and seasonal time series of A2 and B2. R2 and RMSE
calculated from NCEP are better than the values obtained under A2
and B2 except RS under A2, because the model was calibrated with
NCEP predictors. However, the indicators calculated from the daily
time series of NCEP show lower performance than the monthly

Table 3
Performance assessment of SDSM during validation (1991–2000) for Tmax (Tmin),
in the Jhelum River basin.

NCEP R2 RMSE (1C) RS
Tmax (Tmin) Tmax (Tmin) Tmax (Tmin)

Daily 0.77 (0.86) 3.49 (2.65) 0.88 (0.92)
Monthly 0.93 (0.95) 1.87 (1.47) 0.96 (0.96)
Seasonal 0.95 (0.97) 1.39 (1.07) 0.98 (0.98)

A2
Monthly 0.92 (0.94) 2.10 (1.74) 0.98 (0.96)
Seasonal 0.95 (0.96) 1.46 (1.19) 1.00 (0.97)

B2
Monthly 0.92 (0.93) 2.15 (1.82) 0.98 (0.96)
Seasonal 0.95 (0.96) 1.56 (1.28) 1.00 (0.98)

RS—Ratio of standard deviation of simulated data to observed data.
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and seasonal time series of NCEP, A2 and B2. Nonetheless, these
results of validation are also comparable with previous studies
carried out in and around the Jhelum River basin (Ashiq et al.,
2010; Wang et al., 2012; Mahmood and Babel, 2013).

4.2.3. Graphical validation before bias correction
Fig. 2 shows a graphical comparison of simulated mean

monthly, seasonal and annual extreme intensity indices of tem-
perature with observed data. The figure also examines the patterns
and variations captured by the model. It can be seen clearly that all
intensity indices are well overestimated by SDSM except TXn and
TNn, where the model underestimates.

Fig. 3 shows comparison of frequency extreme indicators of
temperature for performance assessment of SDSM in the process of
validation. It is observed that Hot days (HDs) are overestimated in
May–June and underestimated in July–September, and hot nights
(HNs) are well overestimated in June–September. SDSM overvalues

cold days (CDs) in December–February and undervalues in other
months. On the other hands, the model well underestimates cold
nights (FDs) in all months.

4.2.4. Graphical validation after bias correction
As the intensity and frequency indicators simulated by SDSM

were not satisfactory, the bias correction method was applied to
minimize the biases between simulated and observed data. Fig. 4
shows a graphical comparison of simulated mean monthly, sea-
sonal and annual extreme intensity indices of temperature with
observed data. The figure also examines the patterns and varia-
tions captured by the model. It can be seen clearly that all intensity
indices are well simulated by SDSM. In this study, the hottest days
(TXx) were slightly underestimated in March and in winter
(December–January–February) and slightly overestimated in
August, September and October as well as in autumn (Septem-
ber–October–November). The temperatures in the hottest nights
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(TNx) were marginally underestimated in the months of July,
November, December, January, and February and in all seasons
except in winter. SDSM overestimated the coldest days (TXn) in
winter and spring (March–April–May) and underestimated them
in summer (June–July–August). The simulated temperature of the
coldest nights (TNn) was lower in July. The model gave lower and
higher values in hot day temperature (TX_90P) and hot night
temperature (TN_90P), respectively, in all the seasons. Max five
days mean temperatures (TX_5M and TX_5M) were also under-
estimated by the model in all the seasons.

Fig. 5 shows a graphical comparison of frequency extreme
indicators of temperature for performance assessment of SDSM in
the process of validation. These indicators were not as well
simulated by the model as intensity indicators were. Hot days
(HDs) and cold days (CDs) are relatively better simulated than hot
nights (HNs) and cold nights (FDs). HDs were slightly under-
estimated in spring and summer but overestimated in autumn,
and CDs were overestimated in all the seasons, even in the annual
time frame. HN and FD were slightly underestimated in all the
seasons but greater differences were seen in summer (HN) and
winter (FD).

On the whole, during validation, the present study showed
much better results than Islam et al. (2009) (a study conducted
over Pakistan using RCM) and gave comparable results with
studies like Wang et al. (2012) (conducted in the Yellow River
basin of China using SDSM) and Revadekar et al. (2012) (conducted
in India using RCM). The indices calculated from downscaled data
from NCEP predictors were slightly better than A2 and B2.
However, the results of A2 and B2 were comparable with NCEP,
which proves the applicability of SDSM in the study area for the
future.

4.3. Future changes in extreme temperature events

Two time series, Tmax and Tmin, were produced by SDSM for
the 2020s, 2050s and 2080s under A2 and B2. Then, 8 intensity
and 4 frequency extreme indices were calculated from this data
and compared with the baseline period (1961–1990) to analyze
the changes in these three future periods in the Jhelum River basin
(Tables 4 and 5).

4.3.1. Intensity temperature extremes
The seasonal and annual future changes in intensity indices

are described in Table 4. The hottest days (TXx) and hottest
nights (TNx) are projected to be warmer in almost all the seasons
except in winter (TNx) and in all three future periods. The
maximum increase in the hottest days can be observed in winter,
with 3.96 1C in the 2080s under A2. In contrast, the maximum
decrease in the coldest nights can be observed in winter, with
4.12 1C in the 2080s under A2. However, both indices show an
annual increase in temperature in all three future periods except
in the 2020s under B2. According to the predictions, the coldest
days (TXn) are likely to be severe (much cold) in almost all
seasons except winter, with a maximum decrease of 3.72 1C in
autumn under B2 in the 2020s. By contrast, the temperature of
the coldest nights (TNn) is projected to increase in all the seasons
except in summer, with a maximum increase of 4.70 1C in winter
under A2 in the 2080s.

The percentile based indices, TX_90P (hot days) and TN_90P
(hot nights), are predicted to increase in intensity in all three
future periods and in almost all the seasons—with maximum
increases of 2.09 1C and 1.46 1C respectively in the spring season
under the A2 scenario (2080s). TX_5M and TN_5M are also
predicted to increase in intensity in all three future periods and
in almost all the seasons except in winter (TN_5M).

It is clear that all intensity indices show positive (increase)
mean annual changes except TXn (hottest nights), and these
change will be more towards the end of this century. As expected,
the changes under A2 are greater than under B2.

4.3.2. Frequency temperature extremes
The seasonal and annual future changes in frequency indices

(for instance, the number of hot days, cold days, hot nights, and
frost nights) are described in Table 5. The number of hot days
(HD) and hot nights (HN) is projected to increase in almost all
three future periods and in all the seasons. For example, under A2
in the 2080s, the number of hot days and hot nights will increase
(annually) by 150 days (50%) and 167 days (28%) respectively.
In contrast, the number of cold days (CD) and frost days (FD) will
decrease in the future. For example, under A2 in the 2080s, the
numbers of cold and frost days (annually) are projected to
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decrease by 442 days (40%) and 354 days (42%) respectively,
relative to the baseline. This decrease is much more significant in
winter. These results show that the frequency of hot temperature
extremes will increase and the frequency of cold temperature
extremes will decrease in the future. Similar conclusions have
also been presented in the Fifth Assessment Report of the IPCC
for most land areas in the world (IPCC, 2013). The changes in the
magnitude of extreme events are higher (the same as intensity
indices) under A2 than under B2. Such a result is to be expected
because A2 is a scenario that presents worse conditions (higher
CO2) than B2.

It was realized during validation that SDSM, for most of the
time, underestimates all the frequency indicators except CD.
Thus, the frequencies may increase more (in the case of HD and
HT) and decrease more (in the case of CD) than what the results
project in Table 5. The frequency of FD may increase in the
2020s (although it is shown to be decreasing in Table 5), or
there will be a lesser decrease in the 2080s than what the
results indicate. In other words, these biases must be

considered during the decision making process of any future
oriented project.

5. Conclusions

In the present study, SDSM, a widely used decision support
tool, was successfully calibrated (1961–1990) and validated (1991–
2000) to explore future changes in 12 extreme indices (8 intensity
and 4 frequency) of temperature in the trans-boundary area of the
Jhelum River basin for the future periods of 2011–2040, 2041–
2070, and 2071–2099 under A2 and B2 scenarios, relative to the
baseline period of 1961–1990. The followings are the main con-
clusions of this study.

During validation, SDSM performed much better with the
results obtained from the seasonal and monthly time series than
the daily time series. That is, the results were slightly better when
based on the seasonal time series than the monthly time series.
The performance of the model was better with NCEP data than A2
and B2. Nonetheless, the results from A2 and B2 were comparable
with NCEP, which proves the applicability of SDSM in the moun-
tainous basin when attempting to simulate extreme temperature
indices for the future. SDSM performed better in the case of
intensity extreme indices than frequency indices during the
validation process. On the whole, the model performed reasonably
well for all extreme indices.

For all three future periods and under both scenarios, almost all
intensity extreme indices showed mean annual increases, except
coldest days (TXn). This indicates more warming towards the end
of this century. The increasing annual changes in the hottest and
coldest nights related to Tminwere projected to be higher than the
hottest and coldest days related to Tmax. By contrast, the changes
in hot nights (TN_90P) and 5 days max mean (TN_5M) related to
Tmin were predicted to be lower than hot days (TX_90P) and
5 days max mean (TX_5M) related to Tmax. The maximum
positive (increasing) annual changes were observed for the coldest

Table 4
Future changes in intensity extreme indices of temperature with respect to the
baseline period (1961–1990) in the Jhelum River basin.

Indicator Season 1961–
1990

2020s 2050s 2080s

Abs. A2 B2 A2 B2 A2 B2

TXx (1C) Win 23.1 3.11 3.14 3.87 3.43 3.96 3.76
Spr 36.7 0.22 0.24 0.83 0.40 1.47 0.77
Sum 39.0 0.20 �0.02 0.74 0.54 0.93 0.73
Aut 33.2 0.54 0.81 1.17 0.82 1.24 1.07
Ann 39.0 0.17 �0.06 0.74 0.37 1.09 0.68

TNx (1C) Win 11.9 �3.96 �4.12 �3.18 �3.89 �3.87 �3.81
Spr 22.7 0.11 0.00 0.64 0.19 1.01 0.45
Sum 27.0 1.39 1.42 1.92 1.82 2.24 2.00
Aut 22.2 0.64 0.73 1.16 0.90 1.53 0.85
Ann 27.0 0.32 0.30 0.89 0.69 1.13 0.90

TXn (1C) Win �0.8 �0.05 0.00 0.33 0.30 0.56 0.69
Spr 3.6 �1.94 �1.65 �1.53 �1.38 �0.93 �1.10
Sum 14.7 �2.49 �2.41 �3.08 �2.27 �2.19 �2.07
Aut 5.3 �3.61 �3.71 �3.44 �3.52 �2.63 �3.18
Ann �0.8 �2.11 �2.02 �1.68 �1.68 �1.44 �1.31

TNn (1C) Win �9.8 4.06 3.89 4.06 3.92 4.70 4.09
Spr �3.5 2.86 2.79 2.78 2.93 3.73 3.08
Sum 7.1 �1.65 �1.78 �1.60 �1.28 �0.72 �1.18
Aut �3.2 1.94 2.02 1.90 2.49 3.07 2.50
Ann �9.8 4.28 4.09 4.26 4.13 4.93 4.27

TX_90P
(1C)

Win 17.1 0.57 0.63 1.19 0.90 1.31 1.17
Spr 30.2 0.76 0.81 1.42 1.08 2.09 1.46
Sum 34.1 �0.22 �0.13 0.21 0.14 0.53 0.41
Aut 29.3 0.15 0.27 0.47 0.44 0.83 0.59
Ann 31.5 0.23 0.31 0.64 0.55 1.02 0.79

TN_90P
(1C)

Win 4.8 �0.10 �0.10 0.49 0.04 0.37 0.23
Spr 16.2 0.48 0.32 0.90 0.51 1.46 0.75
Sum 21.9 0.19 0.13 0.49 0.35 0.76 0.53
Aut 17.5 0.44 0.57 0.73 0.67 1.18 0.78
Ann 19.7 0.19 0.14 0.46 0.31 0.76 0.48

TX_5M
(1C)

Win 21.0 1.94 1.93 2.59 2.22 2.81 2.52
Spr 34.4 0.29 0.28 1.05 0.45 1.58 0.83
Sum 37.6 1.40 1.38 1.75 1.70 2.10 1.94
Aut 31.5 0.02 0.14 0.38 0.33 0.68 0.42
Ann 37.6 1.30 1.32 1.79 1.62 2.16 1.91

TN_5M
(1C)

Win 8.1 �2.69 �2.72 �2.05 �2.51 �2.37 �2.35
Spr 19.9 0.77 0.61 1.37 0.89 1.85 1.09
Sum 24.2 1.57 1.51 1.93 1.77 2.30 2.00
Aut 20.4 0.98 0.89 1.35 1.05 2.00 1.21
Ann 24.2 0.32 0.23 0.79 0.48 1.05 0.74

Table 5
Future changes in frequency extreme indices of temperature with respect to the
baseline period (1961–1990) in the Jhelum River basin.

Indicator Season 1961–1990 2020s 2050s 2080s

Abs. A2 B2 A2 B2 A2 B2

HD (day) Win 0 1 1 2 1 1 1
Spr 75 16 28 58 40 87 59
Sum 188 �18 12 23 39 43 46
Aut 32 �15 �3 �1 7 20 12
Ann 295 �16 38 83 87 150 118

HN (day) Win 0 4 4 4 4 4 4
Spr 72 16 9 52 23 91 35
Sum 438 �56 �66 �25 �31 9 �34
Aut 89 23 32 35 37 63 33
Ann 599 �13 �21 66 33 167 37

CD (day) Win 667 �42 �62 �98 �95 �191 �188
Spr 270 �21 �18 �50 �35 �112 �73
Sum 14 �7 �5 �12 �10 �18 �15
Aut 143 �60 �65 �82 �78 �121 �99
Ann 1094 �129 �150 �241 �218 �442 �375

FD (day) Win 528 �118 �116 �149 �139 �228 �204
Spr 155 �3 1 �12 �6 �41 �22
Sum 23 �1 �1 �1 �1 �1 �1
Aut 138 �36 �39 �49 �50 �81 �62
Ann 844 �158 �156 �212 �197 �354 �291

Abs.—Absolute values Win—Winter (December–January–February), Spr—Spring
(March–April–May), Sum—Summer (June–July–August), Aut—Autumn (Septem-
ber–October–November).
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nights (TNn) and the maximum negative (decreasing) changes
were seen for the coldest days (TXn). So, the intensity of coldest
nights will be lower in the future than it is in the present, and the
intensity of the coldest days will be more than the present values.
The seasonal changes in the intensity temperature indices are also
projected to increase in almost all the seasons except winter (TNx
and TN_5M) and summer (TNn), both of which show a definite
seasonal warming in the future.

In the case of frequency indices, the number of hot days and
hot nights are projected to increase, and by contrast, the
frequency of cold days and cold night are predicted to decrease
in all three future periods. This also shows a clear warming in the
future in the Jhelum River basin. In the case of seasonal changes,
all seasons show warming effects in the basin. However, these
effects are more serious in spring (HD and HN) and winter (CD
and FD).

On the whole, the changes in all intensity and frequency
temperature indices show that warm extremes in the Jhelum
basin will be more and cold extremes will be fewer in the future.
Some of the preliminary results about the future changes in
extreme temperature indices were explored in this study. How-
ever, much more research is needed for a clearer understanding of
the future changes in the climate extremes over the complex
mountainous typography in this monsoon-dominant basin. For
example, ensemble projections of the most recent and high
resolution GCMs and/or RCMs can be used to explore the future
changes in climate extreme events and to understand the uncer-
tainties related to these climate models.
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