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A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves
of the peace lily and indicates a split path of chlorophyll breakdown
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Colorless, non-fluorescent Chl-catabolites (NCCs) are the typical, ubiquitous products of chlorophyll
(Chl)-breakdown in senescent leaves. However, a fluorescent Chl-catabolite (FCC) accumulated in
de-greened leaves of Spathiphyllum wallisii (Peace Lily), which showed a weak blue luminescence.
The FCC, named Sw-FCC-62, was ‘hypermodified’ with an unprecedented 6-(2-[3,4-dihydroxy-phe-
nyl]-ethyl)-b-glucopyranosidyl ester at the propionyl group. Such esters stabilize FCCs against their
typical and rapid, spontaneous isomerization to NCCs. Chl-breakdown in Sp. wallisii thus branches
off from the ‘common’ path in leaves, and furnishes unique and ‘persistent’ FCCs. Our findings on
‘hypermodified’ FCCs also call for attention as to possible physiological roles of Chl-catabolites in
plants.

� 2010 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction suggested to follow a common path in senescent leaves and ripen-
Breakdown of chlorophyll (Chl) is a visual hallmark of leaf
senescence [1–3]. Non-fluorescent Chl-catabolites (NCCs) occur
in leaves of various higher plants as characteristic colorless, tetra-
pyrrolic degradation products of Chl [4–6]. NCCs were also de-
tected in ripening apples and pears [7]. Chl-breakdown was thus
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ing fruit, and to yield the ‘invisible’ NCCs as its ‘final’ stage [7,8]
(Fig. 1).

In striking contrast, in freshly senescent yellow leaves of the
peace lily (Spathiphyllum wallisii) a major fluorescent Chl-catabo-
lite (FCC) accumulated, as reported here (see Fig. 2). Minute
amounts of fluorescent compounds were observed earlier during
active stages of leaf de-greening as presumed Chl-breakdown
products [9]. Two of these were identified as FCCs, unstable precur-
sors of NCCs [10,11]. In banana peels (Musa acuminata) and in
senescent banana leaves, accumulation of ‘persistent’ FCCs was
discovered recently [12–14].

2. Materials and methods

2.1. Materials

2.1.1. Chemicals
High performance liquid chromatography (HPLC)-grade sol-

vents were from Acros Organics (Geel, Belgium), other chemicals
from Fluka (Buchs, Switzerland). Ultrapure water, 18 M X cm�1,
pean Biochemical Societies.

http://dx.doi.org/10.1016/j.febslet.2010.09.011
mailto:Bernhard.kraeutler@uibk.ac.at
http://dx.doi.org/10.1016/j.febslet.2010.09.011
http://www.FEBSLetters.org


HO2C

CH3

N

HN

NH

N

O
CO2CH3 HO2C

O

HN

HN

NH

N

O
O
H

H

CO2CH3

H

HN

HN

NH

NH

O

HO OH

OH

H

H
O

H

O

HO2C CO2CH3

O

R

NN

N

CO2CH3

HO2C
O

HN

HN

NH

N

O
O
H

H

CO2CH3

H

Mg
N

O CH3

CH3

CH3O
C

CH3CH3

RCC

pFCCHv-NCC-1

Pheo a

Chl a (R = CH3)
Chl b (R = HC=O)

H

1
82

15

1020

132

Fig. 1. Structural overview of a typical path of Chl-breakdown in senescent leaves:
the Chls are degraded by enzyme catalyzed processes via pheophorbide a (Pheo a)
and the red Chl-catabolite (RCC) to the ‘primary’ fluorescent Chl-catabolite (pFCC),
or its (C-1)-epimer, epi-pFCC [4,22]. FCCs with a free propionic acid group are
indicated to be imported into the vacuole and to isomerize rapidly to non-
fluorescent Chl-catabolites (NCCs), such as Hv-NCC-1. Hv-NCC-1 is a tetrapyrrolic
catabolite in barley leaves (Hordeum vulgare) [6] and is derived from pFCC [4].
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was from a Millipore apparatus, Sep-Pak-C18 Cartridges from
Waters Associates; pH-values were measured with a WTW Sentix
21 electrode and a WTW pH535 digital pH meter.

2.1.2. Plant material
A peace lily (Sp. wallisii) (see Supplementary material (Supp-

Mat), Fig. S1) grew inside under normal day light, and developed
naturally senescent leaves sporadically (see Fig. 2). Yellow senes-
cent Sp. wallisii leaves were freshly cut and frozen with liquid
nitrogen and either stored at �80 �C, or they were extracted di-
rectly (see below).

2.2. Chromatographic methods

HPLC: Hewlett Packard HPLC-system, P1100 pump, online deg-
asser, Agilent1100 diode detector and fluorescence detector. Injec-
tion loop 1 ml (Rheodyne valve), Hypersil ODS 5 lm 250 � 4.6 mm
i.d. column (at 20 �C) connected to a Phenomenex ODS
4 mm � 3 mm i.d. precolumn, flow rate 0.5 ml min�1. Data were
collected and processed with HP Chemstation. Solvent systems:
analytical HPLC: 100 mM K-phosphate (pH 7)/methanol (MeOH)/
water. Semi-preparative HPLC: acetonitrile/water (see SuppMat
for details).

2.3. Extraction and isolation of Chl-catabolites

10.8 g (wet weight) of freshly harvested yellow Sp. wallisii
leaves were frozen in liquid N2 and were mixed with 5 g of sea
sand. The cold mixture was ground finely under dim light. MeOH
(6 ml) was added, and the cold slurry was filtered through a Buch-
ner funnel. Extraction with MeOH was repeated 4 times. The col-
lected extracts were concentrated to 3 ml at reduced pressure.
The resulting mixture was diluted with 7 ml of water and the sus-
pension was centrifuged for 5 min at 12 000 rpm (about
12 700�g). The precipitate was removed and the yellow-orange
supernatant was centrifuged again. The clear supernatant was
transferred into a flask and the volume reduced to roughly 4 ml
on a rotary evaporator at <20 �C. The concentrated extract was
stored overnight at 4 �C for further use.

For analysis and isolation of Chl-catabolites, the extract, ob-
tained as described, was partitioned into 12 portions of about
0.3 ml, which were diluted with 0.7 ml of water each, before injec-
tion into the HPLC-system (using the solvent system for semi-pre-
parative work). A fraction was collected in each run that contained
an FCC, according to on-line spectra (Sw-FCC-62). An NCC fraction
(Sw-NCC-58) was isolated similarly. Two less abundant other frac-
tions, an FCC (Sw-FCC-66) and an NCC (Sw-NCC-51) were identified
tentatively by their UV- and fluorescence spectra [15,16]. The frac-
tion containing Sw-FCC-62 was concentrated to 3 ml under re-
duced pressure and re-purified by HPLC, using the solvent
system described above. The sample of isolated Sw-FCC-62
(1.27 lmol, calculated based on log (e318nm, in MeOH) = 4.29 of
Mc-FCC-56 [12]) was used for the subsequent spectroanalytical
characterization. A sample of Sw-NCC-58 was isolated and charac-
terized similarly (see below and SuppMat).
2.4. Spectroscopic analysis of Chl-catabolites

2.4.1. General
Ultraviolet/visible (UV/Vis): Hitachi U-3000. Fluorescence:

Varian Cary Eclipse. Circular dichroism (CD): Jasco J715. Nuclear
magnetic resonance (NMR): Varian Unity Inova 500 MHz spectrom-
eter. High resolution-electrospray ionization-mass spectra (HR-ESI-
MS): Bruker Fourier transform ion cyclotron resonance (FT-ICR),
polyethylene glycol mass standard, (+)-ion mode, MeOH as sol-
vent. Matrix assisted laser desorption-ionization-time of flight (MAL-
DI-TOF): Bruker Ultraflex, (+)-ion mode, 2,5-dihydroxybenzoic acid
as matrix.
2.4.2. Spectroscopy of Sw-FCC-62
UV/Vis (in MeOH) kmax (erel) = 379sh (0.50), 358 (0.68), 316

(1.00). Fluorescence (ca. 30 lM in MeOH, kex at 356 nm):
kmax = 441 nm (see Fig. 2). 1H NMR- and 13C NMR-spectra, see
SuppMat Figs. S3 and S4). HR-ESI-MS: 943.3976 ([M + H]+), m/zcalc

(C49H59N4O15
+) = 943.3971 (ESI-MS-MS in SuppMat).

2.4.3. Spectroscopy of Sw-NCC-58
UV/Vis (in MeOH) kmax (erel) = 220sh (1.36), 245 (1.04), 316

(1.00). CD (in MeOH, 2.4 10�5 M) kmin/max (nm)/(De) = 226 (12.6),
250 (�4.4), 259 (�4.1), 282 (�12.1), 324 (5.6). MALDI-MS: m/z
(%) = 667.33 ([M+Na]+), 645.33 (C35H40N4Oþ8 = [M+H]+), 522.16
([M–ringA]+).



Fig. 2. (A) HPLC-analysis of senescent Sp. wallisii leaves. Black trace: Chl-catabolites detectable by absorbance at kabs = 320 nm; red trace: detection by luminescence at
kem = 450 nm. (B) Pictures of a green and of a yellow (senescent) Sp. wallisii leaf. (C) In vivo fluorescence spectrum of a yellow Sp. wallisii leaf (red trace), fluorescence spectrum
of Sw-FCC-62 in MeOH solution (at 293 K, blue trace) and formula of Sw-FCC-62.
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2.5. Light and fluorescence microscopy

Cross and epidermal surface sections of green and senescent
yellow Sp. wallisii leaves were cut with a razor blade. Sections were
viewed at a Zeiss Axiovert 200 M microscope, equipped with a
Zeiss Axiocam MRc5 (Carl Zeiss AG, Jena, Germany). For fluores-
cence images either filter set 01 (excitation BP 365/12 nm, emis-
sion LP 397 nm) or filter set 09 (excitation BP 450–490 nm,
emission LP 515 nm) were used (see Fig. 4).

3. Results

3.1. Identification of major Chl-catabolites

A fresh extract of senescent leaves of the peace lily (Sp. wallisii)
contained a major FCC at retention time (tR) = 62 min (named Sw-
FCC-62), a minor FCC component at tR = 66 min (Sw-FCC-66), and
two NCC-fractions, at tR = 51 and 58 min, as revealed by HPLC
(see Fig. 1). From 10.8 g of a yellow leaf Sw-FCC-62 (1.27 lmol)
was isolated and classified by its UV/Vis- and fluorescence spectra
(see Fig. 2). The molecular formula of Sw-FCC-62 (C49H58N4O15)
was deduced from observation of [M+H]+ at m/z = 943.398 [(m/
z)calc(C49H59N4O15þ) = 943.397]. A fragment ion at m/z = 789.21
indicated loss of the aglycon moiety.

A 500 MHz 1H NMR spectrum of Sw-FCC-62 showed the set of
the characteristic signals of an FCC-moiety. The constitution of
Sw-FCC-62 was deduced from detailed 2-dimensional NMR exper-
iments [17,18] (see SuppMat and Fig. S4). Signals of all 35 non-
exchangeable protons of the tetrapyrrole moiety were assigned,
identifying it as a functionalized FCC (see e.g., [15,19]). The com-
plex signals of 14 additional hydrogen atoms identified a glucopyr-
anose moiety and a 2-(3,4-dihydroxyphenyl)-ethyl unit as
peripheral modification of this Sw-FCC, as well as the b-configura-
tion at the anomeric center of the sugar unit. The attachment site
of this functionalized glucopyranoside unit at the propionate group
of the FCC-core was deduced from a 1H, 13C-heteronuclear correla-
tion. Sw-FCC-62 was thus identified as a 31,32-didehydro-82-hy-
droxy-132-(methoxycarbonyl)-173-[60-b-glucopyranosyl-(10?100)-
(2-[3,4-di-hydroxyphenyl]-ethyl)]-1,4,5,10,17,18,20-(22H)-octahy-
dro-4,5-secophytoporphyrin (Figs. 2 and 5).

A similar spectroscopic analysis of Sw-NCC-58 showed its
molecular formula as C35H40N4O8, and its constitution as a 31,32-
didehydro-82-hydroxy-132-(methoxy-carbonyl)-1,4,5,10,15,20-
(22H,24H)-octahydro-4,5-seco-phytoporphyrin. This indicated Sw-
NCC-58 to carry a free propionic acid function and to have the
same molecular constitution as Cj-NCC-1 [20,21] (see Fig. 3). The
CD-spectrum of Sw-NCC-58 was similar to that of Cj-NCC-1 [20],
indicating a common configuration at C(15) and C(132) [19]. How-
ever, HPLC-analysis indicated Sw-NCC-58 and Cj-NCC-1 to be dif-
ferent. The structural mismatch between Sw-NCC-58 and Cj-NCC-
1 was thus assigned to the stereochemistry at C(1) [10,11], classi-
fying these two NCCs as C(1)-epimers.

3.2. Optical analysis of green and yellow leaves of Sp. wallisii

De-greened, yellow leaves of Sp. wallisii showed weak blue
luminescence with a broad emission maximum near 450 nm (see
Fig. 2). Green and yellow, senescent Sw-leaves were also studied
by bright field and epi-fluorescence microscopy (see Fig. 4). Senes-
cent leaves displayed a marked blue fluorescence in mesophyll
cells (in palisade parenchyma as well as in spongy parenchyma).

4. Discussion

In this study, naturally de-greened (yellow) leaves of the tropi-
cal evergreen Sp. wallisii were examined for their Chl-catabolites
and FCC was found to accumulate prominently. In most earlier
investigations of senescent leaves, FCCs were only observed as
minor components and as transient precursors of NCCs
[4,15,22,23]. The main FCC from Sw-leaves, named Sw-FCC-62,
was remarkably abundant (>13% of the Chl in a green leaf). The
structure of Sw-FCC-62 was deduced and it was revealed to carry



Fig. 3. (A) UV-spectrum (red) and CD-spectrum (black trace) and formula of Sw-NCC-58, (B) HPLC-analysis of Sw-NCC-58, (C) of Cj-NCC-1 and (D) of a mixture of these two
epimeric NCCs (bottom).

Fig. 4. (A) Green leaf of Spathiphyllum wallisii. Light microscopic, bright field (a) and fluorescence microscopic (b and c) images of a cross section of a green leaf, (b) excitation
with blue-green light, notice chloroplast fluorescence throughout the mesophyll, (c) excitation with UV-light (see text for details), notice blue fluorescence in cell walls of
xylem and fiber tissue (arrows). (B) Senescent yellow leaf of Sp. wallisii. Light microscopic, bright field and fluorescence microscopic images of cross section (d–f) and
epidermal surface section (g–i). The first image in a row shows bright field images (d and g), the second image shows fluorescence microscopy, blue-green light excitation (e
and h), and the third image UV-excitation (f and i); whereas red chloroplast fluorescence is virtually missing in the mesophyll, it remains in stomatal guard cells (arrows in e
and h); blue fluorescence is seen in the palisade parenchyma cells (marked by asterisks), which is to distinguish from the blue cell wall fluorescence of xylem and fiber tissue
(arrows). Bars 50 lm.
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a complex b-glucopyranosyl-(1?1)-2-(3,4-dihydroxyphenyl)-
ethyl ester function at the propionyl side chain. Precedence for a
natural esterification of a tetrapyrrole with such a group is lacking,
and Sw-FCC-62 is a new type of ‘hypermodified’ FCC. b-(2-[3,4-
Dihydroxyphenyl]-ethyl)-glucopyranose (also called ‘dopaol-b-
glucopyranoside’) is a natural product, that occurs e.g., in (extracts
of) several species of the genus Chelone (Scrophulariaceae) [24], the
stem bark of Syringa velutina [25], and the thalloid liverwort
Marchantia polymorpha [26].

Sw-FCC-62 is also a new member of the seemingly unique ‘per-
sistent’ FCCs, which are resistant against their (chemical) conver-
sion to the corresponding NCCs [19,21]. Related FCCs were found
to accumulate and induce blue luminescence in yellow M. acumi-
nata bananas [12], in senescent sections of peels of overripe bana-
nas [14], and in senescent banana leaves [13] (see SuppMat,
Fig. S2).

In typical senescent Sw-leaves (as depicted in Fig. 2) NCCs were
detected as minor components. One of these NCCs, named Sw-
NCC-58, was deduced to be the C(1)-epimer of Cj-NCC-1, an NCC
from the deciduous tree Cercidiphyllum japonicum [20,21]. Chl-
breakdown in Sp. wallisii was thus indicated to (involve red Chl-
catabolite reductase RCCR-1 [27] and to) pass through the stage
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function.
of pFCC [10]. In contrast, in peels of ripening bananas, the comple-
mentary stereo-chemical lineage was revealed [28], which passes
the stage of epi-pFCC [11], the C(1)-epimer of pFCC.

Accumulation of the blue luminescent Sw-FCC-62 in senescent
Sw-leaves indicates Chl-breakdown to end up in an FCC, to a large
extent. The presence of ester functions at the propionyl side chain
in this ‘persistent’ FCC and the detection of lesser amounts of NCCs
in yellow Sw-leaves, are both in line with the hypothesis on the
natural transformation of FCCs to NCCs [21,22]: In senescent
leaves, NCCs are indicated to result in the acidic medium of the
vacuoles from a rapid stereo-selective isomerization of FCCs, which
is accelerated by their free propionic acid group [4,19]. Indeed,
NCCs, the non-fluorescent tetrapyrrolic ‘end’ products of Chl-
breakdown carry a propionic acid group and are found in the vac-
uoles [3,29].

Most peripheral modifications observed in NCCs are likely to oc-
cur already at the stage of the corresponding FCCs and to result
from transformations catalyzed by cytosolic enzymes (see e.g.
[22]). Polar FCCs were thus suggested to arise from pFCC (or epi-
pFCC) before their transport into the vacuole [4,22]. Hydroxylation
at C(82) of the ethyl group of ring B (to give 82-OH-pFCC or 82-OH-
epi-pFCC) appears to be the first (typical) modification of the pri-
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mary FCCs (pFCC or epi-pFCC). This chemically demanding reaction
is indicated by the structures of (the correspondingly functional-
ized) NCCs to occur in senescent leaves very effectively, and only
minute amounts of pFCCs (or ‘pNCCs’, their isomerisation products)
are detectable in the extracts [4,22]. The hydroxylating enzyme has
not been identified, but it has been suggested to be active in the
cytosol, or even in the gerontoplast (see Fig. 6) [4,30].

In senescent Sw-leaves the direct formation of Sw-FCC-62 is
presumed to occur next and, possibly, is achieved by a single enzy-
matic esterification of the hypothetical 82-OH-pFCC. The inferred
enzyme, which remains to be identified, is likely to reside in the
cytosol, where modifications of FCCs are generally believed to oc-
cur [22]. By this key step Sw-FCC-62 would thus be steered off from
the ‘common path’ of Chl-breakdown. The unobserved 82-OH-pFCC
would thus be a hypothetical branching point of Chl-breakdown
and it would represent the last ‘common progenitor’ of the later
Chl-catabolites: the hypothetical 82-OH-pFCC is thus suggested
(i) to either isomerise to Sw-NCC-58, subsequent to transport into
the vacuole via an active ABC-transporter [22], or, (ii) to be trans-
formed into the ‘persistent’ Sw-FCC-62 in the cytosol (see Figs. 5
and 6). Indeed, the remarkable ester function of the latter and
the non-acidic cytosolic medium help preserve it by slowing down
its ‘chemical’ isomerization to an NCC [19]. No evidence is available
for a functionalized NCC isomeric to Sw-FCC-62 that could result
from an eventual dislocation of Sw-FCC-62 into the vacuole. Similar
to other FCCs, which are localized outside of the vacuole [23], the
‘persistent’ Sw-FCC-62 may thus accumulate in the cytosol.

De-greened Sp. wallisii leaves showed the blue luminescence
typical of FCCs (see Fig. 2). Green (Fig. 4A) and yellow, senescent
Sw-leaves (Fig. 4B) were thus studied by microscopic analyses. In
senescent Sw-leaves a marked blue fluorescence was observed in
mesophyll cells (palisade parenchyma as well as spongy paren-
chyma). Thicker cell walls of tracheids and fibers (Fig. 4B-f) also
showed blue fluorescence (ascribed to cell wall phenolics, lignin
and coumaric acid derivatives [31–33]), as was also seen in green
leaves (Fig. 4A-c). Senescent leaves lacked the red Chl- fluores-
cence; only in the guard cells of their stomata were intact chloro-
plasts marked by their red fluorescence (Fig. 4B-e and h). Indeed,
stomata remain functional during (early phases of) senescence
[34]. Green Sw-leaves showed bright red Chl-fluorescence in the
whole mesophyll, which lacked the marked blue fluorescence of
the senescent cells (Fig. 4A-b).

In senescent Sw-leaves also yellow fluorescent ‘spots’ were ob-
served (Fig. 4B–e). They might be putative lipid droplets, as also
seen in senescent banana leaves [13]. Indeed, in senescent leaves
chloroplasts develop into a distinct plastid type, the gerontoplasts,
which are formed by loss of thylakoid membranes and accumula-
tion of lipid globules [29,35]. At a late stage, rupture of the geron-
toplast envelope was observed to lead to release of globules to the
cytoplasm [35].

Esterified FCCs were now detected in the monocotyls Sp. wallisii
(here) and in Musa acuminata [12]. The ester stabilizes FCCs against
their (chemical) transformation to NCCs and, possibly, preserving
FCCs for an unknown biological role [12–14]: The ester function
of Sw-FCC-62 is a b-gluco-pyranosyl-(1?1)-2-(3,4-dihydroxy-
phenyl)-ethyl unit, and belongs to the class of the phenylethyl-gly-
cosides [24–26]. Interestingly, phenylethyl-glycosides were known
in dicotyls, for which they were suggested to be useful as taxo-
nomic markers [36].

Chl-breakdown has been considered, first of all, a detoxification
process [3,4,22,30] and a physiological function of the linear tetra-
pyrroles from Chl-breakdown is unknown. This is clearly intriguing
in view of the importance of the structurally related natural tetra-
pyrroles from heme breakdown (biliverdin, phycobilins) [37,38].
Indeed, the ubiquitous NCCs have been shown to be effective anti-
oxidants [7], of possible physiological benefit. The related (‘persis-
tent’) FCCs were also suggested to possibly contribute to the
viability of higher plants, and they invite considerations of a fur-
ther biological function in plants [12–14].

Few plants are known to have ‘visibly’ luminescent senescent
leaves, e.g., Ginkgo biloba [39] or bananas [13], but FCCs were only
detected in the latter. The optical perception of de-greened leaves,
fruit (and flowers) helps guide the crucial interactions of plants
with insects, birds and other animals (see e.g. [40,41]). ‘Persistent’
FCCs, the newly discovered blue luminescent plant pigments, are
sources of optical signals [12–14], and may be useful as natural
molecular in-vivo markers and signals of ripening and of pro-
grammed cell death.
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