Volume 195, number 1,2

FEBS 3263

Cloning and DNA sequence of the 5'-exonuclease gene of bacteriophage T5

A.V. Kaliman, A.I. Krutilina, V.M. Kryukov and A.A. Bayev

Institute of Biochemistry and Physiology of Microorganisms, USSR Academy of Sciences, Pushchino, Moscow region 142292, USSR

Received 30 October 1985

The nucleotide sequence of the *BalI-PstI* fragment of T5 DNA, 1347 bp in length, coding for 5'-exonuclease (D15 gene), has been determined. A coding region of the gene contains 873 bp and is preceded by a typical Shine-Dalgarno sequence. The D15 gene belongs to a cluster, consisting of at least 3 genes, in which a termination codon of a preceding gene overlaps an initiation codon of the following one. The sequence contains an open reading frame for 291 amino acid residues. The molecular mass of the 5'-exonuclease calculated from the predicted amino acid sequence is 33400 Da.

Bacteriophage T5 DNA sequencing D15 gene IS1 element

1. INTRODUCTION

During infection of Escherichia coli by bacteriophage T5, the gene D15-encoded nuclease is produced which belongs to early proteins [1]. Enzymatic studies of purified D15 nuclease showed that the enzyme possesses $5' \rightarrow 3'$ exonuclease activity on both single- and doublestranded DNA and can function (in vitro) also as a T5 DNA specific endonuclease [2]. This product performs 2 functions essential for the phage T5 life cycle: it is necessary for T5 DNA replication [3] and initiation of late transcription [4]. However the exact role of 5'-exonuclease in this process is still obscure. The availability of this protein in the transcription-replication enzyme complex makes it possible to suggest its necessity for the formation and maintenance of the structural integrity of the complex or for the creation of a modified DNA template which serves as a site of nucleation for all the components of the complex [5]. In such a case, the effect of the D15 gene on the turn-on of late genes may be of an indirect character.

This paper deals with the nucleotide sequence of the T5 DNA *Ball-PstI* fragment, 1347 bp in

length, coding for 5'-exonuclease (D15 gene), and the amino acid sequence determined from its structure.

2. MATERIALS AND METHODS

Construction and analysis of recombinant plasmids pBR322-T5 and pUC-T5 were performed as in [6,7]. The nucleotide sequence was determined according to Maxam and Gilbert [8]. Recombinational analysis of plasmids by marker rescue with amber mutants of T5 was performed as in [9]. Assay of exonucleolytic activity of T5 D15 nuclease in the crude cell extract and purification of 5'-exonuclease were as described in [2].

3. RESULTS AND DISCUSSION

Cloning of the bacteriophage T5 *PstI-J* fragment and mapping of intact genes D14 and D15 as well as a part of the D12 gene on this fragment were reported earlier [9].

To obtain material for determining the D15 gene sequence, we have selected from our collection of recombinant molecules 2 clones giving hybridization with the *PstI-J* fragment of bacteriophage T5. Restriction enzyme digestion and Southern blot analyses of the plasmids as well as partial determination of the primary structure showed that cloned T5 DNA corresponds to the *PstI-J* fragment but contains an IS1 element inserted into p602 and p627 plasmids (fig.1).

The results of the recombinational analysis of these plasmids by the marker rescue method were generally the same as in [9], the only difference being that we showed additionally the presence of the D13 gene in the fragment and arrived at a different conclusion as to the size of gene D14. According to our results, a protein of 70 kDa, found in the maxi-cell system, corresponds to the D13 gene product and not to D14 as expected [10] (details of this part of our work will be published separately).

The left part of the cloned fragment was subcloned in the form of XbaI, Bg/II, HpaI and BspRI subfragments in pUC9 and pUC19 plasmids, sequenced according to the Maxam-Gilbert method and analysed additionally by a marker rescue technique.

The nucleotide sequence of the *Bal*I (*Bsp*RI)-*Pst*I fragment is shown in fig.2. Analysis of this structure for the open reading frame showed that the major one is found only in the r-strand of DNA and corresponds to the protein consisting of 291 amino acid residues (33.4 kDa). This agrees well with 35 kDa reported by Moyer and Rothe [2] after the partial purification of 5'-exonuclease. The Shine-Dalgarno sequence AGGA is located 12 nucleotides upstream from the initiation codon ATG. There are no sequences typical of the consensus-promoter structure of E. coli or early promoters of bacteriophage T5 [11]. Moreover, in addition to gene D15, the sequence shown in fig.1 contains the open reading frames upstream and downstream from the D15 gene. The open reading frame, preceding the gene of 5'-exonuclease, corresponds to the C-terminal end of the D14 gene product, since it was shown that it is plasmid pBB3, not pXX12, which is efficient in the analysis for the D14 am H6b marker rescue. Therefore, the D14 am H5b amber mutation of bacteriophage T5 is located within the Ball-Xbal fragment, 135 bp in length. Another open reading frame, adjacent to the C-terminal end of the D15 gene has the Shine-Dalgarno sequence and corresponds to the Nterminal end of the DX gene not identified hitherto, since no amber mutations have been described for the region in the bacteriophage T5 genetic map between the D15 and D17 genes.

All 3 genes are organized in such a way that a termination codon of the preceding gene overlaps an initiation codon of the following one. Similar

Fig.1. Restriction map of phage T5 *Pst*I-J fragment. In the upper part, the orientation of the cloned fragment in plasmid pBR322, the location of D12–D15 genes on the fragment and sites of IS1 element insertion in plasmids 627 and 602 are shown. In the lower part there are fragments which have been subcloned into plasmids pUC9 and pUC19 for the following determination of the nucleotide sequence. The arrow denotes the direction of gene transcription of this part of the genome.

	7	BAL GGCC	I AGAG(CAC	GACI	GAAI	IGGTO	ACAT	CTAC	crte	CACC	****	AG76	GACA	CAT	57
TAGT	444	TACT	66770	GAAC	GTTA/	G T G C	i ta ti	AAGA	TGAT	AATA	TATO	AAGT		TATI	TAA	120
1611	GGT	GAAT	CCACI	CTAC	126A	G180	6T66C	AGCA	GTGC	TCAC	GTG/	AGGI	GAGO	AGA1	GAA	183
c1cc		C C T G	C A T 1 /	ATAI	TTCAJ		IGAC/	GAGE	ACAC	16G1	****	AGCI	TTGG		CTC	246
AGAC	CCC	A T G G	TTGAC	AACI	17441	GAG	CGT		TATE	GTG1	17.8.4.1	TAA(GACAT	GGA	309
AATC	GTA	ATTG	61114	1776	AGCO	:6 760	SCYAC	ATC	TGC	1010	5776 <u>/</u>	GGAC	TTAJ	TTA	ATA	372
ATG ME T	AG T BER	444 L¥8	TEC SER	TGG TRP	GGA GLY	AAA Lys	TTT PHE	ATT ILE	GAA Glu	GAA Glu	GAG GLU	GAA GLU	GČT AL#	GAA Glu	A T G ME T	420 16
GC T Ala	TCC SFR	CGT Arg	CGT ARG	AAT ASN	CTA LEH	A TG ME T	itt ile	GTC Val	GAT ASP	GGA GL Y	AC T Thr	AAC ABN	TTA LEIJ	GGC GL Y	TTT PHE	468 32
CGC Arg	TTC PHE	AAA Lys	CAT HIS	AAC ASN	AAT ASN	AGT SER	444 L 75	AAA Lys	CCA Prù	TTT PHE	GCC AL A	TCA Ber	AGT SER	TAT Tyr	GTT Val	516 48
TCA SER	ACT Thr	ATT ILE	CAA GL#	1CT SER	CTG LEU	GC A Al A	/AA Lys	TEC SER	TAC TYR	TCT Ser	GCC AL A	AGA Arg	ACT THR	ACG Thr	ATT ILE	564 64
GTT Val	CTA Leu	GGT GLY	GAT ASP	AAG Lys	GGA Gly	444 L 7 5	TCC SER	GTA Val	TTT	CGT ARG	CTA Leu	GAA GLU	CAT HIS	CTA LEU	CCA PRG	612 80
GAG Glu	TAT Tyr	AAA Lys	GGT GLY	AAT ASN	CGT ARG	GAT ASP	GAA Glu	AAG Lys	TAC Tyr	GCA Ala	CAA GLN	CG1 ARG	ACG THR	GAA Glu	GAG GLII	660 96
GAG GL V	AAA Lys	GCG Ala	CTA LEU	GAT ASP	GAG GLU	CAG GLN	TTC PME	TTT PHE	ern Bye	TAT Tyr	TTG LEU	AAG Lys	GAT ASP	GC T AL A	TTC PHE	708 112
GAG Glu	TTG LEG	TGT Cys	AAA Lys	ACT Thr	ACA Thr	TTC PME	CCA Pro	ACT Thr	TTT Phe	ACC Thr	ATT JLE	CGT Arg	GG T GL Y	GTA Val	GAA Glu	756 128
GĈA Ala	GAC Asp	GAT ASP	ATG MET	GCA Ala	GCT AL A	TAT Tyr	ATT	GTT Val	AAG Lys	CTC LEU	ATC ILE	666 61 y	CAT HIS	CTT LEU	TAT Tyr	804 144
GAT ASP	CAC H15	GTT Val	TGG TRP	CTA LEU	ATA ILE	TCT SEP	ACA Thr	GAT ASP	GGT GLY	GAC Asp	166 TRP	GAT Asp	4CT Thr	TTA LEU	TTA Leu	852 160
ACG THR	GAT ABP	LYS	GTT Val	TCT SER	CGT ARG	TTT Phe	TCT SER	TTC Phf	ACA Thr	ACA Thr	CGT Arg	CRT Arg	GAG GLII	TAT TYR	CAT HIS	900 176
LEU	CG1 Arg	GAT ASP	ATG	TAT TYR	GAA Glu	HIS	CAT HIS	AAT	GTT Val	GAT ASP	GAT ASP	GTT Val	GAG Glu	CAG Gln	TTT PHE	948 192
ATC ILE	TCC SFR	CTG LFU	LYS	GCA ALA	ATT ILE	ATG MFT	GGA Gly	GAT ASP	CTA Leu	GGA GL Y	GAT ASP	AAT A5 ^N	ATT TLE	CGT ARG	GGT GL Y	996 208
GTT VAL	GA.	GGA GLY	ATA ILE	GEA GLY	GC A AL A	AAA Lys	CGC ARG	GGA GLY	TAT Tyr	AAT ABN	ILE	ATT ILE	CGT ≜RG	GAG GLU	PHE	1044 224
GGT GL V	440 484	GTA Val	CTG LEU	GAT ABP	ATT	ATT ILE	GAT A8P	CAG GLN	CTT LEU	CCA PRO	CTG LEV	CCT PRO	GGA Gly	446 L 48	CAG GLN	1092 240
444 L73	TYP	ILE	GLN	ASN	CTG LEV	ASN	GCA ALA	TCG BER	GLU GLU	GAA Glu	CTG LEV	LEU	PHE	CGA ARG	AAC ASN	1140 256
TTG LEU	A11 1_F	LEU	VAL	GAT ASP	TTA LEU	CC T PRO	ACC THR	TAC TYR	164 C 48	GTG VAL	GAT ASP	GC T Al A	ATT TLE	GCT Ala	GC T AL A	1188
GTA VAL	661 61 1	GLN	GAT A8P	GTG VAL	TTA LEU	GAT ASP	AAG LYS	TTT PHE	ACA Thr	AAA Lys	GAT ASP	ATT ILE	TTG LEU	GAG Glu	ATT	1236 286
GCA ALA	GLU	GLN	76A #**	TTA.	A 8 & T	TAAG	TTAA	TCAT	ICCA	GATTI	GTATI	SCC1/	NAGA'	TGG	TCT	1295 291
6446	GATG	CCGC	4661	ATGG.	ATCT	SCGA	6C A T	1011	TGGT.	ACTA	ATCC	TGCA	i			1347

Fig.2. DNA structure of the *Ball-Pstl* fragment and the derived amino acid sequence of 5'-exonuclease of phage T5. Underlined is the Shine-Dalgarno sequence.

structures were reported for the genes of bacteriophage T7 [12], bacteriophage λ [13] and *E. coli* [14]. The availability of open reading frames throughout the sequence is indicative of the fact that the promoter of this group of genes is located outside the sequenced region. Preliminary results show that the DX gene is the last in this cluster of genes and a strong potential terminator occurs in the region of *Bam*HI site.

The study of codon usage in a number of genes [15] revealed a non-random patern of their distribution, the sequence of 5'-exonuclease of phage T5 being no exception in this respect (table

Table	1
-------	---

Codon usage in the 5'-exonuclease gene of bacteriophage T5

	Т	С	Α	G	
T	Phe 10	Ser 5	Tyr 9	Cys 2	Т
	Phe 6	Ser 5	Tyr 3	Cys 0	С
	Leu 5	Ser 2	stop	stop	Α
	Leu 4	Ser 1	stop	Trp 3	G
С	Leu 4	Pro 2	His 6	Arg 12	Т
	Leu 1	Pro 0	His 1	Arg 2	С
	Leu 7	Pro 4	Gln 4	Arg 1	Α
	Leu 7	Pro 0	Gln 5	Arg 0	G
Α	Ile 16	Thr 6	Asn 7	Ser 3	Т
	Ile 2	Thr 2	Asn 5	Ser 0	С
	Ile 3	Thr 5	Lys 15	Arg 1	Α
	Met 6	Thr 3	Lys 6	Arg 0	G
G	Val 9	Ala 7	Asp 22	Gly 7	Т
	Val 1	Ala 2	Asp 2	Gly 1	С
	Val 4	Ala 8	Glu 13	Gly 9	Α
	Val 2	Ala 1	Glu 11	Gly 1	G

1). There is an obvious preference for the use of codons ending with T and A residues, which might reflect a high AT content of the phage T5 DNA. On the whole, 71.4% codons of the D15 gene end in T and A residues, with the greatest preference for codons ending in T residues (43.6%). Similar data obtained on prokaryotic phages on the whole and ribosomal genes of *E. coli* amount to 39 and 30%, respectively [16].

An important factor for codon usage and translation efficiency is the availability of no less than 20 tRNA genes in phage T5 [17,18]. Comparison between codons used in the gene D15 structure and anticodons of phage T5 tRNAs sequenced previously [19] shows that tRNAs evidently do not play an important role in the increase in efficiency of this gene translation. It is noteworthy that half of the phage T5 tRNAs studied have G in the first position anticodons, though C is the least occurring residue in the third position codons (11.3% of all the codons). One can suppose that a greater conformity between codons and anticodons coded for by phage T5 should be expected in the case of late genes since tRNA genes belong, similarly to gene D15, to early genes and their active expression coincides in time.

Cell-free extracts obtained from E. coli cells containing initial plasmids and their deletion derivatives exhibit increased 5'-exonuclease activity. Moreover, from E. coli W 3350 (p627) cells the enzyme was isolated identical to exonuclease from T5-infected cells. Therefore, early genes of phage T5 can also be transcribed by non-modified RNA polymerase. However the level of expression of the D15 gene cloned in pBR322 was not sufficiently high to promote the production of large quantities of homogenous protein necessary for a comprehensive study of its structure and function. We believe that knowledge of the D15 gene structure will help to construct a plasmid which can provide a high and regulated expression of the 5'-exonuclease gene of phage T5.

ACKNOWLEDGEMENTS

Thanks are due to Dr D.J. McCorquodale for T5 mutants, Dr V.N. Ksenzenko for help in constructing recombinant plasmids and discussions of the work, Mrs N. Lunina for help in the use of computer programs and Dr V.V. Velkov for reading of the manuscript and helpful remarks.

REFERENCES

- Frenkel, G.D. and Richardson, C.C. (1971) J. Biol. Chem. 246, 4839–4847.
- [2] Moyer, R.W. and Rothe, C.T. (1977) J. Virol. 24, 177–193.

- [3] Frenkel, G.D. and Richardson, C.C. (1971) J. Biol. Chem. 246, 4848–4853.
- [4] McCorquodale, D.J. (1975) Crit. Rev. Microbiol. 4, 213-234.
- [5] Ficht, T.A. and Moyer, R.W. (1980) J. Biol. Chem. 255, 7040-7048.
- [6] Krutilina, A.I., Ksenzenko, V.N., Kamynina, T.P., Kryukov, V.M. and Bayev, A.A. (1982) Mol. Biol. (USSR) 16, 1253-1262.
- [7] Vieira, J. and Messing, J. (1982) Gene 19, 259-268.
- [8] Maxam, A.M. and Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560-564.
- [9] Davison, J., Brunel, F., Merchez, M. and Ha-Thi, V. (1981) Gene 16, 99-106.
- [10] Brunel, F., Davison, J., Ha-Thi, V. and Reeve, J. (1981) Gene 16, 107-118.
- [11] Hawley, D.K. and McClure, W.R. (1983) Nucleic Acids Res. 11, 2237–2255.
- [12] Dunn, J.J. and Studier, F.W. (1981) J. Mol. Biol. 148, 303–330.
- [13] Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F. and Petersen, G.B. (1982) J. Mol. Biol. 162, 729-773.
- [14] Platt, T. and Yanofsky, C. (1975) Proc. Natl. Acad. Sci. USA 72, 2399-2404.
- [15] Crantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) Nucleic Acids Res. 9, 43-74.
- [16] Kohli, J. and Grosjean, H. (1981) Mol. Gen. Genet. 182, 430-439.
- [17] Hunt, C., Desai, S.M., Vaughan, J. and Weiss, S.B. (1980) J. Biol. Chem. 255, 3164-3173.
- [18] Kazantsev, S.I., Tchernov, A.P., Shlyapnikov, M.G., Kryukov, V.M. and Bayev, A.A. (1979) Dokl. Akad. Nauk USSR 247, 744-748.
- [19] Sprinzl, M. and Causs, D.H. (1984) Nucleic Acids Res. 12, suppl., r1-r57.