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We give an explicit estimate on the growth of functions in the Hardy–Sobolev space
Hk,2(Gs) of an annulus. We apply this result, first, to find an upper bound on the rate
of convergence of a recovery interpolation scheme in H1,2(Gs) with points located on
the outer boundary of Gs . We also apply this result for the study of a geometric inverse
problem, namely we derive an explicit upper bound on the area of an unknown cavity in
a bounded planar domain from the difference of two electrostatic potentials measured on
the boundary, when the cavity is present and when it is not.
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1. Introduction

Let H2(D) denote the Hardy space of functions analytic in the unit disk D having L2 boundary values on the unit circle T,
and let H2

0(C \ sD), 0 < s < 1, be the Hardy space of functions analytic in the complement of sD, with L2 boundary values
on sT and vanishing at infinity. Moreover, let us denote by Gs the annulus Gs = D \ sD. We define the Hardy space H2(Gs)

of the annulus Gs to be the orthogonal direct sum

H2(Gs) = H2(D) ⊕ H2
0(C \ sD).

For equivalent definitions and more properties of the Hardy space of the annulus, we refer the reader to [9,21].
For m � 1, we also define the Hardy–Sobolev space Hm,2(Gs) of order m as the subspace of functions f in H2(Gs) such

that the derivatives f ( j) , 1 � j � m, belong to H2(Gs). The space Hm,2(Gs) is a Hilbert space endowed with the scalar
product

〈 f , g〉Hm,2(Gs)
=

m∑
l=0

〈
f (l), g(l)〉

L2(∂Gs)
,

where

〈 f , g〉L2(∂G) = 〈 f , g〉L2(T) + 〈 f , g〉L2(sT).

Consequently, the norm in Hm,2(Gs) can be written as

‖g‖2
Hm,2(Gs)

= ‖g‖2
W m,2(T)

+ ‖g‖2
W m,2(sT)

,
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where we use the norms of the Sobolev spaces W m,2(T) on T and W m,2(sT) on sT, given by

‖g‖2
W m,2(T)

=
m∑

l=0

∥∥g(l)
∥∥2

L2(T)
= 1

2π

m∑
l=0

∫ ∣∣g(l)(eiθ )∣∣2
dθ =

∑
n∈Z

wm,n|gn|2, (1.1)

‖g‖2
W m,2(sT)

=
m∑

l=0

∥∥g(l)
∥∥2

L2(sT)
= 1

2π

m∑
l=0

∫ ∣∣g(l)(seiθ )∣∣2
dθ =

∑
n∈Z

μm,ns2n|gn|2, (1.2)

with g(z) = ∑
n∈Z

gnzn , z ∈ Gs , and

wm,n = 1 + n2 + n2(n − 1)2 + · · · + n2(n − 1)2 · · · (n − m + 1)2, (1.3)

μm,n = 1 + n2s−2 + · · · + n2(n − 1)2 · · · (n − m + 1)2s−2m. (1.4)

Note that Hm,2(Gs) admits the set

(en)n∈Z =
(

zn√
lm,n

)
n∈Z

, lm,n = wm,n + μm,ns2n,

as a complete orthonormal set, and consequently, has the following reproducing kernel

Km(x, y) =
∞∑

k=−∞

xk yk

lm,n
. (1.5)

Let 0 � k < m be two integers, and consider a function g with a fixed norm in the Hardy–Sobolev space Hm,2(Gs). Then,
it has been proved in [15] that the Sobolev norm of degree k of g on the inner boundary sT of the annulus is controlled
by the corresponding norm taken on the outer boundary T. Such norm estimates, in the disk or in the annulus, have been
applied in [8,15], to obtain stability results for the inverse problem of recovering a Robin coefficient on the non-accessible
boundary of a planar domain.

This result complements, in some sense, the Hadamard’s three-circle theorem that describes the growth of an analytic
function in an annulus from its values on the boundaries.

We give here a version of this property, where we make explicit the dependence with respect to the radius s of the
inner boundary of the annulus. This will be important for one of the applications we have in mind.

Theorem 1.1. Let 0 � k < m be two integers. Assume g is a function in Hm,2(Gs) with ‖g‖W k,2(T) � 1. Then, we have

‖g‖W k,2(sT) �
(

2

e log(1/‖g‖W k,2(T))

)m−k[(
es| log s|)m−k‖g‖W m,2(sT) + (m − k)m−k]. (1.6)

Note that the authors of [15] derive their results in general weighted Hardy spaces, see [15, Proposition 7]. Note also
that this kind of results extends to the doubly connected case the estimates established in [7] for subsets of the boundary
of the disk D.

In Section 2, we display the proof of Theorem 1.1, and in each of the two subsequent sections, we describe a different
application. Namely, in the spirit of [7], we consider, in Section 3, a given function in H1,2(Gs) and a sequence ( fn)n�0 of
functions in H1,2(Gs) of minimal norm, interpolating f on points of the outer boundary T of Gs . We show that the scheme
is convergent with a rate which is inversely proportional to the logarithm of the maximal distance between the points of T

and the points of the interpolation scheme, see Theorem 3.1.
As a second application, we study in Section 4 the geometric inverse problem of recovering a cavity in a bounded planar

domain from the measurements of electrostatic potentials corresponding to a given flux on the outer boundary of the
domain. More precisely, we get an upper estimate on the area of the unknown cavity, granted some a priori hypotheses on
the regularity of the conformal map which sends the domain onto an annulus, see Theorem 4.1. The proof relies on the use
of conformal maps and the previously established growth estimates in Hardy–Sobolev spaces of the annulus.

2. Growth estimates in the Hardy–Sobolev space of the annulus

In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We follow the scheme of proof of [15, Proposition 7]. We want to estimate

‖g‖2
W k,2(sT)

=
∑

μk,ns2n|gn|2 +
∞∑

μk,ns2n|gn|2 = σ1 + σ2, say.

n�−N n=−N+1
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On one hand, we have

σ1 � sup
n�−N

(
μk,n

μm,n

)
‖g‖2

W m,2(sT)
,

and, in view of the definition (1.4) of μm,n ,

μk,n

μm,n
� s2(m−k)

(n − k)2 · · · (n − m + 1)2
� s2(m−k)

(N + k)2(m−k)
,

where the last inequality holds true as soon as 0 < N + k. Hence,

σ1 � s2(m−k)

(N + k)2(m−k)
‖g‖2

W m,2(sT)
. (2.1)

On the other hand, from the definitions (1.3)–(1.4), we see immediately that μk,n � s−2k wk,n . Hence,

σ2 �
∞∑

n=−N+1

s−2(N+k−1)wk,n|gn|2 � s−2(N+k−1)ε2. (2.2)

Let us choose N + k = 1 + 	logε/2 log s
 > 0. From (2.1), (2.2), and the inequalities

logε

2 log s
� N + k � 1 + logε

2 log s
,

it follows that

‖g‖2
W k,2(sT)

� 1

(log‖g‖W k,2(T))
2(m−k)

[
(2s log s)2(m−k)‖g‖2

W m,2(sT)
+ ‖g‖W k,2(T)

(
log ‖g‖W k,2(T)

)2(m−k)]
. (2.3)

Using the fact that x| log x|n � (n/e)n for x ∈ [0,1], we deduce that

‖g‖2
W k,2(sT)

� 1

(log‖g‖W k,2(T))
2(m−k)

[
(2s log s)2(m−k)‖g‖2

W m,2(sT)
+

(
2(m − k)

e

)2(m−k)]
,

and (1.6) follows from taking square roots. �
3. First application: a convergent interpolation scheme in H 1,2(Gs)

In this section, we study an interpolation scheme to recover a function in H1,2(Gs) from its values at some points on the
outer boundary of the annulus Gs . A similar scheme has been studied previously in the case of a disk, see [7]. It consists in
the following. Let Sn = {x1, . . . , xn} be a set of n distinct points on T. As usual, we will say that fn ∈ H1,2(Gs) interpolates
f ∈ H1,2(Gs) on Sn if

∀i ∈ {1, . . . ,n}, fn(xi) = f (xi). (3.1)

Now, we consider a nested sequence of sets

S1 ⊂ S2 ⊂ · · ·
and we set S = ⋃

n Sn . Here, we assume that S = T. Of course, then, S will be a uniqueness set, meaning that two distinct
functions in H1,2(Gs) cannot agree on S . Indeed, it is known that a function in the Hardy space H2(Gs) which vanishes on
a subset of the boundary of Gs of positive Lebesgue measure is identically zero, see [11].

Condition (3.1) does not determine fn uniquely. Among all the functions in H1,2(Gs) satisfying (3.1), we shall pick the
only one with minimal norm. To perform this, we may decompose the space H1,2(Gs) as H1,2(Gs) = Zn ⊕ Un where Zn is
the closed subspace of functions vanishing on Sn and Un is its orthogonal complement. Then, we define f Sn = Πn( f ) where
Πn denotes the orthogonal projection on Un , and get in this way the so-called minimum interpolation sequence ( f Sn ) to f
with respect to the scheme of points (Sn)n�1. From general results on Hilbert spaces, it is known that f Sn converges to f in
H1,2(Gs) hence converges uniformly in Gs , see [7, Section 2] for details. From a practical point of view, it is also important
to note that f Sn can be computed from the values f (xi), i = 1, . . . ,k, by simply solving a linear system of equations. Actually,
f Sn admits the following expressions

f Sn(x) =
n∑

λi,n K1(x, xi),
i=1
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where the vector λn = (λ1,n, . . . , λn,n)T is any solution of the linear system Anλn = Bn with Bn the vector of values
( f (xi))i=1,...,n and An the Gram matrix of the functions K1(x, xi) where K1(x, y) denotes the reproducing kernel of H1,2(Gs),
see (1.5).

We now state our result which estimates the rate of convergence of the interpolating sequence f Sn to the limit func-
tion f .

Theorem 3.1. Consider a function f ∈ H1,2(Gs) with ‖ f ‖H1,2(Gs)
� 1. Assume (Sn)n�1 is a sequence of interpolation sets with S = T

and set hn = supx∈T d(x, Sn). Then, for any ε > 0, there exists N > 0 large enough such that for any n � N, we have that

‖ f − f sn‖H2(Gs)
� 4 + ε

e log(1/hn)
.

Proof. Set gn = f − f Sn . We write the points xk of Sn as xk = eiθk and we consider the covering of T with n intervals
I K = [θ−

k , θ+
k ] having at most one endpoint in common, each Ik containing θk . We may assume that d(θ−

k , θk) and d(θ+
k , θk)

are less than or equal to hn . We have∫
T

|gn|2 dθ =
n∑

k=1

∫
Ik

|gn|2 dθ.

Moreover, for eiγ in Ik ,

∣∣gn
(
eiγ )∣∣2 �

( γ∫
θk

∣∣g′
n

(
eit)∣∣dt

)2

� hn

γ∫
θk

∣∣g′
n

(
eit)∣∣2

dt,

hence

θ+
k∫

θk

|gn|2 dθ � hn

θ+
k∫

θk

∣∣g′
n

∣∣2
dθ

θ+
k∫

θk

dθ � h2
n

θ+
k∫

θk

∣∣g′
n

∣∣2
dθ.

Since a similar inequality holds for the integral from θ−
k to θk , we get that∫

Ik

|gn|2 dθ � h2
n

∫
Ik

∣∣g′
n

∣∣2
dθ,

and consequently,

‖gn‖2
L2(T)

� h2
n‖gn‖2

H1,2(Gs)
� h2

n, (3.2)

where the last inequality follows from the fact that gn is a projection of f which is assumed to be of norm less than 1
in H1,2(Gs). Using inequality (1.6) with k = 0 and m = 1, the previous inequality, and the fact that ‖gn‖H1,2(sT) � 1, we get
that

‖gn‖L2(sT) � 2

e log 1/‖gn‖L2(T)

(‖gn‖H1,2(sT) + 1
)
� 4

e log 1/hn
,

which implies together with (3.2) that

‖gn‖2
H2(Gs)

�
(

4

e log 1/hn

)2

+ h2
n,

from which the assertion in the theorem follows. �
Note that the rate of convergence of some approximation scheme in the Hardy–Sobolev space of the unit disk with a

constraint on a subarc of T has been obtained in [5], see in particular [5, Theorem 6.2]. Recovering of functions in the
Hardy–Sobolev space of a horizontal strip was analysed in [16]. In this respect, results about recovery of functions in a
more general setting can be found in [17], see also the comprehensive monograph [18].
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4. Second application: estimating the area of a cavity from boundary measurements

We consider a planar bounded simply-connected domain Ω with boundary Γ , containing a cavity, that is a connected,
simply-connected open set D with boundary γ ⊂ Ω . From a physical point of view, we assume that Ω is an electrically
conducting body, of constant conductivity 1, while the cavity is perfectly insulating, that is of conductivity 0. Our aim is to
give an estimate of the size of the cavity from comparing measurements performed on the boundary Γ of Ω , first when
the domain is safe, that is there is no cavity, and second when a cavity is present. The procedure consists in prescribing the
same flux of current ϕ on the boundary Γ , and measuring the corresponding electrostatic potentials ũ and u, in both cases.
When there is no cavity, the potential ũ satisfies the Neumann problem

ũ = 0, in Ω,
∂ ũ

∂n
= ϕ, on Γ, (4.1)

and when the cavity is present, the situation is modeled by the following equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = 0, in Ω \ D,

∂u

∂n
= ϕ, on Γ,

∂u

∂n
= 0, on γ ,

(4.2)

where ∂/∂n denotes the partial derivative with respect to the outer normal unit vector. We assume that the boundaries Γ

and γ of the domain are of class Cm,α , with m � 1, 0 < α < 1, and that the flux ϕ is Cm−1,α on Γ . In order that a solution
to (4.1) or (4.2) exists, the compatibility condition∫

Γ

ϕ(z)ds(z) = 0, (4.3)

must hold. In this case, a solution to (4.1) or (4.2) indeed exists and is determined up to an additive constant. In the sequel,
we impose the additional normalization conditions,∫

Γ

ũ(z)ds(z) = 0,

∫
Γ

u(z)ds(z) = 0,

to ensure uniqueness of a solution ũ or u. With the smoothness assumptions made above, it is known from classical
regularity results that the solutions ũ and u are Cm,α on Ω \ D , see [2].

Let us now turn to the geometric inverse problem of recovering the cavity. Concerning identifiability, one boundary
measurement u|Γ determines the cavity D , granted some smoothness assumptions on γ , see [3]. Note that this is in contrast
with the problem of recovering a 1-dimensional crack, since two boundary measurements are necessary in this case. As is
the rule for this type of inverse problems, only weak (i.e. logarithmic) stability results hold true. This can be seen as a
motivation for obtaining less precise, though still interesting, information on the unknown cavity.

Our result aims at giving such information, namely on the size of the cavity. For more information on this type of
questions, one may consult [4,10,14].

Our study is based on using conformal maps and norm estimates in Hardy–Sobolev spaces of the annulus.
In order to use the norm estimates as established in Theorem 1.1, we will need to consider a conformal mapping ψ from

an annulus Gs = D \ sD, 0 < s < 1, where D denotes the unit disk, onto the domain Ω \ D . We recall that s is uniquely
determined by Ω \ D . It is the inverse of a conformal invariant, the so-called conformal radius of Ω \ D . A well-known result
of Warschawski [19, Theorems 3.5 and 3.6] asserts that a conformal mapping from D onto the inner domain of a Jordan
curve of class Cm,α , m � 1, 0 < α < 1, has derivatives, up to order m, which admits continuous extensions to D. Moreover,
the first derivative is non-vanishing on the unit circle T. Reasoning as in the proof of [6, Proposition 4.2], one may extend
the Warschawski result to the doubly connected annulus Gs . This implies in particular that the moduli of the derivatives
of ψ , up to order m, are bounded above on the closure of Gs , and that |ψ ′| is also bounded below. For our analysis to
go through, we actually need to restrict ourselves to domains such that these bounds are absolute constants. Consequently,
given m � 1 and two real numbers 0 < λ < Λ, we introduce the class of “admissible” domains Ω \ D such that the following
property holds true:

H(m,λ,Λ). Any conformal map ψ from the annulus Gs onto Ω \ D, where 1/s � 1 is the conformal radius of Ω \ D, mapping the
outer boundary T of Gs to the outer boundary Γ of Ω \ D, satisfies

λ �
∣∣ψ ′(z)

∣∣ � Λ, z ∈ Gs. (4.4)

Furthermore, if m � 2, the higher-order derivatives of the map ψ also satisfies∣∣ψ(l)(z)
∣∣ � Λ, z ∈ Gs, 2 � l � m. (4.5)
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Note that if (4.4)–(4.5) holds true for some conformal map, then it holds true for any conformal map from Gs to Ω \ D
sending the outer boundary T of Gs onto the outer boundary Γ of Ω . This is a simple consequence of the fact that the
only automorphisms of Gs , sending the outer boundary T onto itself, are the rotations.

Generally speaking, property H(m,λ,Λ) means that the distortion of the conformal map ψ is controlled by the two
constants λ and Λ. As far as we know, there is no simple geometric characterisation of this property. The only reference,
related to this problem, we know of, is [22], which shows, among other results, that the derivative of conformal maps from
the unit disk to nearly circular regions cannot be too far from 1. Note that this assertion pertains to the simply connected
case. It would be interesting to have an analog for the doubly connected case.

Throughout we assume that the flux is generated by two electrodes applied on parts of the boundary Γ . Hence, we
consider two non-negative functions η1, η2 ∈ Cm−1,α(Γ ) whose supports are disjoint subarcs Γ1 and Γ2 of Γ , with∫

Γ j

η j = 1, j = 1,2. (4.6)

Then, the current density on Γ is taken as

ϕ = η1 − η2. (4.7)

Note that the total flux
∫
Γ

ϕ(s)ds of ϕ on the boundary Γ vanishes, in accordance with the assumption (4.3).
Next, consider the harmonic function ũ in Ω , which represents the potential corresponding to the flux ϕ on Γ when

there is no cavity in Ω . Because of (4.3), it has a harmonic conjugate ṽ in Ω , defined up to an additive constant, which is
obtained by integrating the flux ϕ(s) with respect to arc-length on the boundary Γ . Let

f̃ (z) = ũ(z) + i ṽ(z), z ∈ Ω. (4.8)

It will be shown that f̃ is actually a conformal map from Ω to its image, see Lemma 4.2. Moreover, from the smoothness
assumptions on the contour Γ and the flux ϕ , we know that ũ ∈ C1,α(Γ ), and ∂ ṽ/∂s = ∂ ũ/∂n = ϕ ∈ C0,α(Γ ). Hence,
ṽ ∈ C1,α(Γ ) as well, which shows in particular that f̃ (Γ ) is of class C1,α . Applying the Warschawski theorem in the simply
connected domain Ω , we obtain that f̃ ′ admits a non-vanishing continuous extension to Ω . Consequently, setting

m f̃ ′ = inf
z∈Ω

∣∣ f̃ ′(z)
∣∣, M f̃ ′ = sup

z∈Ω

∣∣ f̃ ′(z)
∣∣, (4.9)

we have that 0 < m f̃ ′ < M f̃ ′ < ∞. Note that the two parameters m f̃ ′ and M f̃ ′ only depend on the safe domain Ω and are

determined from the data on the boundary since the function f̃ can be reconstructed from these data, and moreover, the
above-mentioned Warschawski theorem ensures that

f̃ ′(z) = lim
ζ→z

f̃ (z) − f̃ (ζ )

z − ζ
as ζ → z, z, ζ ∈ Γ. (4.10)

In particular, (4.10) could be used to estimate m f̃ ′ and M f̃ ′ numerically.
Finally, we denote by |A| the planar Lebesgue measure of a measurable subset A of the plane. Since, from a practical

point of view, it seems reasonable that the area of the unknown cavity D is not too large, relatively to that of the domain Ω ,
we will assume throughout that there exists an absolute constant ρ < 1 such that |D|/|Ω| � ρ .

We are now in a position to state our main result.

Theorem 4.1. Consider an admissible domain Ω \ D satisfying the property H(m,λ,Λ). Assume that the difference of potentials u
and ũ is not too large, more precisely that

σ := ‖u − ũ‖L2(Γ )/
√

λ < 1.

Then, the area of the cavity D is bounded above as follows,

|D| � C1

| logσ | , if m = 1, (4.11)

while,

|D| � sup
0<δ<1

min

(
Cm

δm−1| logσ |m , δ2|Ω|
)

, if m > 1. (4.12)

In (4.11)–(4.12), the constant Cm, m � 1, is explicitly given by

Cm =
√

2πΛ

λ

M f̃ ′

m2
f̃ ′

(
2

e

)m(
2mπλ2(1 + Λ)m− 1

2

|Ω|(1 − ρ)

(
Λ

λ

)2m

C ′
m‖ϕ‖W m−1,2(Γ ) + mm

)
,

where C ′
m is a computable constant that depends only on m (e.g. C ′

1 = 1, C ′
2 = √

5/2).
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4.1. Proof of Theorem 4.1

Step 1. Building a conformal map from the data and using the Green formula. We start with a lemma.

Lemma 4.2. Assume the flux is given by (4.6)–(4.7). Then, the analytic function f̃ defined by (4.8) maps conformally the domain Ω

onto its image Ω0 := f̃ (Ω).

The assertion in the lemma has already appeared in the framework of inverse problems, and has also been extended to
more general situations. For completeness, let us give a proof.

Proof. The Rado theorem [20] states that a harmonic function h in a disk, continuous on the boundary, with a critical point
z0 inside the disk, assumes the value h(z0) at least in four distinct points of the boundary. Since ṽ is not constant, we have

inf
z∈Ω

ṽ(z) < ṽ(z) < sup
z∈Ω

ṽ(z), z ∈ Ω,

by the maximum principle. Since such values are taken exactly twice on Γ , we deduce from the Rado theorem applied
with ṽ on Ω (which is possible by considering a Riemann map from the disk to the simply-connected domain Ω) that
ṽ has no critical point inside Ω . Then, for a given point z0 ∈ Ω , there is only one level curve passing through z0, and it
is an analytic arc joining two distinct points of the boundary. First, from what precedes, we know that on this arc, the
derivative ∂ ũ/∂s = ∂ ṽ/∂n never vanishes, hence is of constant sign. Consequently, each value of ũ is taken only once on this
arc. Second, two level curves of ṽ can only correspond to different values since otherwise, ṽ would be constant inside the
domain delimited by these two curves, hence also in Ω . The injectivity of f̃ , and the fact that it is a conformal map, follow
from these two assertions. �

Now, we consider a cavity D and its image D0 by the map f̃ . The area of D satisfies

|D| =
∫
D

dx dy =
∫
D0

∣∣( f̃ −1)′
(z)

∣∣2
dx dy � m−2

f̃ ′

∫
D0

dx dy,

where m f̃ ′ has been defined in (4.9). Consider the harmonic function ṽ0 in D0 such that ṽ0 = ṽ ◦ f̃ −1. From the definition

of f̃ , we have that ṽ0(z) = y, where z = x + iy. Hence, applying the Green formula on D0, we get∫
D0

dx dy =
∫
D0

∣∣∇ ṽ0(z)
∣∣2

dx dy =
∫

∂ D0

ṽ0(z)
∂ ṽ0

∂n
(z)ds.

Let v0 = v ◦ f̃ −1 with v the harmonic conjugate of u in Ω \ D . Since D is insulating, v is constant on γ , and since we are
free to choose this constant, we may assume that v = 0 on γ , or equivalently v0 = 0 on ∂ D0. Hence, the last integral can
be rewritten as∫

∂ D0

(ṽ0 − v0)(z)
∂ ṽ0

∂n
(z)ds �

∫
∂ D0

∣∣(ṽ0 − v0)(z)
∣∣ds � M f̃ ′

∫
γ

∣∣( ṽ − v)(z)
∣∣ds,

recall (4.9) for the definition of M f̃ ′ . Applying the Schwarz inequality to the last integral, we get∫
γ

∣∣( ṽ − v)(z)
∣∣ds � length(γ )1/2‖̃v − v‖L2(γ ) � length(γ )1/2‖ f̃ − f ‖L2(γ ),

where f = u + iv on Ω \ D . Summing up, we obtain the following upper bound for the area of the cavity,

|D| � length(γ )1/2
M f̃ ′

m2
f̃ ′

‖ f̃ − f ‖L2(γ ) �
(

2π

λ

)1/2 M f̃ ′

m2
f̃ ′

‖ f̃ − f ‖L2(γ ), (4.13)

where the last inequality comes from

length(γ ) =
∫
γ

ds =
∫
sT

∣∣(ψ−1)′
(s)

∣∣ds � 2π s

λ
� 2π

λ
.
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Step 2. Applying a norm inequality in the Hardy–Sobolev space H m,2(Gs) of the annulus. As explained in the introduction,
to use the result in Section 2, we need to transport our original problem onto the annulus Gs , where s−1 is the conformal
radius of the domain Ω \ D . We thus define the following functions on Gs ,

ũ1 = ũ ◦ ψ, f̃1 = f̃ ◦ ψ, u1 = u ◦ ψ, f1 = f ◦ ψ,

which are obtained from the corresponding functions ũ, f̃ , u, f on Ω \ D through the map ψ . Since ũ is a solution to (4.1),
the function ũ1 satisfies

ũ1(ζ ) = 0, ζ ∈ D,
∂ ũ1

∂n
(ζ ) = ϕ1(ζ ) := (ϕ ◦ ψ)(ζ )

∣∣ψ ′(ζ )
∣∣, ζ ∈ T. (4.14)

Similarly, since u is a solution to (4.2), the function u1 is a solution to the Neumann problem in Gs ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1(ζ ) = 0, ζ ∈ Gs,

∂u1

∂n
(ζ ) = ϕ1(ζ ), ζ ∈ T,

∂u1

∂n
(ζ ) = 0, ζ ∈ sT.

(4.15)

Note that, since ϕ is Cm−1,α on Γ and ψ admits a Cm,α extension to Gs , the flux ϕ1 is Cm−1,α on T, and in particular
belongs to W m−1,2(T). Let

ϕ1
(
eiθ ) =

∑
k �=0

αkeikθ ,

be its Fourier expansion. The coefficient α0 is zero because the total flux of ϕ1 on T vanishes, recall the compatibility
condition (4.3). Then, it is not difficult to check that the potentials ũ1 and u1 admit the following expressions in polar
coordinates,

ũ1(r, θ) =
∑
k �=0

sgn(k)
αk

k
r|k|eikθ ,

u1(r, θ) =
∑
k �=0

αk

k(1 − s2k)

(
rk + s2k

rk

)
eikθ .

From the previous expressions for ũ1 and u1, one deduces the following expansion for f1 − f̃1,

( f1 − f̃1)(z) = 2
∑
k>0

s2k

k(1 − s2k)

(
αkzk + αk

zk

)
.

Hence, the norm of f1 − f̃1 in the space L2(sT) satisfies

‖ f1 − f̃1‖2
L2(sT)

� 4s2

(1 − s2)2
‖ϕ1‖2

L2(T)
, (4.16)

and for the derivatives, one checks, after some calculations, that∥∥( f1 − f̃1)
(l+1)

∥∥2
L2(sT)

� 4

s2l(1 − s2)2
(l + 1)2

∥∥ϕ(l)
1

∥∥2
L2(T)

, l � 0.

Summing up (4.16) and the previous inequalities for l = 0, . . . ,m − 1, we get for the Sobolev norm of order m on sT,

‖ f1 − f̃1‖2
W m,2(sT)

� 4m2

s2m−2(1 − s2)2
‖ϕ1‖2

W m−1,2(T)
. (4.17)

Note that this explicit inequality is an instance in the annulus of classical boundary regularity results for the solutions of
linear elliptic equations in general domains, see e.g. [12, Chapter 8] or [23, Chapter 5].

Now, we estimate ‖ f1 − f̃1‖L2(sT) with respect to ‖ f1 − f̃1‖L2(T) by applying Proposition 1.1 in the Hardy–Sobolev space
Hm,2(Gs). Choosing k = 0, and assuming that

ε1 := ‖ f1 − f̃1‖L2(T) � 1, (4.18)

we get from (1.6), (4.17), and the fact that es| log s| � 1, s ∈ [0,1], that

‖ f1 − f̃1‖L2(sT) �
(

2
)m(

2m
m−1 2

‖ϕ1‖W m−1,2(T) + mm
)

. (4.19)

e| logε1| s (1 − s )
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Since Ω \ D is an admissible domain satisfying the hypothesis H(m,λ,Λ), we have that

ε2
1 = ‖ f1 − f̃1‖2

L2(T)
�

(
sup
s∈Γ

∣∣(ψ−1)′
(s)

∣∣)‖ f − f̃ ‖2
L2(Γ )

� λ−1‖u − ũ‖2
L2(Γ )

. (4.20)

In the last inequality, we have assumed that v − ṽ = 0 on Γ . Indeed, since the same flux ϕ is applied on the outer boundary
of Ω and Ω \ D , v − ṽ is constant there and the freedom we have on ṽ , which is determined up to a constant, allows one
to make this difference equal to zero. From (4.20), we see that the assumption (4.18) on ε1 is granted as soon as

‖u − ũ‖2
L2(Γ )

� λ. (4.21)

Step 3. Estimate of the area of the cavity in the original domain. In this final step, we get our sought upper bound on the
area of the unknown cavity by putting together (4.13) and (4.19). Before doing that, we need two preliminary results.

First, we show that the norm ‖ϕ1‖W m−1,2(T) can be bounded by ‖ϕ‖W m−1,2(Γ ) times a constant that depends on the
conformal map ψ and its derivatives up to order m. When m = 1, we have

‖ϕ1‖L2(T) � Λ1/2‖ϕ‖L2(Γ ). (4.22)

When m � 2, the Sobolev norm of order m − 1 of ϕ1 involves the derivatives ∂nϕ1/∂sn , 0 � n � m − 1. Since

ϕ1(ζ ) = ∂u1

∂n
(ζ ) =

(
∂u

∂n
◦ ψ

)
(ζ )

∣∣ψ ′(ζ )
∣∣,

the Faa’ Di Bruno formula for the nth derivative of a composite function tells us that

∂nϕ1

∂sn
(ζ ) =

∑ (n + 1)!
k1! · · ·kn+1!

∂kϕ

∂sk

(
ψ(ζ )

)(∣∣ψ ′(ζ )
∣∣)k1 · · ·

(
1

n!
∂n|ψ ′|
∂sn

(ζ )

)kn+1

,

where k + 1 = k1 + · · · + kn+1, and the sum ranges over the non-negative integers k1, . . . ,kn+1 such that

k1 + 2k2 + · · · + (n + 1)kn+1 = n + 1.

To estimate the lth derivative of |ψ ′|, 0 � l � n, we may write

∂ l|ψ ′|
∂sl

= ∂ l

∂sl

(
(ψ ′ψ ′)1/2),

which can be also expanded by the Faa’ Di Bruno formula. This will lead to an expression involving the derivatives of ψ ′ψ ′
up to order l in the numerator and the (2l − 1)th power of |ψ ′| in the denominator. Now, using the Leibniz formula, we get
that

∂ l

∂sl
(ψ ′ψ ′) =

l∑
j=0

(
l

j

)
∂ jψ ′

∂s j

∂ l− jψ ′
∂sl− j

,

whose modulus can be bounded by the modulus of the derivatives ∂ jψ ′/∂s j , 0 � j � l � m − 1. Since ψ ′ is analytic in Gs
and its derivative admits a continuous extension to T (when m � 2), we have that

∂ψ ′

∂s

(
eiθ ) = izψ ′′(z), z = eiθ ,

see e.g. [11, Theorem 3.11] for a version in the Hardy space H1(D). Similarly for the derivatives of order n, 1 � n � m − 1,
we obtain

∂nψ ′

∂sn

(
eiθ ) = Pn(ψ ′)(z), z = eiθ ,

where P denotes the differential operator P ( f )(z) = izf ′(z). This shows that the modulus of the derivatives ∂nψ ′/∂sn ,
0 � n � m − 1, can, in turn, be bounded by the modulus of the derivatives ψ(n) , 1 � n � m, and consequently by an
expression that depends only on the constant Λ in (4.4)–(4.5). From the above discussion, it can be proved that∣∣∣∣∂nϕ1

∂sn
(ζ )

∣∣∣∣ � (1 + Λ)n
(

Λ

λ

)2n

max
0� j�n

(∣∣∣∣∂ jϕ

∂s j

∣∣∣∣)∣∣ψ ′(ζ )
∣∣,

where the symbol � means an inequality up to a constant in the right-hand side that depends only on the order of
derivation. This implies for the Sobolev norms that

‖ϕ1‖W m−1,2(T) � (1 + Λ)m− 1
2

(
Λ

λ

)2m−2

‖ϕ‖W m−1,2(Γ ). (4.23)

We leave the details to the reader.
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Second, we need to check that the radius s of the inner boundary of Gs does not come too close to 1. This is a simple
consequence of the assumption made before the statement of Theorem 4.1 that the ratio |D|/|Ω| is less than a constant
ρ < 1. Indeed,

|Ω| − |D| =
∫
Gs

∣∣ψ ′(ζ )
∣∣2

dx dy � Λ2π
(
1 − s2), (4.24)

so that

|Ω|(1 − ρ)/
(
πΛ2) �

(
1 − s2). (4.25)

From (4.13) and (4.19), together with (4.20), (4.22), (4.24) and the inequality

‖ f − f̃ ‖2
L2(γ )

� Λ‖ f1 − f̃1‖2
L2(sT)

,

it is straightforward to check that the inequalities (4.11) and (4.12) stated in Theorem 4.1 hold true. For the second inequal-
ity, note that, when m > 1, the upper bound on |D| obtained from the previous analysis happens to tend to infinity if s tends
to 0. Indeed, this comes from the occurrence of the factor sm−1 in the denominator of the right-hand side of (4.19). Anyway,
if s is small, so is |D|, because of the classical inequality of Carleman, see [13, p. 503], which states that |D|/|Ω| � s2. This
allows us to upper estimate the area of D by the minimum of these two bounds, which both depend on s, an unknown
parameter in (0,1). Hence, we have to consider all possible value of s in (0,1), and this leads to (4.12).

4.2. An example: the class of eccentric annuli

In this section, we illustrate our previous results by considering an example of a specific class of admissible domains
denoted by Dd . The domains of the class Dd are the eccentric annuli, that is the annular domains Ga,r whose inner boundary
is a circle |z − a| = r and outer boundary the unit circle T. Without loss of generality, we assume that the center a of the
inner circle is a positive number. Moreover, we assume that 0 < a + r < 1 − d < 1, with d some positive real number less
than 1, e.g. 0 < d < 1/2. Hence, there is a minimal separation between the circles |z − a| = r and |z| = 1, in other words, the
cavity D is not too close to the boundary of the domain Ω .

Proposition 4.3. The class Dd is an admissible set of domains, whose elements satisfy, for any m � 1, the property H(m,λ,Λm) with

λ = d

2 − d
, Λm = m!(2 − d)(1 − d)m−1/dm.

Proof. Let Ga,r be an element of Dd . We describe the conformal map ψ , or rather its inverse ψ−1 from Ga,r to an annu-
lus Gs , for some appropriate value of s. The map ψ−1 is a bilinear transform that can be determined from the following
property: bilinear transforms map inverse points with respect to circles to inverse points. Following [1, Example 5.7.8], we
then consider two positive real numbers α and β that are inverse with respect to both circles |z| = 1 and |z − a| = r.
Consequently, they satisfy the relations,

αβ = 1, (α − a)(β − a) = r2.

We choose α and β so that α lies inside, and β outside both circles. Then, we choose ψ−1 as the bilinear transform that
maps α and β onto 0 and ∞ respectively, namely

ψ−1(z) = κ
z − α

αz − 1
.

With this choice, the circles |z| = 1 and |z − a| = r are mapped onto circles centered at 0. The constant κ = −1 is chosen so
that circle |z| = 1 is mapped onto itself. Hence,

ψ−1(z) = z − α

1 − αz
and ψ(z) = z + α

1 + αz
. (4.26)

The inner circle of Gs maps to |z − a| = r by ψ . Let us determine its radius s. It is easily checked that the set |z − α|/
|z − β| = k is a circle with respect to which α and β are inverse. Moreover, the center of this circle is (α − k2β)/(1 − k2).
Hence, choosing k such that (α − k2β)/(1 − k2) = a, or equivalently k2 = (a − α)/(a − β), the above set coincides with
|z − a| = r, and it is clear from (4.26) that its image by ψ−1 is the circle of radius

s = k = 1
√

α − a = β(α − a) = r2 + a(α − a)
.

α α β − a r r
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Note that from the last expression for s, we deduce that

r � s � a + r � 1 − d < 1, (4.27)

where 0 < d < 1 has been defined at the beginning of this section.
The derivatives of ψ are given by

ψ(n)(z) = (−1)n+1 n!(1 − α2)αn−1

(1 + αz)n+1
, n � 1.

Hence,

inf
z∈Gs

∣∣ψ ′(z)
∣∣ = ∣∣ψ ′(1)

∣∣ = 1 − α

1 + α
� d

2 − d
, (4.28)

and, for n � 1,

sup
z∈Gs

∣∣ψ(n)(z)
∣∣ = ∣∣ψ(n)(−1)

∣∣ = n!αn−1 1 + α

(1 − α)n
� n! (2 − d)(1 − d)n−1

dn
.

Since, by assumption, 0 < d < 1/2, we deduce that

sup
z∈Gs

∣∣ψ(n)(z)
∣∣ � m! (2 − d)(1 − d)m−1

dm
, 1 � n � m, (4.29)

which shows the assertion in the proposition. �
As a final result, we give a version of Theorem 4.1 for domains in the class Dd when m = 1.

Theorem 4.4. Consider a domain G in the class Dd, and assume that

σ :=
√

2 − d

d
‖u − ũ‖2,T < 1.

Then, the area of the inner disk D of G , that is the area of the unknown cavity, is bounded above as follows,

|D| � C

| logσ | ,
where the constant C is explicitly given by

C = 2M f̃ ′
√

2π(1 − d)
(
2‖ϕ‖L2(Γ ) + 1

)
/
(
ed2m2

f̃ ′
)
.

Proof. The assertion is easily obtained from the general case and some minor modifications. �
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