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Can Differences in Corrected Coronary Opacification
Measured With Computed Tomography
Predict Resting Coronary Artery Flow?

Benjamin J. W. Chow, MD,*† Malek Kass, MD,* Owen Gagné,* Li Chen, MSC,‡ Yeung Yam, BSC,*
Alexander Dick, MD,*† George A. Wells, PHD‡

Ottawa, Ontario, Canada

Objectives A proof-of-concept study was undertaken to determine whether differences in corrected coronary opacification
(CCO) within coronary lumen can identify arteries with abnormal resting coronary flow.

Background Although computed tomographic coronary angiography can be used for the detection of obstructive coronary
artery disease, it cannot reliably differentiate between anatomical and functional stenoses.

Methods Computed tomographic coronary angiography patients (without history of revascularization, cardiac transplanta-
tion, and congenital heart disease) who underwent invasive coronary angiography were enrolled. Attenuation
values of coronary lumen were measured before and after stenoses and normalized to the aorta. Changes in
CCO were calculated, and CCO differences were compared with severity of coronary stenosis and Thrombolysis
In Myocardial Infarction (TIMI) flow at the time of invasive coronary angiography.

Results One hundred four coronary arteries (n � 52, mean age � 60.0 � 9.5 years; men � 71.2%) were assessed.
Compared with normal arteries, the CCO differences were greater in arteries with computed tomographic coro-
nary angiography diameter stenoses �50%. Similarly, CCO differences were greater in arteries with TIMI flow
grade �3 (0.406 � 0.226) compared with those with normal flow (TIMI flow grade 3) (0.078 � 0.078, p � 0.001).
With CCO differences, abnormal coronary flow (TIMI flow grade �3) was identified with a sensitivity and specificity,
positive predictive value, and negative predictive value of 83.3% (95% confidence interval [CI]: 57.7 to 95.6%), 91.2%
(95% CI: 75.2% to 97.7%), 83.3% (95% CI: 57.7% to 95.6%), and 91.2% (95% CI: 75.2% to 97.7%), respectively. Ac-
curacy of this method was 88.5% with very good agreement (kappa � 0.75, 95% CI: 0.55 to 0.94).

Conclusions Changes in CCO across coronary stenoses seem to predict abnormal (TIMI flow grade �3) resting coronary blood
flow. Further studies are needed to understand its incremental diagnostic value and its potential to measure
stress coronary blood flow. (J Am Coll Cardiol 2011;57:1280–8) © 2011 by the American College of Cardiology
Foundation

Published by Elsevier Inc. doi:10.1016/j.jacc.2010.09.072
Computed tomographic coronary angiography (CTA) is a
noninvasive anatomical tool capable of detecting obstructive
coronary artery disease (CAD) (1–6). However, a well-
recognized limitation of anatomical imaging with CTA is
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its limited ability to predict the hemodynamic significance
of coronary stenoses (7–15). There is a desire to develop a
single imaging modality with the ability to evaluate for both
anatomical and functional stenoses. Although computed
tomography (CT) myocardial perfusion imaging has the
potential to assess the hemodynamic significance of an
anatomical lesion, it is currently under investigation and is
not ready for routine clinical use (16,17).

See page 1289

Opacification of coronary artery lumen and luminal
contrast density with CTA is dependent upon contrast
bolus geometry (contrast iodine concentration, contrast
infusion rate, and volume), timing of image acquisition,

cardiac output, and coronary flow. Previous studies using
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320-detector row CT demonstrate that measuring contrast
gradients is feasible and are minimally impacted by these
factors (18,19). However, these factors might be an impor-
tant limitation when evaluating CTA images that are
acquired with multiple cardiac cycles and lack temporal
uniformity. If methods could be developed to partially
correct for such factors, 64-slice CT might be able to
measure coronary contrast opacification to indirectly estimate
coronary blood flow. This technique might prove especially
useful for estimating flow across unevaluable coronary seg-
ments, such as stents, which might improve diagnostic
accuracy. Equally valuable would be the ability to translate
this method to facilitate the measure of stress coronary flow
allowing for the determination of hemodynamically signif-
icant stenoses.

The objective of this proof-of-concept study is to deter-
mine whether changes in corrected coronary opacification
(CCO) across stenoses can identify arteries with abnormal
resting coronary flow.

Methods

Consecutive patients who had undergone routine CTA and
subsequent invasive coronary angiography, were retrospectively
screened for analysis. All patients with a history of coronary
revascularization, cardiac transplantation, and congenital heart
disease were excluded. The Cardiac CT registry was approved
by the Institutional Human Research Ethics Board, and all
patients provided written informed consent.
CTA. Before image acquisition, metoprolol or diltiazem (oral
and/or intravenous) was administered targeting a heart rate of
�65 beats/min, and nitroglycerin 0.8 mg was administered
sublingually. A bi-phasic timing bolus was used to determine
the time interval between intravenous contrast (Visipaque 320
or Omnipaque 350, GE Healthcare, Princeton, New Jersey)
infusion and peak aorta opacification (6,20). As per our clinical
routine, final images were acquired with a tri-phasic intrave-
nous contrast administration protocol (100% contrast, 40%/
60% contrast/saline, and saline [40 cc]) (6,20). No modifica-
tions were made to the CTA protocol for the purpose of this
study. Retrospective electrocardiogram (ECG)-gated datasets
were acquired with the GE Volume CT (GE, Milwaukee,
Wisconsin) with 64 � 0.625 mm slice collimation, gantry
rotation of 350 ms (mA � 400 to 800, kV � 120) with
ECG-gated X-ray tube modulation and pitch (0.16 to 0.24)
was individualized according to the heart rate of the patient.
The CTA datasets were reconstructed with a slice thickness of
0.625 mm and an increment of 0.4 mm with the cardiac
phase(s) with the least cardiac motion (6,20).
CTA image analysis. The ECG-gated CT images were
post-processed with the GE Advantage Volume Share
Workstation and interpreted by expert observers blinded to
all clinical data. A 17-segment model of the coronary
arteries and obstructive CAD was defined as a diameter
stenosis �50% (6,20,21).

For each patient, a single expert observer measured coronary

luminal attenuation values (Hounsfield units [HU]) in normal
arteries and those with obstructive
CAD (�50% diameter stenosis)
on CTA. Once a coronary seg-
ment(s) was selected for analysis,
the axial slice (0.625-mm slice
thickness) that approximated the
center of the lumen in the z-plane
(estimated by selecting the axial
slice with the largest luminal di-
ameter in the x-y plane) was used
for analysis. A region of interest
(ROI) was placed in the center of
the coronary lumen (x-y plane)
and the descending aorta (on the
same axial slice) (Fig. 1), and the
mean HU values were recorded.
The largest possible ROI was
used; however, care was used when
placing the ROI to ensure that all
extra-luminal structures (e.g.,
plaque) and artefact were excluded.
At least 4 ROI measurements
were made for all normal arteries
with proximal, mid, and distal coronary segments. In arteries
with obstructive CAD, a minimum of 6 ROIs were placed. At
least 2 ROI measurements were performed proximal to the
stenosis, 2 measurements were performed immediately distal to
the stenosis (within 2 cm of the lesion), and 2 measurements
were performed in the distal artery with a diameter �1.5 mm.

are was also used to place ROIs in segments of the artery
ithout significant artefact (motion, beam hardening, or
looming artefact).

For training purposes and to determine inter- and intra-
bserver variability, the attenuation values of the aorta and

Figure 1 Regions of Interest Used for Calculating
the Corrected Coronary Opacification

Regions of interest placed in the left main and proximal left anterior
descending artery (small red circles) and in the descending aorta (large red circle).

Abbreviations
and Acronyms

CAD � coronary artery
disease

CCO � corrected coronary
opacification

CI � confidence interval

CT � computed
tomography

CTA � computed
tomographic coronary
angiography

ECG � electrocardiogram

HU � Hounsfield units

ICC � intra-class
correlation coefficient

IQR � interquartile range

MI � myocardial infarction

ROI � region of interest

TIMI � Thrombolysis In
Myocardial Infarction
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coronary arteries were measured by 2 expert readers in 15
nonstudy patients.

Patients were excluded from analysis if they had left main
or ostial right coronary artery stenoses (n � 4), serial
tenoses (n � 10), or branch vessel disease (n � 7). As well,

14 patients without a “normal” reference major epicardial
vessel were excluded, as were patients with coronary seg-
ments with significant artefact (cardiac motion [n � 9],
beam hardening artefact [n � 4]) or vessels with diameters
�1.5 mm (n � 14).
CCO. It is accepted that there are normal variations in the
opacification of the coronary arteries (18,19); however, this
variability is likely greater when image acquisition occurs
over multiple cardiac cycles (Fig. 2). To account for varia-
tions in contrast attenuation in the coronary vessels due to
different cardiac cycles, cardiac output, and bolus geometry,
each coronary luminal attenuation measurement was nor-
malized to the descending aorta on the same axial slice.
Thus, for each axial slice, the corrected coronary attenuation
(CCO) was calculated as the quotient of the mean ROI HU
in the coronary artery and aorta (CCO � coronary artery
HU/aorta HU). The difference in CCO across stenoses was
calculated as the change between the lowest CCO proximal
to the stenosis and the lowest CCO distal to the coronary
stenosis (CCO difference � pre-stenosis CCOmin � post-
stenosis CCOmin). Normal arteries were used to measure
he variability of CCO and were calculated as the difference
etween the highest and the lowest CCO (CCOmax �

CCOmin) within the same coronary artery.
nvasive coronary angiography. Invasive coronary angiog-
aphy was performed at the discretion of the treating
hysician, and cinematic images were acquired with a frame
ate of 15 frames/s. With the same 17-segment model of the
oronary arteries, percentage diameter stenosis of each

Figure 2 Contrast Variability Due to the Lack of Temporal Unifo

Contrast enhanced electrocardiographic-gated cardiac computed tomography (CT)
and left ventricle (yellow arrows), suggesting that the opacification of vascular
rtery was assessed (6,20,21). In addition, TIMI flow grade
TIMI flow grade 0, 1, 2, or 3) and the TIMI frame count
ere calculated for each artery of interest. The TIMI frame

ount (30 frames/s) was calculated by doubling the count
cquired with the 15 frames/s cinematic images (22).
tatistical analysis. Statistical analyses were performed
ith SAS (version 9.2, SAS Institute, Inc., Cary, North
arolina), and statistical significance was defined as p �
.05. Continuous variables were presented as means with
Ds and median (interquartile range [IQR]), and categor-

cal variables were presented as frequencies with percent-
ges. To compare patient characteristics, Wilcoxon rank
um test was used to compare continuous variables, and
isher exact test was used for categorical variables.
The unpaired t tests were used to compare the difference of

CO gradients between normal versus obstructive arteries and
etween normal (TIMI flow grade 3) and abnormal (TIMI
ow grade �3) coronary flow. Paired t tests were used to
ompare differences in coronary flow, CCO gradients, and
IMI frame counts versus coronary diameter stenosis. The

eliability of continuous data (CCO gradient, coronary flow,
IMI frame count versus coronary diameter stenosis, inter-

nd intra-observer variability) was assessed with intra-class
orrelation coefficients (ICCs) (23). The strength of ICC was
etermined with the cutoffs of 0.5, 0.3, and 0.1 for high,
oderate, and low levels of agreement according to Cohen’s

ffect size convention (24). The agreement between abnormal
CO gradients and coronary flow (TIMI flow grade �3) was

valuated with Kappa statistics.

esults

n obstructive and a nonobstructive vessel were assessed for
ach of the 52 consecutive patients (mean age 60.0 � 9.5 years;

y of 64-Slice CT

rying contrast density (Hounsfield units [HU]) in the aorta (red arrows)
tures is nonuniform when image acquisition spans multiple cardiac cycles.
rmit

with va
struc
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71.2% male) (Table 1). All patients had obstructive CAD in
�1 vessel and all patients had at least 1 major epicardial vessel
that could be used as a “normal” reference artery. Of the 884
segments evaluated, 55 (6.2%) were �1.5 mm in diameter, and
26 (2.9%) were unevaluable due to artefact.
Normal arteries. The CCO was assessed in 52 coronary
arteries without stenoses and normal TIMI flow grade 3 (20
left anterior descending arteries, 24 circumflex arteries, and
8 right coronary arteries). In normal arteries, the mean
CCO was 0.979 � 0.070 (median 0.965, IQR: 0.940 to
.005), CCOmax was 1.030 � 0.076 (median 1.020, IQR:

0.987 to 1.057), and CCOmin was 0.921 � 0.093 (median
.926, IQR: 0.892 to 0.954). To estimate normal variability
n arteries without coronary stenosis, normal CCO variabil-
ty (difference between CCOmax and CCOmin ) was calcu-
ated (0.100 � 0.042) (median 0.099, IQR: 0.073 to 0.128).
he CCO variability in normal arteries was used to calculate

he threshold for abnormal CCO differences (mean CCO
ifference � 2 SD � 0.184). Therefore a CCO difference
pre-stenosis CCOmin � post-stenosis CCOmin) �0.184
as considered abnormal, and this threshold was tested in

oronary arteries with varying stenoses, TIMI flow grade,
nd TIMI frame count.
alidation in arteries with diameter stenoses >50%. The

Patient Characteristics: All Patients and PatientsTable 1 Patient Characteristics: All Patients

All Patients (n � 52

Age (yrs) 60.0 � 9.5

Men 37 (71.2%)

Body mass index (kg/m2) 29.7 � 5.7

Pre-test likelihood for CAD (%) 52.4 � 35.8

Cardiac risk factors

Smoker/ex-smoker 30 (57.7%)

Hypertension 29 (55.8%)

Dyslipidemia 37 (71.2%)

Diabetes 11 (21.2%)

Family history of CAD 29 (55.8%)

Indications for study

Chest pain 36 (69.2%)

Nonanginal chest pain 11 (21.2%)

Atypical angina 14 (26.9%)

Typical angina 11 (21.2%)

Dyspnea 8 (15.4%)

Asymptomatic 8 (15.4%)

Equivocal stress test 4 (7.7%)

Cardiac (valve) surgery 1 (1.9%)

Risk stratification 3 (5.8%)

CT imaging parameters

Imaging heart rate (beats/min) 53.6 � 5.7

Contrast infusion rate (cc/s) 6.3 � 0.8

Total contrast volume (cc) 104.2 � 12.8

Radiation (mSv) 15.6 � 3.3

Values are mean � SD or n (%). *Comparison between patients with Thr
TIMI flow grade �3 (column 4).

CAD � coronary artery disease; CT � computed tomography.
CO was measured in 52 obstructive arteries with CTA r
iameter stenoses �50% (23 left anterior descending arteries, 5
ircumflex arteries, and 24 right coronary arteries). The pre-
tenosis CCOmin (0.964 � 0.058, median 0.958, IQR: 0.926

to 0.994) was slightly greater than CCOmin in normal arteries
0.921 � 0.093, median 0.926, IQR: 0.892 to 0.954) (p �
.006). The post-stenosis CCOmin (0.773 � 0.214, median

0.866, IQR: 0.683 to 0.916) were significantly lower than the
minimum pre-stenosis CCOmin (p � 0.001) and lower than
he CCOmin observed in normal arteries (p � 0.001).

Compared with the CCO variability in nonobstructive
rteries, the CCO difference was significantly greater in
rteries with obstructive CAD (diameter stenoses �50%)
0.191 � 0.214, median 0.106, IQR: 0.042 to 0.296) (p �
.004) (Fig. 3).
The relationship between CCO differences and coronary

iameter stenoses was also assessed (Table 2), and the
roportion of abnormal CCO differences increased with
orsening diameter stenosis (p � 0.001). According Co-
en’s effect size convention, the reliability of contrast
radient and coronary diameter stenosis was high (ICC:
.82; 0.71 to 0.89).
IMI flow grade <3. In arteries with abnormal coronary
ow (TIMI flow grade �3), the mean pre-stenosis CCO
nd CCOmin were 1.000 � 0.075 and 0.970 � 0.067,

and Without TIMI Flow Grade 3atients With and Without TIMI Flow Grade 3

TIMI Flow Grade �
3

(n � 34)
TIMI Grade <3

(n � 18) p Value*

59.6 � 9.1 60.7 � 10.4 0.700

24 (70.6%) 13 (72.2%) 0.902

30.7 � 5.8 27.9 � 5.2 0.102

53.1 � 37.4 51.1 � 33.8 0.847

17 (50.0%) 13 (72.2%) 0.126

19 (55.9%) 10 (55.6%) 0.982

25 (73.5%) 12 (66.7%) 0.607

8 (23.5%) 3 (16.7%) 0.568

21 (61.8%) 8 (44.4%) 0.236

25 (73.5%) 11 (61.1%) 0.361

10 (29.4%) 1 (5.6%) 0.047

6 (17.6%) 8 (44.4%) 0.040

9 (26.5%) 2 (11.1%) 0.201

4 (11.8%) 4 (22.2%) 0.325

5 (14.7%) 3 (16.7%) 0.854

3 (8.8%) 1 (5.6%) 0.677

1 (2.9%) 0 (0.0%) 0.467

1 (2.9%) 2 (11.1%) 0.234

55.1 � 5.3 50.9 � 5.6 0.010

6.4 � 0.8 6.3 � 0.8 0.746

105.0 � 14.2 102.7 � 9.6 0.541

15.8 � 3.8 15.2 � 2.2 0.561

sis In Myocardial Infarction (TIMI) flow grade 3 (column 3) and those with
Withand P

)

omboly
espectively, and were similar to the measures obtained in
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arteries with normal TIMI flow grade 3 (0.987 � 0.057 and
0.961 � 0.054, respectively; p � NS) (Table 3).

However, CCO differences in arteries with TIMI flow
grade �3 (0.406 � 0.226) were significantly higher than
those with normal TIMI flow grade 3 (0.078 � 0.078; p �
0.001) and normal arteries (0.100 � 0.042; p � 0.001)
(Table 3, Fig. 4).

With the threshold �0.184, abnormal coronary flow (TIMI
flow grade �3) was identified with a sensitivity and specificity,
ositive predictive value, and negative predictive value of 83.3%
95% CI: 57.7 to 95.6%), 91.2% (95% CI: 75.2 to 97.7%),
3.3% (95% CI: 57.7 to 95.6%), and 91.2% (95% CI: 75.2 to
7.7%), respectively (Table 4). Accuracy of this method was
8.5% with very good agreement (kappa � 0.75 [95% CI: 0.55
o 0.94]. Two patients with severe coronary stenosis but with
ifferent TIMI flow grade 3 (Fig. 5A) and TIMI flow grade
3 (Fig. 5B) are shown.

Figure 3 Comparison of CCO in Arteries With and Without Obs

Box whisker plot of corrected coronary opacification (CCO)min differences between
� � mean; � � median; upper tail � maximum; lower tail � minimum.

Relationships Among Diameter Stenosis and TIMI Flow Grade, TIMand CCO Gradients Vessels With Obstructive CADTable 2 Relationships Among Diameter Stenosis and TIMI Flow
and CCO Gradients Vessels With Obstructive CAD

<50% 50%–69%

TIMI flow grade 3 7 (100.0%) 7 (100.0%)

TIMI flow grade 0, 1, or 2 0 0

TIMI frame count 25.3 � 9.4 (16.0–34.0) 27.3 � 7.3 (22.0–35.0) 31

Normal CCO gradient 7 (100.0%) 6 (85.7%)

Abnormal CCO gradient
(�0.184)

0 1 (14.3%)
Values are n (%) or mean � SD (interquartile range). n � 52 vessels.
CAD � coronary artery disease; CCO � corrected coronary opacification; TIMI � Thrombolysis In Myoc
The relationships among TIMI flow grade, TIMI frame
ount, and coronary diameter stenosis were also assessed
Table 2). As expected, the proportion of abnormal coro-
ary flow (TIMI flow grade �3) and TIMI frame counts

ncreased with worsening diameter stenosis (p � 0.001 and
� 0.001, respectively). The reliability of TIMI frame

ount versus coronary diameter stenosis and TIMI frame
ount versus CCO differences were similar (ICC: 0.52, 0.27
o 0.71 and 0.55, 0.30 to 0.73, respectively).

ncorrected coronary opacification. Coronary opacifica-
ion was corrected to the aorta, recognizing that image
cquisition is not temporally uniform and occurs over several
ardiac cycles. To better understand the importance of this
ormalization (CCO), the analysis was performed with the
uncorrected” coronary opacification attenuation values.

Coronary opacification was assessed in the same 52
oronary arteries without stenoses and normal TIMI flow

ve Coronary Artery Disease

l arteries and arteries with diameter stenoses �50% (p � 0.004)

e Count,de, TIMI Frame Count,

D (Diameter Stenosis)

0%–89% 90%–99% 100% p Value

(100.0%) 10 (66.7%) 0 �0.001

0 5 (33.3%) 13 (100.0%)

6.3 (24.0–34.0) 39.3 � 22.3 (24.0–51.0) 66.0 � 36.4 (40.0–96.0) �0.001

(90.0%) 12 (80.0%) 0 �0.001

(10.0%) 3 (20.0%) 13 (100.0%)
tructi

norma
I FramGra

CA

7

10

.4 � 1

9

1

ardial Infarction.
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grade 3. The maximum and minimum coronary attenuation
values were 936.0 � 608.2 HU (median 517.3 HU, IQR:
24.9 to 1,634.0 HU) and 336.4 � 108.1 HU (median

352.6 HU, IQR: 285.5 to 414.5 HU), respectively. The
variability of coronary attenuation was 599.6 � 584.4 HU
(median 282.5 HU, IQR: 76.4 to 1,266.8 HU).

The relationship between contrast attenuation and coro-
nary diameter stenoses was poor, unlike CCO, and differ-
ences in coronary attenuation across coronary stenoses did
not increase with worsening diameter stenosis.

A decline in coronary contrast attenuation �1,768 HU was
onsidered abnormal, with the same methodology to calculate
he threshold for abnormal (mean � 2 SD). This threshold
as not able to identify arteries with obstructive CAD or

bnormal resting coronary flow. According Cohen’s effect size
onvention, the reliability of contrast gradient and coronary
iameter stenosis was low (ICC: 0.27, 0.00 to 0.50).

CCO in Patients With Abnormal Resting CoronaTable 3 CCO in Patients With Abnormal Res

TIMI Flow Grade <3 T

Pre-stenosis CCOmean

Mean 1.000 � 0.075

Median (IQR) 1.000 (0.937–1.032) 0

Pre-stenosis CCOmin

Mean 0.970 � 0.067

Median (IQR) 0.957 (0.932–0.998) 0

CCOmin difference

Mean 0.406 � 0.226

Median (IQR) 0.361 (0.251–0.538) 0

Abbreviations as in Table 2.

Figure 4 Comparison of CCO in Patients With Normal and Abno

Box whisker plot of corrected coronary opacification (CCO) differences among norm
post-stenosis CCO ), with TIMI flow grade 3 and TIMI flow grade �3 (p � 0.001
min
nterobserver and intraobserver variability. The reliabil-
ty of the interobserver of the non-normalized attenuation

easures was excellent in the coronary arteries (0.94, 95%
I: 0.896 to 0.966) and the aorta (1.00). Similarly, the

ntra-observer reliability was equally excellent in the coro-
ary arteries (0.99, 95% CI: 0.982 to 0.994) and aorta
1.00).

iscussion

he ability of CTA to estimate coronary blood flow and to
ssess for functional coronary stenosis would be extremely
esirable. Such a technique might prove to be useful in settings
f unevaluable coronary segments, perhaps by improving the
iagnostic accuracy of CTA. Equally important would be its
otential applicators to measure stress coronary blood flow,
hus permitting the assessment of hemodynamic significance

od FlowCoronary Blood Flow

low Grade 3 Normal Artery p Value

NS

7 � 0.057

.947–1.011)

NS

1 � 0.054

.921–0.992)

�0.001

8 � 0.078 0.100 � 0.042

.025–0.107) 0.099 (0.073–0.128)

Resting Flow

eries (CCOmax � CCOmin) and abnormal arteries (pre-stenosis CCOmin �

mean; � � median; upper tail � maximum; lower tail � minimum.
ry Bloting

IMI F

0.98

.996 (0

0.96

.958 (0

0.07

.070 (0
rmal
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of a lesion. This proof-of-concept study demonstrates that the
agreement and operating characteristics of CCO differences in
identifying abnormal (TIMI flow grade �3) resting coronary
flow seem to be very good.

Contrast gradients have been studied with 320-
detector row CT (18,19). Using a scanner capable of

Abnormal and Normal CCO GradientsTable 4 Abnormal and Normal CCO Gradients

TIMI Flow Grade <3 TIMI Flow Grade 3

Abnormal CCO gradient 15 3

Normal CCO gradient 3 31

Kappa � 0.75 (0.55–0.94).
CCO � corrected coronary opacification; TIMI � Thrombolysis In Myocardial Infarction.

0.5

0.6

0.7

0.8

0.9

1

1.1

Proximal

V

C
o

rr
ec

te
d

 C
o

ro
n

ar
y 

O
p

ac
if

ic
at

io
n

0.5

0.6

0.7

0.8

0.9

1

1.1

Proximal

V

C
o

rr
ec

te
d

 C
o

ro
n

ar
y 

O
p

ac
if

ic
at

io
n

A

B

Figure 5 CCO in Patients With Normal and Abnormal Resting C

(A) Corrected coronary opacification (CCO) measures in a coronary artery with 95%
stenosis [blue squares]) with normal flow (Thrombolysis In Myocardial Infarction fl
sures in a coronary artery with 95% stenosis of the left anterior descending coron
abnormal flow (Thrombolysis In Myocardial Infarction flow grade 2) and in an artery
imaging the entire coronary tree within 1 cardiac cycle
permits accurate assessment of coronary artery contrast
gradients. However, CT scanners with incomplete car-
diac coverage that require multiple cardiac cycles for
image acquisition lack temporal uniformity and might be
further influenced by factors beyond coronary flow. Figure 2
highlights potential changes in contrast opacification during
image acquisition, supporting the notion that contrast
opacification changes during image acquisition. We hy-
pothesized that changes in coronary opacification might be
corrected and normalized to the descending aorta. If true,
CCO in “normal” arteries should approach 1.0. The mean
CCO in “normal” arteries (0.979 � 0.070) supports this
hypothesis and suggests that CCO might be feasible with
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64-slice CT. Most importantly, this technique might be
applied to existing CT scanners with incomplete cardiac
coverage and might have future application in the assess-
ment of stress coronary blood flow.

To further confirm that correcting coronary opacification
to the aorta is justified, the same analyses were performed
with the “uncorrected” coronary opacification attenuation
values. The results confirm that the uncorrected values could
not accurately predict coronary stenoses or abnormal resting
coronary flow.
Limitations of anatomical imaging. Previous studies have
confirmed that anatomical stenoses poorly predict hemody-
namic and functional significance, and this variability seems
to be most prevalent in lesions with moderate stenoses
(10–12,15,25–27). The importance of determining func-
tional significance has been highlighted in several studies
showing that functional assessment has incremental prog-
nostic value over coronary anatomy alone (28,29). Further
compounding the limitations of anatomical assessment are
the inherent limitations of CTA. Suboptimal temporal
resolution, spatial resolution, blooming artefact, and beam-
hardening artefact from coronary calcification or stents limit
the anatomical accuracy of CTA. Functional assessment of
stenoses with CT might have incremental diagnostic and
prognostic value, acknowledging the limitations of CTA
and anatomical imaging.
Potential applications. At first glance, the ability to mea-
suring CCO differences at rest and the ability to identify
abnormal resting coronary flow might seem to have limited
value. However, the application of CCO might be useful in
patients with unevaluable segments (severe coronary calci-
fication or stents) that reduce the ability of the reader to
assess for coronary stenoses. Measuring CCO at rest might
not be a sensitive measure of stenosis but could be a specific
tool for detecting abnormal flow. More interesting is its
potential utility in conjunction with pharmacologic stress.
With pharmacologic vasodilator stress, one would expect
augmentation of coronary flow in normal arteries, but flow
would be attenuated in arteries with fixed stenoses. Com-
paring changes in CCO between normal and abnormal
arteries might prove to accurately measure functional
stenoses.
Study limitations. This was a single-center retrospective
analysis of a prospectively enrolled cohort. Although small,
the results are encouraging but require further study and
validation in larger cohorts. As well, further study is needed
to understand its incremental value and its potential utility
in conjunction with CT stress imaging. Similarly, further
understanding is needed to determine whether such meth-
ods might be generalized to different contrast administra-
tion protocols.

The authors recognize that a more rigorous analysis of
CCO might have been achieved with fixed-interval ROI
HU measurements extending the entire coronary tree, as
previously done by Steigner et al. (18). In our study, the

limitation of image acquisition spanning multiple cardiac
cycles required that coronary contrast opacification be nor-
malized to the aorta on the corresponding axial slice. As
such, automated curved multiplanar reformation software
could not be used to perform HU measurements. Because
our aim was to devise a simple method that could be easily
applied in clinical practice, we minimized CCO measures to
ensure clinical feasibility. At least 6 measures were obtained,
2 pre- and 4 post-stenoses ROIs were placed with axial
slices obtained during different cardiac cycles. A simple
calculation (pre-stenosis CCOmin � post-stenosis CCOmin)
eems to identify abnormal resting coronary blood flow.

The calculation of CCO requires the accurate measure-
ent of coronary opacification and is potentially limited by

mage quality (signal/noise ratio), vessel size, beam harden-
ng or blooming artefact, and partial volume. Although our
nitial results are promising, further study is needed to fully
omprehend its clinical potential.

onclusions

hanges in CCO in coronary vessels might predict resting
oronary blood flow. Further studies are needed to under-
tand its incremental value and its potential utility to
easure stress coronary blood flow.
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